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The aim of this paper is to report on the existence of a wide variety of exact solutions, ranging from
black holes to wormholes, when a conformally coupled scalar field with a self-interacting potential
containing a linear, a cubic and a quartic self interaction is taken as a source of the energy-momentum
tensor, in the Einstein theory with a cosmological constant. Among all the solutions there are two
particularly interesting. On the one hand, the spherically symmetric black holes when the cosmological
constant is positive; they are shown to be everywhere regular, namely, there is no singularity neither inside
nor outside the event horizon. On the other hand, there are spherically symmetric and topological
wormholes that connect two asymptotically (anti) de Sitter regions with a different value for the
cosmological constant. The regular black holes and the wormholes are supported by everywhere regular

scalar field configurations.
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I. INTRODUCTION AND DISCUSSION

The interplay of scalar fields and the gravitational inter-
action has a long and rich history. Although it dates backs
to the Brans-Dicke article [1], it is fair to say that there was
a large increment in the interest with Wheeler’s no hair
conjecture [2]. It states that it is not possible to endow nor
to deform a four-dimensional asymptotically flat black
hole, regular on and outside the horizon with a scalar field
that is regular in the above mentioned region; the domain
of outer communications plus its boundary to be precise.
This conjecture has been proved in a number of cases (for
references and a list of cases where the no hair conjecture is
a theorem see [3]) and for real scalar fields in four dimen-
sions there is not much doubt that it is true; a nice account
of this history can be found in [4].

As time went by, theoretical and observational argu-
ments moved the community to take the inclusion of a
cosmological constant seriously. Allowing the spacetime
to be asymptotically of constant curvature changed the
picture and a number of black holes were found [5-14].
The no hair conjecture, in these cases, was therefore recast
as a no primary hair' conjecture for black holes of spheri-
cal topology and a scalar field potential derivable from a
superpotential [15]. It is worth mentioning that nowadays
there is a renewed interest in the no hair conjecture; high
precision astronomical observation of the supermassive
black holes has been argued to be a way to experimentally
test it, see for instance [16].

"The scalar hair is called primary when there is an extra
integration constant associated to it, otherwise it is called
secondary.
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Scalar fields are also present in the standard cosmologi-
cal model [17], in any compactification and therefore in
most of the extended supergravity theories. As has been
previously mentioned, the existence of black holes with
scalar fields in anti de Sitter spacetime is, now, widely
known. The fact that these hairs are of secondary kind,
namely, that there is no integration constant associated to
the scalar field, implies that it is not possible to continu-
ously connect the hairy configuration with mass M and
a configuration with the same mass and no scalar field.
This gives rise to a phase transition at constant free
energy in the gravity theory [7]. This kind of second order
phase transition has become well known as the gravity
dual of a superconductor, for references and a review
see [18].

Here a family of wormholes that are asymptotically of
constant curvature is constructed in this paper. Anti de
Sitter wormholes have gained attention within the holo-
graphic context and they have been thoroughly analyzed
when the energy momentum tensor vanishes [19]. Since
the existence of these kind of objects was disproved when
the boundary is globally within the conformal equivalence
class of R X SN, later it was studied whether wormholes
with an hyperbolic horizon would be of interest for the
AdS/CFT conjecture [20]. Holography was analyzed in a
five dimensional wormhole spacetime in [21]. In a more
general context these spacetimes have been analyzed
within higher dimensional Chern-Simmons theory [22],
Horava gravity [23], conformal gravity [24], Lovelock
gravity [25] and nonminimally coupled electrodynamics
[26,27], as well as evolving Lorentzian wormholes [28],
just to mention a few. To add an example in a more simple
theory, a family of asymptotically anti de Sitter hairy
wormhole solutions is constructed in this paper within
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the four dimensional Einstein theory when the boundary is
R X S? or R X H%.

The wormholes also exist when the cosmological con-
stant is positive. Each of the asymptotic regions have a
different value of the cosmological constant and also a
different value for the scalar field, corresponding to
a different extreme of the potential. In the de Sitter case
it is also possible to eliminate the cosmological horizon
and the solution becomes an inhomogeneous, anisotropic,
cosmology. It starts from a completely homogenous state,
with positive constant curvature ﬁ, evolves to an inhomo-

geneous state and ends again in a completely homogenous
de Sitter space but with a different value for the cosmo-
logical constant A, ¢ being an arbitrary parameter of the
scalar field potential. It follows that the solution can inter-
polate between an arbitrarily large cosmological constant
in the past and a very small one in the future (or vice versa).

It is also interesting to remark that the black holes have
no inner singularity, an issue rather studied when the space-
time is asymptotically flat, and where no example for
scalar fields with positive kinetic energy is known,
although there are explicit examples when a nonlinear
electrodynamic theory is included [29]. (For references
and a deeper discussion on regular black holes see the
previous reference; for some numerical results in the
same directions see [30].) In this paper the inner singularity
of the black holes is replaced by another asymptotic region,
with a different value for the cosmological and the gravi-
tational constant.

The study of the backreaction of scalar fields on the
spacetime also brings in an interesting perspective regard-
ing the dark matter issue. Originally the dark matter prob-
lem was related to the impossibility of fitting the orbital
velocities of galaxies in clusters with the Newtonian po-
tential, & = — %, M being the visible matter within the
cluster. The simplest explanation would therefore be that
M has another source for which nowadays many candi-
dates exist [31]. When dark matter was proposed the
cosmological constant was considered a mathematical cu-
riosity and therefore, at the level of the Einstein equations,
the requirement of asymptotic flatness made the assump-
tion on the form of the gravitational potential rather rea-
sonable. However, the inclusion of the cosmological
constant allows a larger variety of potentials that can be
dominant between the relevant scale of the Newtonian
potential and the relevant scale of the cosmological con-
stant. Namely, all the functions that grow slower than r? in
the asymptotic region and grow slower than r~! close to
the surface of the star or black hole. Actually, an upshot of
the theoretical studies associated to the detailed analysis of
the asymptotic behavior of scalar fields in asymptotically
anti de Sitter spacetimes, has been the form of the explicit
contribution to the total energy of the spacetime coming
from the slow fall off of the scalar field and its backreaction
on the metric [32].
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In our Universe, better modeled by an asymptotically de
Sitter spacetime, the metric can very well fit the observed
galaxy rotation curves due to the modification of the gravi-
tational potential. Indeed, since for spherically symmetric
solutions in the Schwarzschild gauge, the gravitational
potential is related to the metric as ggo = —1 — 2®. The
presence of a scalar field, or any other particle with slow
fall off, would give rise to a new kind of potential and
therefore the amount of dark matter present in a given
model should be reconsidered. Moreover, if dark matter
can be modeled as a field and it fills the spacetime from the
center of the galaxy all the way to the dark matter halo a
simple candidate to analyze this situation is a scalar field. It
has already been pointed out that a gravitational potential,
arising from the Weyl squared conformal gravity, with the
form

d=w-—-28r'+yr—kr? (D

can give account of the galaxy rotation curves [33]. What is
particularly appealing of describing the amount of dark
matter using the potential (1) it is that it has three integra-
tion constants. Therefore it is possible to assign one to the
actual mass of the spacetime, another to the dark matter
component and another to the dark energy. This would give
a very simple explanation to the fact that the amount of
dark matter in every galaxy is different® (ranging from 1%
to 99%). In this paper a three parametric gravitational
potential is shown to arise when the backreaction of a
conformally coupled scalar field with a polynomial poten-
tial is considered. Instead of having three integration con-
stants it only has one, the usual mass, plus two parameters
of the action principle, namely, the cosmological constant
and a parameter coming from the scalar potential. We
believe that a new integration constant in spherically sym-
metric configurations would necessarily imply a sort of
primary hair which could come either from the matter
action or having a pure gravitational origin as in [34].
The outline of the paper is as follows: in the first section
the model is presented, the solution is explicitly written
and some important features of it remarked. As usual, due
to the nonlinearity structure of the field equations the
solution has been constructed by an educated guess, there-
fore no reference to its derivation is made. In the second
section, the geometrical characterization of the solutions is
done. In the third section, further remarks and comments
are done. The notation follows [35]. The conventions of
curvature tensors are such that a sphere in an orthonormal
frame has positive Riemann tensor and scalar curvature.

“Since the mass is an integration constant, within the general
relativity realm, there is no fundamental explanation for its value
in any gravitating object. If the dark matter content of a grav-
itating system would also be related to an integration constant no
fundamental explanation would be necessary to give account of
the difference in the dark matter content of every galaxy.
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The metric signature is taken to be (—, +, +, +), (d¢)> =
g, ba, b, 8)) = 848, — 8,8} Greek letters are in
the coordinate tangent space and Latin letters in the non-

coordinate tangent space, 877G = k and the units are such
thatc =1 = h.

II. THE MODEL AND THE SOLUTIONS

As is well known, the Green function of a massless
scalar field have support on the light cone on Minkowski
spacetime. To extend this behavior to a curved background,
such that the Green function goes to its flat space form
when the curvature goes to zero, the massless scalar field
must be conformally coupled to the scalar curvature [36]
(for an interesting generalization of the conformally
coupled scalar field to higher dimensions see [37]).
Therefore if the conformal coupling is taken as the guide
to extend the propagation of a scalar field to an arbitrary
background, it would be natural to consider its backreac-
tion in the gravitational field. Indeed, this scalar field gives
place to the Bocharova-Bronikov-Melnikov-Bekenstein
black hole (for references see [4]). When the cosmological
constant is included in the gravity sector and a quartic self
interaction is included for the scalar field the Martinez-
Troncoso-Zanelli (MTZ) black hole arises [6].
Furthermore, the most general Petrov type D solution of
General Relativity in vacuum, the Plebanski-Demianski
family,’ has been shown to be an exact solution of this
system [11] (it reduces in the nonrotating case to the C-
metric like configuration also reported in [12]). Since any
way the Weyl invariance of the action is spoiled due to the
inclusion of the Einstein-Hilbert term, it is interesting to
explore what happens when the scalar field potential is
deformed to include non-Weyl invariant terms. In this
paper the inspiration have been taken from a realistic real
scalar field, the 7°, and its linear sigma model description,
the typical soft symmetry breaking linear term have been
included* as well as a cubic and a quartic self-interaction
[38].

The action principle is thus:

R—2A 1

ste. 4) = [ dw— [F55 - 5 002
- SR V(¢)], @)
with field equations:
G + Mg = KT, )

3Wlth event horizons and no conical singularities.
“The possibility of including this term was pointed out to us by
Alfonso Zerwekh.
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=0,¢0,¢ — gtw(8<l>)2 ~ 8 V()
+ g(g,u.vlz| - v,uvv + GMV)¢2 (4)
1 v
U = ERd) + s (%)

where G, is the Einstein tensor and V(¢) = a;¢ +
az¢> + as¢p*. Exact, analytical, solutions exist in the
previous system when a, = —%, o = —9a3 Using
_ Aok f
9 &£+

the convenient parametrization a; =
lutions take the following form:

g2 = T EZ UMY [—(k(l - g)z - ’\_rz)dtz

(r— M)>? 3
dr? N
C(6\2—ér+ M(E-1) A -1
_(Z) r+ME-1) 824+
(7

where d,; is the line element of a surface of constant
curvature k = *1.
The solution (6) and (7) is real if and only if | ]8“‘ | <1.

Another solution is generated by the symmetry 0f the
action

In what follows the solutions generated by (8) will be
called the negative branch.

Some generic features of these solutions are (straightfor-
ward modifications extend all these conclusions to the
negative branch):

(1) There are curvature singularities at r = 0 and r =
(I — &)M. This last equation also defines the surface
where the scalar field is singular.

(i1)) The MTZ [6] family of solutions is recovered when

&=0.

(iii) If £ = —1 then A = 0 and the metric is asymptoti-
cally flat. There is a naked singularity at r = 2M
and at r = 0. In this case the negative branch has
constant scalar field.

(iv) The metric (6) has two asymptotic regions, r = o
and r = M. The spacetime has a different constant
curvature in each of these boundaries as can be seen
from the Riemann tensor lim,_,R" /’( 5“ Y

Ap?
llm,_,MR'uXp = Egl“/
(v) It is possible to change & by &' with a diffeo-
morphism. Note that (6) and (7) seems to be two
solutions, namely, each one of the real roots of the

equation
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Aok €
9 &+4+1

a3 =

€))

that is & and ¢ ~'. However, the map & — £~ ! on the
configuration (6) and (7) plus the diffeomorphism
r=pé&, t=¢T and the reparametrization M —
&M it is equivalent to the apply the diffeomorphism

pM
p—M

r =

(10)

to the same configuration. Actually, this diffeomor-
phism interchange the location of infinity, the
boundary at r = oo is mapped to p = M and the
one at » = M is mapped to p = .

(vi) The denominator of the scalar field never vanishes

for ¢ >0and r = M.

(vii) There is also a region between 0 < r < M which

make sense as a black hole when the cosmological
constant is negative and the horizon is locally
isomorphic to H>.

(viii) The effective potential W(¢) = V() +

5 @*R + k' A of the scalar field is different in
each of the boundaries, the evaluation of its first
derivative in the configuration (6) and (7) gives:

aw _ §2AMV(§2 - 13(r— M)(r — 2M)
do Kk 3+ D(r+ME-1))
(11
It follows that there is an extremum of the poten-

tial at each of the asymptotic regions. The mass of
the scalar field at the critical points is

EW  2A(E - DRE+ 1)

lim = )
e dg? &+ "
I W 2A(& - 1)(&* +2) (12)
mdgr T 3EE D)
2 —1)2
PW . ANE- ) 03

li .
—ovdg® T 3@+ 1)

(ix) The scalar field acquires a different non trivial

vacuum expectation value at each of the bounda-
ries. For the branch (6) and (7) ¢(c0) = —(9)1/2¢,
d(M) = — (g)l/ 2 % Therefore it is possible to make
a field redefinition to have a scalar field that goes to
zero in one of the boundaries but not on both at the
same time. It turns out that the potential written in
terms of the field ¢y = ¢ — ¢(c0) have no linear
term at infinity as can be seen from the fact that
¢ = 0 is a critical point of it. The same happens at
the other boundary using the field redefinition ¢ =

¢ — dM).
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(x) The effective gravitational coupling of this model is

dynamical, as can be seen by direct inspection of the
action principle (2). It has different values at each
boundary of the spacetime:

limGey = G(1 — &%),

lim Gy = G(£2 — 1)§72.

(14)

However, in a Cavendish experiment the effective
coupling is different and it is given by [39]

1 — &2
(=500 — 567

At each boundary the following values are taken

= 2G (15)

2083
e = 2950 @ -1y ”
28268 ~2)

fny G = 2

38 - -1

It follows that G is positive at the boundaries if
<& <l

(xi) The stress energy tensor of the scalar field is that of

an anisotropic fluid. In an orthonormal frame it has
the form of 79 = diag(p, p;, pa, p»). The explicit
expression for each of the components is rather
involved, however some conclusions can be drawn
from

_ AME(r—M) M 2_/\r2
A R Py v 1)>4K<"<1 7 %)
(17)
2Mk(r — M)3(—ér + M(€ — 1))
ptp=-—

kr*(r+ M(€ — 1))3
(18)

From (17) and (18) it follows that for the black
holes neither the weak nor the null energy condi-
tions can be everywhere satisfied due to the change
of sign of the expression

2
k<1 _ %)2 _ A (19)
r 3

in the horizons. For anti de Sitter wormholes (19) it
is always positive and therefore the above men-
tioned energy conditions do not hold in the region
r> M >0 when ¢ > 0. For de Sitter cosmologies
(19) it is always negative thus p + p; = 0 and,
moreover, p + p, =0 in the region r > M >0
with & > 0. Therefore the null energy condition
holds in the case of the bouncing cosmologies to
be discussed in the next section.
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III. GEOMETRICAL CHARACTERIZATION OF
THE SOLUTIONS

A.A>0and k =1

In this case it is convenient to set A = % Expression
(19) has three positive roots for % >M>0:

r_

T (R 7|

r =§(1 ~Vi—amL ), (20)
L
2

(—1 + 1 +4mL! )

they satisfy L >r . >%>r, >M>r_>0. It follows
that when oo > r > M there is a black hole with the con-
formal structure of the Kottler solution (also known as the
Schwarzschild-de Sitter solution) with the inner singularity
replaced by a new asymptotic region. When M > r >0
there is only the cosmological horizon given by r_ and
therefore the singularity is naked. When M < 0 then oo >
r >0 and there is only a cosmological horizon at r ..
When M > %then r++ and r, becomes imaginary and the
region between o > r > M becomes an inhomogenous
bouncing cosmology (for a review see [40]) with the initial
condition at r = M being a completely homogenous and
isotropic universe with cosmological constant ? which
after going through an inhomogeneous phase it ends in a
completely homogenous de Sitter universe with cosmo-
logical constant A. The bounce is located at

r=(1+JEM. 1)

It should be noted that the exact solution presented here
allows the Universe to evolve from a very large cosmo-
logical constant (when & =~ 0) to a very small one. At the
same time the scalar field evolves from a local maximum of
the potential to a local minimum. Note also that £ measures
the deviation from conformality of the matter Lagrangian,
so a small deviation from conformality is required for this
phenomenon to exist.

B.A>0and k = —1

In this case the metric is everywhere regular, gy, never
vanishes, and the spacetime can be interpreted as inhomog-
enous bouncing cosmologies with the time given by
the coordinate r € [M, o]. The bounce is located at r =

(1 + JEM.

C.A<0and k= —1
3

In this case it is convenient to set A = 7
(19) has three positive roots for % >M=>0

. Expression
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iy =%(1 +m),
ry =§(1 -1 —4ML*1>, (22)
r =%(—1 +4/1 +4ML*1).

In this case there is no cosmological horizon and the two
asymptotic regions are separated by two event horizons.
All of what it was said in the case of A>0 and k = 1
apply in this case changing the cosmological horizon for a
black hole horizon. When M > r > 0 there is a black hole
with a single event horizon and singularity at » = 0. When
M < 0 then oo > r > ( and there is also a black hole with a
single event horizon at r, .. When M > % there is a worm-
hole with the throat located at » = (1 + /€)M. The worm-
hole interpolates between two asymptotically locally anti
de Sitter regions with a different value for the cosmological
constant (A and é). The scalar field is everywhere regular

whenever M >0 and & > 0.

D.A<0and k =1

This case represent wormhole solutions with the boundary
in the conformal class of either R X S?. The throat is located
at r = (1 + /é)M and the metric interpolates between two
asymptotically anti de Sitter regions with a different value for
the cosmological constant (A and ﬁ). The configuration is

everywhere regular whenever M > 0 and & > 0.

IV. FINAL REMARKS

A new class of exact solutions has been presented in this
paper. Some of them have the interesting property of hav-
ing no singularity at all, neither in the spacetime manifold
nor in the matter configuration. The singularity inside the
black hole is replaced by another asymptotic region,
implying, when the horizons are removed, the existence
of a new set of either wormholes or bouncing cosmologies.
These are the first, exact, asymptotically anti de Sitter
wormholes, bouncing de Sitter cosmologies and regular
black holes in four dimensions for the Einstein-
conformally coupled scalar field system.

The model discussed here (2), indeed, looks rather par-
ticular. In principle, it would be desirable to have a classi-
fication of all the possible potentials that are compatible
with the Finstein equations. Indeed, since the Einstein
equations are nonlinear one could expect to find that within
certain Petrov class of metrics some restrictions on the
scalar potential should hold. This is indeed the case as
we will be reported in a forthcoming article.

Finally, to name some open questions let by this work
we would like to mention its extension to include the
Maxwell field. Another follow-up is to study either ther-
modynamical properties or stability of the solutions as was
done for the MTZ black hole in [41,42], respectively.
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