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(Received 23 February 2012; published 26 April 2012)

Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in

arbitrary dimensions. Colored tensor models have been shown to admit a 1=N expansion and a continuum

limit accessible analytically. In this paper we prove that these results extend to the most general tensor

model for a single generic, i.e. nonsymmetric, complex tensor. Colors appear in this setting as a canonical

bookkeeping device and not as a fundamental feature. In the large N limit, we exhibit a set of Virasoro

constraints satisfied by the free energy and an infinite family of multicritical behaviors with entropy

exponents �m ¼ 1� 1=m.
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I. INTRODUCTION

Matrix models are probability measures for random
matrices M of size N. In physics language, they come
with a matrix action SðMÞ. They can be divided in two
broad categories. In the first category, that of invariant
matrix models [1], the full action has an expansion in terms
of traces of powers of M (for Hermitian, or TrðMMyÞn for
general M) which ensures invariance under UðNÞ trans-
formations. The archetypes for this category are the
�TrM3 or �TrM4 models, whose actions are S ¼ TrM2 þ
�TrM3 or S ¼ TrM2 þ �TrM4. The perturbative expan-
sion of such models involves ribbon graphs dual to trian-
gulated, or quadrangulated, Riemann surfaces. Hence
(forgetting for a brief moment the constructive issues)
these models are statistical models of random discretized
Riemann surfaces. In the large N limit, planar surfaces
dominate and furthermore undergo at some finite coupling
a transition to continuous surfaces [2,3], known as the large
volume, or continuum limit. Hence they provided until
recently the only known example of analytically controlled
geometrogenesis,1 i.e. the emergence of continuous ge-
ometries from discrete models, although restricted to two
dimensions. Moreover invariant single or multi-matrix
models can also probe the critical behavior of two-
dimensional statistical models on random geometries
[5–8].2

The second category of matrix models is that of matrix
field theories, in which the interaction is invariant, but the
quadratic part of the action is not. Since invariant TrMn

interactions are the matrix analogs of local interactionsR
�nðxÞ, matrix field theories are the analogs of ordinary

quantum field theories, in which interactions are local but
the propagator (inverse of the Laplacian or Dirac operator)
is not. From this point of view invariant matrix models
should be considered as ultralocal matrix field theories.
Nonlocal propagators in field theory give birth to renor-
malization, hence to a flow of the couplings. Just as �4

4 is
the archetype for ordinary renormalization, the archetype
of matrix field theories is the Grosse-Wulkenhaar model in
four dimensions,3 or GW4 [13]. This GW4 model improves
on the ordinary �4

4 model since it is asymptotically safe
[14], hence free of the old Landau ghost problem.
Returning now to the important constructive question,

let us recall that the constructive analysis of stable invariant
matrix models is compatible with their 1=N expansion.
Borel summability has been proved to hold uniformly in
N in the quartic case [15]. For higher degree stable inter-
actions a straightforward generalization of the techniques
of [16] should also lead to uniform Borel-LeRoy summ-
ability of the appropriate order. The constructive analysis
of matrix field theories is under way [17] and expected to
lead to a full construction of the GW4 model in the near
future.
All these nice properties of matrix models stem from

their 1=N expansion [18], which states that planar graphs
(dual to the sphere) govern their large N limit.4 Planar
graphs proliferate only exponentially in their number of
vertices and can be counted precisely through algebraic
equations [22], as they are related to trees [23–25]. This
key feature underlies all the statistical mechanics applica-
tions of the invariant models. Renormalizability and
asymptotic safety in the GW4 model also rely entirely on
the dynamical analog of the 1=N expansion [13,14,26,27].

*vbonzom@perimeterinstitute.ca
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1This term has appeared for the first time in [4] which is

however quite different from our approach.
2This critical behavior on random geometry is related to the

one on fixed geometry through the KPZ correspondence [9–12].

3The Grosse-Wulkenhaar model is a ��4
4 model on the non-

commutative Moyal space with a harmonic potential. It does not
suffer from the UV/IR mixing and becomes a matrix field theory
in the Moyal matrix base.

4Through double scaling limits one can even to some extent
treat the sum over subleading terms in the 1=N expansion
[19–21].
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Indeed in such matrix field theories only planar graphs with
a single external face look like matrix invariant terms at
high energy, and they are also the only ones to require
renormalization.

Random matrices generalize in higher dimensions to
random tensors [28–30] (and [31–33] for more recent
developments), whose perturbative expansion performs a
sum over random higher dimensional triangulations, but
until recently all nice aspects of matrix models listed above
could not be generalized to tensors, as their 1=N expansion
was missing. The situation has changed with the discovery
of colored [34–36] rank D � 3 random tensor models.5

These models require Dþ 1 different pairs of conjugate
tensors Ti, �Ti, equipped with a particular invariant canoni-
cal action of the type

P
iT

i �Ti þ �
Q

D
i¼0 T

i þ ��
Q

D
i¼0

�Ti.

Their perturbation theory supports a 1=N expansion
[38–40], indexed by the degree, a positive integer which
plays in higher dimensions the role of the genus but is not a
topological invariant. Leading order graphs triangulate the
D-dimensional sphere in any dimension [38,39]. These
graphs, baptized melonic [41], again proliferate only ex-
ponentially, as they map to colored (Dþ 1)-ary trees
[41,42]. Like matrix models, these tensor models reach a
continuum limit when the coupling constant approaches its
critical value. The corresponding entropy exponent is
�melons ¼ 1=2 in any dimensions [41]. It is the analog of
the string susceptibility exponent �string ¼ �1=2 of the

invariant matrix models for the universality class of pure
2d quantum gravity,

Colored random tensors [43] therefore gave the first
theory of random geometries in three and more dimensions
with analytically tractable geometrogenesis and the subject
is rapidly expanding [44–50]. Coupling of statistical me-
chanical systems to these random geometries in arbitrary
dimension has been done in [48,51,52], and results at all
orders in 1=N have been established for some restricted
models [53] (see also [54] for some related developments).

Obvious questions then arise. Do 1=N expansions also
hold for uncolored models, i.e. with a single tensor? How
can one build tensor models with interactions of arbitrary
degree that still admit a 1=N expansion? What are the
tensor analogs of matrix field theories?

A first important step towards answering the first two
questions was taken in [42]. It was shown that integrating
out all colored tensors but one in the initial colored model
leads to an effective action for a single uncolored tensor

which is a sum of effective invariant interactions whose
internal structure can be unfolded in terms of colored
graphs.
In the present paper we return to these questions in

greater detail. As in the case of matrices, we can distin-
guish invariant tensor models and tensor field theories.
Invariant tensor models are those considered in this paper.
They correspond to tensors with both quadratic part and
interactions invariant under the external tensor product
�DUðNÞ. We consider the most general invariant models
for a random, complex tensor. It is important that this
tensor is generic, that is without any symmetrization or
antisymmetrization of its indices. Labeling these indices
then provides exactly the same combinatorial tool that
colors provide in the colored models. It allows us to do
the following:
(i) define their 1=N expansion, again organized accord-

ing to the degree of the graphs;
(ii) prove it is dominated by melonic, colored graphs of

spherical topology;
(iii) derive the continuum limit, whose entropy expo-

nent is generically �melons ¼ 1=2, thus proving the
universality of this continuum phase;6

(iv) extract a set of Virasoro constraints which hold in
the large N limit;

(v) and find multicritical points, with entropy exponents
�m ¼ 1� 1=m (for m � 2 integers), which are the
same as the ones of multicritical branched polymers
[48,53,55]. This is the generalization of [8] to
tensors.

These are the main results of this paper, and they are
direct consequences of the universality of tensor invariant
measures first derived in [56]. We stress that universality in
this context onlymeans that in the large N limit the tensors
are distributed on a Gaussian. However, the Gaussian itself
(i.e. its covariance) is not universal, but depends on the
coupling constants of the model. Indeed, when the large N
covariance becomes critical, the continuum limit is
reached. Further, tuning the couplings appropriately, multi-
critical behaviors are observed, just like in invariant matrix
models [8].
We expect the constructive analysis of stable and sym-

metric invariant models not to pose any difficulty, as the
necessary techniques have been in fact already developed
for the quartic case [57] in the slightly different context of
group field theory [58].
Tensor field theories are the analogs of matrix field

theories. They have tensor invariant interactions but a
Laplacian-based propagator. Such a propagator again al-
lows a renormalization group analysis. We do not consider
this second category of models further in this paper, except

5In D ¼ 2 colors do not play the key role they play in three
and more dimensions. This is because there is a natural compo-
sition rule on rank 2 tensors, namely, matrix multiplication, and a
single trace invariant at order n, namely TrMn. In D � 3 there is
no longer any multiplication law and there are many different
invariants at order n. The colors become essential as a canonical
device to keep track of their combinatorics. Colored matrix
models can of course still been defined and have been studied
in [37].

6It is analogous to the universality class of pure 2d quantum
gravity which is obtained for most values of the coupling
constants in one-matrix models [1,8].
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to recall that uncolored renormalizable models of this type
have been found for rank 3 and rank 4 tensors [59,60].
Again the renormalization in such models is entirely based
on a dynamical version of the 1=N expansion. One should
explore their flows, phase transitions, critical exponents,
gauge invariant extensions, and constructive properties, as
they seem a promising approach to the quantization of
gravity in more than two dimensions [61].

We follow the standard presentation of invariant matrix
models in the large N limit, like in the well-known review
[1], to emphasize the new status of the field. In Sec. II we
define the generic models. In Sec. III we consider their 1=N
expansion, which is dominated by the melonic graphs and
establish their continuum limit. In Sec. IV we analyze the
infinite family of multicritical points for these models.

II. THE 1=N EXPANSION OF INVARIANT
TENSOR MODELS

A. Tensor invariants and action

The models we consider are based on complex tensors
which have no symmetry between their indices. In order to
write the most general action, one must first understand the
invariants built from such tensors. It turns out that the
analysis of these invariants automatically leads to a repre-
sentation in colored graphs.

LetH1; . . . ; HD be complex vector spaces of dimensions
N1; . . . ; ND. A rank D covariant tensor Tn1...nD can be seen

as a collection of
Q

D
i¼1 Ni complex numbers supplemented

with the requirement of covariance under base change. We
consider tensors T transforming under the external tensor
product of fundamental representations of the unitary
group �D

i¼1UðNiÞ, that is each UðNiÞ acts independently
on its corresponding Hi. The complex conjugate tensor
�Tn1...nD is then a rank D contravariant tensor. They trans-

form as

T0
a1...aD ¼ X

n1;...;nD

Ua1n1 . . .VaDnDTn1...nD;

�T0
a1...aD ¼ X

n1;...;nD

�UaDnD . . .
�Va1n1

�Tn1...nD :
(2.1)

From now on we will always denote the indices of the
complex conjugated tensor with a bar. We will sometimes
denote the D-tuple of integers (n1; . . . ; nD) by ~n and as-
sume (unless otherwise specified) D � 3. We restrict to
Hi ¼ H, Ni ¼ N, for all i.

Among the polynomial quantities one can build out of T
and �T we will deal in the sequel exclusively with trace
invariants. The trace invariants are built by contracting two
by two covariant with contravariant indices in a polyno-
mial in the tensor entries. We write trace invariants for-
mally like

Tr ðT; �TÞ ¼ XY
�n1; �n1Tn1... . . .

�T �n1...; (2.2)

where all indices are saturated. Note that a trace invariant
has necessarily the same number of T and �T.
Trace invariants can be labeled by graphs with distin-

guished vertices. To draw the graph associated to a trace
invariant we represent every T by a white vertex v and
every �T by a black vertex �v. We promote the position of an
index to a color: n1 has color 1, n2 has color 2, and so on.
The contraction of two indices ni and �ni of tensors is
represented by a line li ¼ ðv; �vÞ connecting the corre-
sponding two vertices. Lines inherit the color of the index,
and always connect a black and a white vertex. Any trace
invariant is then represented by a D-colored graph.
Definition 1.—A closed D-colored graph, or D-bubble,

is a graph B ¼ ðV ; EÞ with vertex set V and line set E
such that
(i) V is bipartite, i.e. there exists a partition of the

vertex setV ¼ A [ �A, such that for any element l 2
E, then l ¼ fv; �vg with v 2 A and �v 2 �A. Their
cardinalities satisfy jV j ¼ 2jAj ¼ 2j �Aj.

(ii) The line set is partitioned into D subsets E ¼S
D
i¼1 E

i, where Ei is the subset of lines with color
i, with jEij ¼ jAj.

(iii) It is D-regular (all vertices are D-valent) with all
lines incident to a given vertex having distinct
colors.

Some examples of trace invariants for rank 3 tensors are
represented in Fig. 1. The trace invariant associated to the
graph B writes as

TrBðT; �TÞ ¼
X

f ~nv; �~nvgv; �v2V

�B
f ~nv; �~n �vg

Y
v; �v2B

T~nv
�T �~n �v ; with

�B
f ~nv; �~n �vg ¼

YD
i¼1

Y
li¼ðv; �vÞ2B

�nvi �n
�v
i
;

(2.3)

where li runs over all the lines of color i of B. We call the

�B
f ~nv; �~n �vg (the product of delta functions encoding the index

contractions of the observable associated to the graph B)
the trace invariant operator with associated graph B [42].
Trace invariant operators factor over the connected com-
ponents of the graph. From now on wewill always consider
connected invariants, hence invariants associated to con-

nected graphs in the above representation. We denote �ðDÞ
2k

the set of D-colored, connected graphs with 2k distin-

guished vertices and �ðDÞ the set of all graphs with D
colors.

T

2
1

2

1

2

1

3
2

1

2

1

2

1

3 3

3
T

2 2

2

2
1

2

1

2

1
3

3

3
1

1

1
3 3

3

FIG. 1. Graphical representation of trace invariants.
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Of particular importance in the sequel are the subgraphs
with two colors of a D-colored graph, called faces. We
denote them F . For instance the graphs with 3 colors
posses three type of faces, given by the subgraphs with
lines of colors 12, 13, and 23. As every line belongs to
exactly two faces (the lines of color 1 belong to a face 12
and a face 13, etc.), the graphs with three colors can be
represented as ribbon graphs.

To every graphB with D colors we can associate a non-
negative integer, its degree !ðBÞ [39,40,43]. We recall its
definition and properties in the Appendix. The main feature
of the degree is that it provides a counting of the number of
faces of a graph, thus for a graph with D colors and 2p
vertices the total number of faces computes

jF j¼ ðD�1ÞðD�2Þ
2

pþðD�1Þ� 2

ðD�2Þ!!ðBÞ: (2.4)

Taking into account that graphs with 3 colors are ribbon
graphs, it is easy to see that in this case the degree reduces
to the genus. In higher dimensions the degree provides a
generalization of the genus. It is not a topological invariant,
but it combines topological and combinatorial information
about the graph.

Going back to invariants one can build out of a complex
tensor, we note that there exists a unique D-colored graph
with two vertices, namely, the graph in which all the lines
connect the two vertices. We call it the D-dipole (denoted
B1) and its associated invariant is

TrB1
ðT; �TÞ ¼ X

~n; �~n

T ~n
�T �~n

�YD
i¼1

�ni �ni

�
: (2.5)

The most general invariant action for a nonsymmetric
tensor is therefore

SðT; �TÞ ¼ t1 TrB1
ðT; �TÞ

þ X1
k¼2

X
B2�ðDÞ

2k

tBN
�½2=ðD�2Þ!�!ðBÞ TrBðT; �TÞ;

(2.6)

where (tB) is the set of coupling constants associated to
D-bubbles and we singled out the quadratic part corre-
sponding to B1. In Eq. (2.6) we have added a scaling in N
for every trace invariant, proportional to its degree. As the
degree is non-negative this scaling is a suppression of some
invariants. We have included it because it simplifies some
equations in the following, but we emphasize that this
scaling is not required. As the reader can check, all the
results we present below can be obtained (albeit with some
effort) also in its absence. Because of symmetry under
relabeling of the black and white vertices, some couplings
in (2.6) are redundant. It is however more convenient to
assign a distinct coupling constant to each graph with
labeled vertices, and remember this redundancy only at
the end.

We will deal in this paper with the most general single-
tensor model of rank D defined by the partition function

ZðtBÞ ¼ expð�FðtBÞÞ ¼
Z

d �TdT expð�ND�1SðT; �TÞÞ:
(2.7)

B. Graph amplitudes

The invariant observables are the trace invariants repre-
sented by D-colored graphs. The Feynman graphs contrib-
uting to the expectation of an observable are obtained by
Taylor expanding with respect to tB and evaluating the
Gaussian integral in terms ofWick contractions. A moment
of reflection reveals that the Feynman graphs are made of
effective vertices TrBðT; �TÞ (that is graphs B with colors
1; . . . ; D) connected by effective propagators (Wick con-
tractions, pairings of T’s and �T’s). A Wick contraction of
two tensor entries Ta1...aD and �T �p1... �pD

with the quadratic

part (2.5) consists in replacing them by ð1=½ND�1t1�Þ�Q
D
i¼1 �ai �pi

. The Wick contractions will be represented as

dashed lines labeled by the fictitious color 0. Thus every
dashed line of color 0 in a Feynman graph identifies all the
indices of the two vertices (one white corresponding to T
and one black corresponding to �T) it connects. An example
of a Feynman graph is presented in Fig. 2.
The Feynman graphs are therefore (Dþ 1)-colored

graphs G. We reserve the notation B for the D-colored
graphs, and G for the (Dþ 1)-colored graphs. A graph G
has two kinds of faces: those with colors i, j ¼ 1; . . . ; D,
denoted F ij (which belong also to some D-bubble B) and

those with colors 0, i, for i ¼ 1; . . . ; D, denotedF 0i, which
involve the lines of color 0 in G.
The free energy has an expansion in closed, connected

(Dþ 1)-colored graphs,

FðtBÞ ¼
X

G2�ðDþ1Þ

ð�1Þj�j
sðGÞ AðGÞ; (2.8)

where sðGÞ is a symmetry factor and j�j is the number of
effective vertices, i.e. D-bubbles (subgraphs with colors
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FIG. 2. A Feynman graph.
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1; . . . ; D). We denote these D-bubbles Bð�Þ, with � ¼
1; . . . ; j�j. The amplitude of a graph is

AðGÞ ¼ Y
�

tBð�Þ

X
f ~nv; �~n �vg

�Y
�

ND�1�½2=ðD�2Þ!�!ðBð�ÞÞ�Bð�Þ
f ~nv; �~n �vg

�

�
� Y
l0¼ðv; �vÞ2E0

1

t1N
D�1

Y
i

�nvi ; �n
�v
i

�
: (2.9)

An index ni is identified along the lines of color i in Bð�Þ
and along the dashed lines of color 0. We thus obtain a free
sum per face of colors 0i, so that

AðGÞ¼
Q

� tBð�Þ

tjl
0j

1

N
ðD�1Þj�j�½2=ðD�2Þ!�P

�

!ðBð�ÞÞ�ðD�1Þjl0jþP
i

jF 0ij
:

(2.10)

Noting that
P

ijF 0ij ¼ jF j �P
�jF ð�Þj, where jF j de-

notes the total number of faces of G and jF ð�Þj the number

of faces of theD-bubbleBð�Þ, using (2.4) for eachBð�Þ and
for G (taking into account that G has Dþ 1 colors) and
noting that jl0j ¼ p, with p the half-number of vertices of
G, the amplitude of G computes

AðGÞ ¼
Q

� tBð�Þ

tp1
ND�½2=ðD�1Þ!�!ðGÞ; (2.11)

with !ðGÞ the degree of the graph G. The 1=N expansion
of the free energy writes

FðtBÞ ¼ ND
X

G2�ðDþ1Þ

ð�1Þj�j
sðGÞ

Q
� tBð�Þ

tp1
N�½2=ðD�1Þ!�!ðGÞ:

(2.12)

The leading scaling with N of the free energy is FðtBÞ �
ND. In the rest of this paper we focus on the leading order
free energy f0ðtBÞ ¼ limN!1N�DFðtBÞ. Expectation val-
ues of bubble observables have similar expansions. If B is
a D-colored graph, the connected expectation value

1

N

hTrBðT; �TÞi
Z

¼ 1

ND N½2=ðD�2Þ!�!ðBÞ @F
@tB

¼ X
G2�ðDþ1Þ;G�B

ð�1Þj�j
sðGÞ

�
Q

� tBð�Þ

tp1
N�½2=ðD�1Þ!�!ðGÞþ½2=ðD�2Þ!�!ðBÞ;

(2.13)

has an expansion in connected (Dþ 1)-colored vacuum
graphs G having B as a (marked) subgraph, denoted
G � B. The scaling in N in (2.13) of a graph G rewrites

N�ð2=D!Þ!ðGÞN�½2=DðD�2Þ!�ð!ðGÞ�D!ðBÞÞ: (2.14)

Using (a weaker version of) Proposition 2 in the Appendix,
!ðGÞ � D!ðBÞ and the inequality is saturated for

!ðGÞ ¼ 0. It follows that in the large N limit only graphs
G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section wewill restrict
to the case D ¼ 3. The original idea of tensor
models [28–30] was to generate triangulations of three-
dimensional spaces. The basic building block in the
original proposals was an interaction term which combi-
natorially describes a tetrahedron (a 3-simplex) also used
in group field theories [58]

Vtetrahedron ¼
X

a;b;c;d;e;f

TabcTcdeTebfTfda: (2.15)

This term is not �3UðNÞ invariant. The most one can say
about it is that it is invariant under a simultaneous OðNÞ
orthogonal transformation of all its indices.
The situation is already improved in colored tensor

models [34] where the indices are distinguished and one
can implement a �3UðNÞ invariance. As the pattern of
contraction of a tetrahedron is not a trace invariant one
can raise the question of the topological interpretation of
the trace invariant observables and their relation to
triangulations.
The situation is actually like in one-matrix models with

generic interactions. A TrðMkÞ-vertex is seen (by duality)
as a polygon with k sides. A closed graph is then a gluing of
such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the
polygon, i.e. by taking the topological cone over its bound-
ary), so that the graph encodes a triangulation. Here, a
similar interpretation holds. The (3þ 1)-colored graphs
are known to describe topological 3-dimensional pseudo-
manifolds [34]. The black and white vertices of the graph
correspond to tetrahedra (3-simplices). The triangles
(2-simplices) bounding a tetrahedron are represented by
the half-lines touching the vertex, hence are colored 0, 1, 2,
3. The lower dimensional simplices are colored by the
colors of the triangles sharing them. Thus the edges are
labeled by pairs of colors (the edge 12 is common to the
triangles 1 and 2), and the points (vertices of the tetrahedra,
to be distinguished from the vertices of the graph) are
labeled by triples of colors (the point 123 is the point
common to the triangles 1, 2 and 3 bounding a
tetrahedron).
A line in the colored graph represents the unique gluing

of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings; that is we glue
triangles of the same color, say 2, in such a way that the
edge 02 (respectively 12 and 32) bounding a triangle is
glued on the edge 02 (respectively 12 and 32) bounding the
second triangle, and similarly for points. This construction
yields the pseudomanifold dual to a (3þ 1)-colored graph.
Alternatively the same graph with 3þ 1 colors can be

seen as the gluing of the effective interactions,Bwhich are
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graphs with 3 colors, along the lines of color 0. Following
the above construction, each effective interaction by itself,
being a graph with 3 colors, represents a surface. The
(black and white) vertices are dual to triangles, and
the edges bounding the triangles are colored 1, 2 and 3.
The surface represented by an interaction is the unique one
obtained by gluing the triangles along their edges (as
indicated by the graph with three colors) respecting all
the colorings (i.e. those of the edges and of the points).
In Fig. 3(a) for instance we represented such a surface
obtained by gluing eight triangles.

Adding the lines of color 0 results in taking the topo-
logical cone over this pseudomanifold, CM ¼ ðM�
½0; 1�Þ=ðM� f1gÞ. Let us first examine the effect of this
coning on one triangle [represented in Fig. 3(b)]. The
original triangle will now be called a triangle of color 0
[see Fig. 3(b)]. The original edges acquire the new
color 0, hence they will be called 01, 02 and 03 [see again
Fig. 3(b)], and similarly the original points (13 becomes
013, etc.). This coning adds extra triangles, edges, and
points. Every original edge gives by coning a new triangle.
We color this triangle by the color of the edge, hence the
original edge of color 1 gives rise by coning to the triangle
of color 1 [see again Fig. 3(b)]. Note that the new triangle 1
shares with the original triangle, 0 the edge 01. Every
original point gives by coning an edge, which inherits the
colors of the original point (the edge 13 is the cone over the
original point 13 and is shared by the triangles 1 and 3). We
also obtain a new point labeled 123. When taking the cone
over the surface defined by a connected graph B (with
colors 1, 2 and 3), we obtain new triangles (one for every
edge of the surface), new edges (one for every point of the
surface), and an unique new point 123, the apex of the cone.

Thus, when seen as a subgraph of a (3þ 1)-colored
graph G,B represents a ‘‘chunk’’ of the three-dimensional
space. For the example of the graph with 3 colors in Fig. 3
(a) adding the dashed lines of color 0, we obtain the gluing
of 8 tetrahedra drawn in Fig. 3(c). This chunk has the
topology of a ball and is bounded by the 8 triangles of
color 0 corresponding to the dashed half-lines.

Thus the trace invariant quartic interactions like

X
ni;mi

Tn1n2n3
�Tn1n2m3

Tm1m2m3
�Tm1m2n3 ; (2.16)

represented in Fig. 3(d), correspond to a gluing of four
tetrahedra, with four external, boundary triangles of color
0, and not to a tetrahedron. Note that a chunk can have a
nontrivial topology, for instance it can be a cone over a
torus.
One can employ an alternative stranded graph represen-

tation of the Feynman graphs, closer to the ribbon graph
representation of matrix models. This is presented in
Fig. 4(a). One replaces the black and white vertices of
the effective interactions by stranded halflines, which are
then connected by dashed lines having each three strands.
In this representation the strands colored 1, 2, and 3 have
each an associated Kronecker � which corresponds to the
contraction of a tensor index between two tensors of the
bubble observable. The dashed lines have three strands
representing the three Kronecker � coming from a Wick
contraction which propagate the tensor indices. The faces
of colors 0i are easily identifiable. Each stranded halfline
corresponds to a triangle (the triangles of color 0 in the
colored graph representation). The graph of the effective
interaction encodes the pattern of gluing of the triangles
into a surface (the boundary of a chunk), and the dashed
lines encode the gluing of chunks along boundary tri-
angles. As this representation is redundant and somewhat
cumbersome we will not use it further.
Before concluding this section let us remark that the fact

that the graphs are bipartite plays a secondary role, ensur-
ing just the orientability [62]. What is crucial is that a
colored graph represents the unique gluing of simplices
which respects all the labelling (including the induced ones
over all the lower dimensional simplices). Dropping the
bipartite requirement allows one to consider the OðNÞ3
invariant presented in Fig. 4(b). As it consists in a gluing
of four triangles and any two triangles share exactly one
edge one might be tempted to interpret it as a gluing pattern

FIG. 3. Trace invariants and gluings of simplices in D ¼ 3.

FIG. 4. Stranded graph and a nonbipartite invariant.
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of four triangles bounding a tetrahedron. However, this
interpretation is not the correct one. Indeed, on closer
inspection, it turns out that the dual gluing consists in
four triangles glued first around a vertex (say 13) and
then glued along opposite edges of color 2 [see the right
hand side of Fig. 4(b)]. Thus, respecting the rules of the
colored gluings described above, this OðNÞ3 invariant has
the topology of the real projective plane RP2.

III. LARGE N LIMIT

A. The melonic family and the large N factorization

In the large N limit, only graphs with vanishing degree
survive. For (2þ 1)-colored graphs the degree is the genus
of the graph, hence the graphs of degree 0 are exactly the
planar graphs and represent spheres. For D � 3, the
(Dþ 1)-colored graphs G with !ðGÞ ¼ 0 have been
shown to also describe topological spheres in dimension
D [40,41,43].

1. Combinatorial description of melons

We explain in the Appendix why the (Dþ 1)-colored
graphs of degree zero, called melonic, can be obtained by
the insertion procedure detailed below. While the dominant
graphs of our models are melonic, it is understood that not
all melonic graphs are generated. However, this section is
only concerned with the combinatorial properties of the
melonic family, hence we temporarily allow ourselves to
also use melonic graphs which do not appear in the
Feynman expansion of our models.

First order.—The lowest order graph consists in two
vertices connected by (Dþ 1) lines, as in the Fig. 5(a).
We consider all lines incident at the positive (black) vertex
to be active, which means that higher order graphs will be
obtained by insertions on them.

Second order.—(Dþ 1) graphs contribute to the second
order. They arise from inserting two vertices connected by
D lines on any of the (Dþ 1) active lines of the first order
graph. If the line on which we insert this decoration has
color i, the new lines will be colored by all colors except i.
Let us say we insert this graph on the active line of color 1,
like in the Fig. 5(b) (hence the new lines have colors 2, 3 up
toD). All lines incident at the new black vertex are deemed
active (the new lines of colors 2; . . . ; D as well as the
external line of color 1), while the exterior line of color 1

incident at the new white vertex [in bold in Fig. 5(b)] is
deemed inactive.
Order pþ 1.—We obtain the graphs at order pþ 1 by

inserting two vertices connected by D lines (with appro-
priate colors) on any of the active lines of a graph at order
p. Once again, with respect to the new vertices, all lines
incident to the black vertex are deemed active, while the
exterior line incident to its white vertex is deemed inactive.
We are now going to show that the expectation values of

melonic graphs are fully determined by the (dressed) co-
variance of the model, in a specific, factorized form.

2. Large N factorization

In the large N limit, only the bubble observables B for
which there exist Dþ 1-colored graphs G which are mel-
onic survive. The melonic graphs have some important
properties, which put together lead to the large N factori-
zation of expectations.
(i) If a (Dþ 1)-colored graph G is melonic then all its

subgraphs B with colors 1; 2; . . . ; D are melonic see
Fig. 6(a) and are therefore built following the same
procedure.

(ii) In this procedure, G is obtained by inserting pairs of
vertices v and �v separated by D lines, and a
D-colored subgraph B is obtained by performing
the same insertions, but ignoring the color 0.

(iii) Consider two vertices v and �v inserted at some
step. At the time of the insertion, they are con-
nected in G by D lines and some two-point graph
(corresponding to the line on which they have been
inserted). As all further insertions are made on the
lines of G, the two half-lines of any color (0, 1, up
toD) on v and �v will always be connected together
via two-point graphs.

Therefore, for every such pair of vertices v and �v ofB, the
two half-lines of color 0 must be connected via some two-
point graph in G [see Fig. 6(b)]. In other words, starting
with a melonicD-colored observable, there is a uniqueway
to pair its external halflines with two-point insertions so as
to get melonic (Dþ 1)-colored graphs. Then, the full
expectation value is obtained by inserting this way full
two-point functions, one for each pair of vertices which
are joined.
As a result, in the N ! 1 limit, the expectation of a

melonic observable factors in terms of full two-point func-
tions (dressed propagators). The full two-point function
writes

1

Z
hTn1...nDT �n1... �nDi ¼

Q
D
i¼1 �ni; �ni

ND�1
UðtB; NÞ;

UðtB; NÞ ¼ 1

t1
þ . . . ;

(3.1)

where (1=t1) is the bare propagator and the dots denote
the radiative corrections. We denote limN!1UðtB; NÞ ¼FIG. 5. Melonic graphs at first and second orders.
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UðtBÞ. The large N expectation of the D-dipole observable
B1 computes then

lim
N!1

1

N

hTrB1
ðT; �TÞi
Z

¼ UðtBÞ: (3.2)

Some graphs contributing to this expectation forD ¼ 3 are
presented in Fig. 6, where the marked graph B1 is pre-
sented in bold. The colors of the lines are assigned turning
clockwise 0, 1, 2, and 3 at the white vertices.

We thus conclude that

lim
N!1

1

N

hTrBðT; �TÞi
Z

¼
�
0 if B is not melonic

UðtBÞpB ; if B is melonic with 2pB vertices
:

(3.3)

In particular this factorization holds for the Gaussian
model with tB ¼ 0 for B � B1, and the full two-point
function simply given by the bare covarianceUðtBÞ ¼ 1=t1.

The universality of tensor measures, first derived in [56]
(where it was obtained by mapping melons to trees), is the
fact that the observables satisfy (3.3). It means that in the
large N limit the models become Gaussian. However this
large N limit is very nontrivial, as the covariance of
the large N Gaussian is the full, resummed, two-point
function. The rest of this paper is dedicated to explore
the various multicritical behaviors and continuum limits
governed by this resummed covariance.

B. The leading order two-point function
and free energy

The full two-point function at largeN is determined by a
self-consistency equation provided by a Schwinger-Dyson
equation supplemented with the above factorization. The
relevant Schwinger-Dyson equation is

1

ND

X
n1...;nD

1

Z

Z
dTd �T

@

@Tn1...nD

½Tn1...nDe
�ND�1SðT; �TÞ� ¼ 0:

(3.4)

Taking the derivative explicitly, one gets

1�X
B

pBtB
1

N

hTrBðT; �TÞi
Z

¼ 0; (3.5)

where pB denotes the half-number of vertices of the bubble
B (that is the number of either black or white vertices). At
leading order in 1=N this can be rewritten in the following
form. We first define the leading order potential

Vðx; tBÞ ¼
X
n�1

� X
B melonic;

pB¼n

tB

�
xn;

V 0ðx; tBÞ 	 @V

@x
ðx; tBÞ ¼

X
n�1

n

� X
B melonic;

pB¼n

tB

�
xn�1;

(3.6)

and taking into account the factorization of the melonic
expectations, the Schwinger-Dyson equation becomes the
following self-consistency equation

UðtBÞV0ðUðtBÞ; tBÞ ¼ 1: (3.7)

The leading order two-point function is the solution of this
polynomial equation whose coefficients are the coupling
constants of melonic observables.
Once U is determined using (3.7), one can access the

free energy f0. The leading order free energy f0ðtBÞ, like
the leading order potential Vðx; tBÞ ¼

P
n�1ð

P
B melonic;

pB¼n
tBÞxn

and the leading order two-point function UðtBÞ only de-
pends on the coupling constants of the melonic bubbles tB.
Consider the function f0 � VðUðtBÞ; tBÞ þ lnUðtBÞ. Its
differential is

FIG. 6. Graphs contributing to the 3-dipole expectation.
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d½f0 � VðUðtBÞ; tBÞ þ lnUðtBÞ�
¼ X

B melonic

�
@f0
@tB

�UðtBÞpB � V 0ðUðtBÞ; tBÞ @U@tB
þ 1

UðtBÞ
@U

@tB

�
dtB ¼ 0: (3.8)

Thus the leading order free energy is

f0ðtBÞ ¼ VðUðtBÞ; tBÞ � lnUðtBÞ: (3.9)

C. The continuum limit

Tensor models are of combinatorial nature and as such
provide a notion of continuum limit in a combinatorial
way. The idea is that disregarding the geometrical content
and interpretation which may be given to a model, this
limit is always obtained as the regime where graphs with a
very large number of vertices dominate. As an illustration,
we derive the continuum limit in a particular T4 truncation
defined by the action

ST4ðT; �TÞ¼X
~n

T ~n
�T ~nþg

X
a1 ;...;aD
b1 ;...;bD

Ta1...aD�1aD
�Ta1...aD�1bDTb1...bD�1bD

�Tb1...bD�1aD : (3.10)

Note that the interaction term is melonic. The leading order
potential is defined by t1 ¼ 1, t2 ¼ g, that is VðxÞ ¼ xþ
gx2. The leading order free energy is therefore

f0ðgÞ ¼
X
n2N

gnfð4nÞ; (3.11)

where fð4nÞ is the number of (Dþ 1)-colored melonic
graphs built with n effective interactions T4 (thus having
4n black and white vertices). The number fð4nÞ is a canoni-
cal partition function for graphs with fixed number of
vertices and f0ðgÞ is its associated grand-canonical parti-
tion function with lattice ‘‘chemical potential’’ g. The
thermodynamic limit is encoded into the asymptotic be-
havior of fð4nÞ,

fð4nÞ �n!1 An��3g�n
c ; (3.12)

for some constants A, gc and �. Thus gc is the radius of
convergence of f0ðgÞ, which means that when g ap-
proaches gc, f0ðgÞ loses its summability and graphs with
a large number of vertices (4n) dominate its behavior. The
power-law decay characterized by � controls the singular-
ity of f0ðgÞ close to gc, since

f0ðgÞ � jg� gcj2��: (3.13)

The exponent � is known as the entropy exponent.7 Let us
compute the entropy exponent of the model defined by ST4 .
First one notices that the derivative of the leading order
free energy writes in terms of the leading order two-point
function @f0

@g ¼ UðgÞ2. The Eq. (3.7) gives

2gUðgÞ2 þUðgÞ � 1 ¼ 0;

hence UðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8g

p � 1

4g
;

(3.14)

where we selected the physical root with initial condition
Uð0Þ ¼ 1. One thus identifies gc ¼ �1=8 and for g ! gc
the nonanalytic parts of the two-point function and free
energy are

UðgÞsing � ðg� gcÞ1=2;
f0;sing � ðg� gcÞ3=2; hence � ¼ 1=2:

(3.15)

The average number of effective interactions (proportional
to the number of vertices) diverges when tuning to
criticality

hni ¼ g
@

@g
logf0 � 1

jg� gcj !
g!gc

1: (3.16)

D. Virasoro constraints

We now come back to the generic model with arbitrary
couplings. The full set of Schwinger-Dyson equations is
obtained by inserting generic D-bubble observables in
(3.4). The equations can be recast as LBZðtBÞ ¼ 0 for
some differential operators LB labeled by the observables.
The algebra of these operators has been discussed at length
in [56]. Because of the large N factorization one can find
the leading order Schwinger-Dyson equations and the as-
sociated algebra of constraints by a shorter route. We show
below that the large N factorization (3.3) reduces the
Schwinger-Dyson equations to a set of Virasoro con-
straints, like in matrix models. We emphasize that this
only holds at leading order in 1=N.
Note that in fact the leading order two-point function

UðtBÞ as well as the leading order free energy f0 depend
only on the sums of the coupling constants of melonic
observables at fixed number of vertices. Thus, defining
tn 	 P

B melonic;
pB¼n

tB, the large N factorization becomes

7In the TrM4 matrix model for random two-dimensional
lattices for instance one has � ¼ �1=2 [1], which is the univer-
sality class of pure two-dimensional quantum gravity. As such, it
is reached generically, i.e. for most values of the coupling
constants, in the continuum limit of one-matrix models.
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@f0
@tn

¼ ½UðtpÞ�n; (3.17)

Then multiplying (3.7) by Uk for any positive k we get

½UðtpÞ�k �
X
n�1

ntn½UðtpÞ�nþk ¼ 0; 8 k � 0: (3.18)

These equations can be seen as differential equations on f0,

Lkf0 ¼ 0; for Lk ¼ @

@tk
� X

n�1

ntn
@

@tnþk

: (3.19)

It is straightforward to check that the differential operators
satisfy the well-known algebra

½Ln; Lm� ¼ ðm� nÞLmþn: (3.20)

IV. MULTICRITICAL BEHAVIORS
IN THE LARGE N LIMIT

We now set the summed coupling constants t1 ¼ 1=g,
and tn ¼ �n=g to investigate the different possible critical
behaviors with respect to the parameter g. The potential V
becomes VðxÞ ¼ ðxþP

k¼2�kx
kÞ=g. The self-consistency

Eq. (3.7) for the two-point function becomes

g ¼ Uþ Xm
k¼2

k�kU
k: (4.1)

Like in the matrix models review [1], the continuum
limit is obtained by setting @g=@U ¼ 0. At least locally,
this equation can be solved for U in terms of the
parameters �k. One concludes that for generic values
of these parameters � ¼ 1=2, thus proving the universal-
ity of this continuum limit, first derived in [41] for the
colored model.

However, there are points on the set of parameters where
the equation @g=@U ¼ 0 can not be solved for U, because
@2g=@U2 may vanish and there the implicit function theo-
rem can not be applied. In these cases, one has multicritical
behaviors and � > 1=2. A multicritical point of order m is
defined, like in one-matrix models, by

@g

@U
¼ 
 
 
 ¼ @m�1g

@Um�1
¼ 0; and

@mg

@Um � 0; (4.2)

which imply g ¼ gc � ðUc �UÞm þOððU�UcÞmþ1Þ.
Such multicritical behaviors have already been observed
in tensor models in [48] (where they are interpreted in
terms of dimer models) and [53]. As g is a polynomial in
U whose coefficients �k can be freely chosen, multicritical
points can be reached for the generic one-tensor model. We
present below a minimal realization, i.e. a potential V with
minimal degree leading to a multicritical point of order m.

We first set Uc ¼ m�1=ðm�1Þ, and consider

VðUÞ ¼ 1

g

Xm
k¼1

1

k
Um�k

c ½Uk
c � ðUc �UÞk�: (4.3)

Thus V is of degreem, satisfies Vð0Þ ¼ 0, the coefficient of
the linear term is 1=g and UV0ðUÞ ¼ ½Um

c � ðUc �
UÞm�=g. The self-consistency equation is exactly

g ¼ gc � ðUc �UÞm; with gc ¼ Um
c : (4.4)

Substituting into (3.9) we find

f0 ¼ 1

g

Xm
k¼1

1

k
Um�k

c ½Uk
c � ðUc �UÞk� � ln½Uc � ðUc �UÞ�

¼ f0ðgcÞ �Um
c

g

Xm
k¼1

1

k

�
Uc �U

Uc

�
k þ X1

k¼1

1

k

�
Uc �U

Uc

�
k

þ
�
1

g
� 1

gc

�Xm
k¼1

1

k
Um

c : (4.5)

Taking into account thatUc �U ¼ ðgc � gÞ1=m, we obtain
for g ! gc

f0 ¼ f0ðgcÞ þ
�Xm
k¼1

1

k

��
gc � g

gc

�
� m

ðmþ 1Þ

�
�
gc � g

gc

�
1þð1=mÞ þOððgc � gÞ1þð2=mÞÞ; (4.6)

hence a multicritical entropy exponent �m ¼ 1� 1=m, as
obtained in [53] and in [48], coinciding with the ones of
multicritical branched polymers [55].
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APPENDIX: COMBINATORICS OF COLORED
GRAPHS: JACKETS, DEGREE AND MELONS

In order to define the degree of a graph one first needs
the notion of jacket [38–40].
Definition 2.—Let B be a D-colored graph and � be a

cycle on f1; . . . ; Dg. A colored jacket J of B is a ribbon
graph having all the vertices and all the lines of B, but
only the faces with colors ð�qð1Þ; �qþ1ð1ÞÞ, for q ¼
0; . . . ; D� 1, modulo the orientation of the cycle.
As a jacket J of B contains all the vertices and all the

lines of B, J and B have the same connectivity. As such,
any jacket J carries some key topological information
about B (for instance the fundamental group of B is a
subgroup of the fundamental group of any of its jackets
[47]). For graphs with four colors, the jackets correspond to
Heegaard splitting surfaces [49].
Jackets are ribbon graphs, hence they are completely

classified by their genus gJ .
Definition 3.—The degree !ðBÞ of a colored graph B is

the sum of genera of its jackets, !ðBÞ ¼ P
JgJ .
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Graphs with three colors are ribbon graphs, and the
degree coincides with the genus. The crucial property of
the degree is that the total number of faces F of a
D-colored graph computes in terms of the degree.

Proposition 1.—Let B a D-colored graph with 2p ver-
tices. Then the total number of faces of B respects

jF j ¼ ðD� 1ÞðD� 2Þ
2

pþ ðD� 1Þ � 2

ðD� 2Þ!!ðBÞ:
(A1)

Proof.—This equation can be found in the literature (see
[40] for instance). However, due to its importance we
present here its proof. Every jacket is a ribbon graph
with 2p vertices and Dp lines, hence the number of faces
of a jacket is

jFJ j ¼ ðD� 2Þpþ 2� 2gJ : (A2)

As jackets correspond to cycles over D elements modulo
the orientation,B has 1

2 ðD� 1Þ! distinct jackets. The faces
with colors ij will belong to the 2ðD� 2Þ! jackets corre-
sponding to the cycles � such that �ðiÞ ¼ j and �ðjÞ ¼ i.
Moding by the orientation we conclude that each face
belongs to exactly ðD� 2Þ! distinct jackets. Summing
(A2) over the jackets and dividing by 1

2 ðD� 1Þ! proves
the lemma.

Of course the same definition goes trough for graphs G
with Dþ 1 colors. Further facts concerning the degree are
listed below.

Proposition 2.—The degrees of a (Dþ 1)-colored graph
G and of its D-bubbles Bð�Þ with colors 1; . . . ; D respect

!ðGÞ � D
X
�

!ðBð�ÞÞ: (A3)

The proof of this statement can be found in [42], lemma 7.
The proof relies on the identification of the jackets of Bð�Þ
as ribbon subgraphs of the jackets of G.

Proposition 3.—If the degree of a (Dþ 1)-colored graph
G vanishes, i.e. all its jackets are planar, then G is dual to a
D-sphere.

The proof of this lemma can be found in [40].

The graphs of degree 0 have been thoroughly analyzed
in [41]. Their characterization relies on two lemmas.
Proposition 4.—If D � 3 and G is a (Dþ 1)-colored

graph with vanishing degree, thenG has a face with exactly
two vertices.
Proof.—All faces of G have an even number of vertices.

Denote jF sj the number of faces with 2s vertices. By
Proposition 1 [taking into account that G has (Dþ 1)
colors], the total number of faces of G is jF j ¼P

s�1jF sj ¼ ðD½D� 1�=2ÞpþD. As a vertex belongs to
DðDþ1Þ

2 faces we have
P

s�1sjF sj ¼ ðD½D� 1�=2Þp.
Eliminating F 2 we get

F 1 ¼ 2Dþ X
s�3

ðs� 2ÞF s þDðD� 3Þ
2

p: (A4)

The first two terms give a strictly positive contribution for
any D, whereas the third term changes sign for D ¼ 3.
Thus F 1 � 1 only for D � 3.
The fact that this proposition fails inD ¼ 2 is the source

of the difference between the large N limit of matrix
models, dominated by planar graphs, and the large N limit
of tensors of rank D, dominated by melonic graphs, which
we describe below.
Proposition 5.—If D � 3 and G is a (Dþ 1)-colored

graph of vanishing degree, then it contains two vertices v
and �v separated by exactly D lines.
The proof of this lemma can be found in [41]. It relies on

Proposition 4, but as it is somewhat convoluted we do not
reproduce it here.
We exploit this lemma in the following way. Starting

from a (Dþ 1)-colored graphG we identify two vertices v
and �v separated by D lines. Erasing this subgraph and
reconnecting its external lines we obtain a graph having
two less vertices and degree 0 (as it can be checked
explicitly). Iterating this erasing procedure we necessarily
end up with a (Dþ 1)-dipole, that is the graph having two
vertices connected by Dþ 1 lines. Conversely, every mel-
onic graph can then be obtained by starting from the
(Dþ 1)-dipole and inserting such subgraphs (consisting
in two vertices connected by D lines) arbitrarily on all the
lines.
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