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In this paper we apply the five-dimensional fðTÞ gravity with fðTÞ ¼ T þ kTn to brane scenario to

explore the solutions under a given warp factor, and we find that the analytic domain wall solution will be

a double-kink solution when the geometric effect of spacetime torsion is strongly enhanced. We also

investigate the localization of fermion fields on the split branes corresponding to the double-kink solution.
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I. INTRODUCTION

The presence of extra dimensions is playing a funda-
mental role in solving the hierarchy problem, explaining
physical interactions based on common principles and other
problems in high energy physics [1–9]. Under the condition
of no undesirable physical consequences obtained, as we
know so far, any realistic candidate for a grand unified
theory should be multidimensional. Because of the absence
of observational and experimental data, preference makes
no difference in discriminating various kinds of multidimen-
sional models of gravity. Actually, all sorts of models have
been studied in extra dimension gravity.

The concept of brane scenario was introduced in 1983
by Rubakov and Shaposhnikov, who pointed out that we
live in a topological defect embedded in 5-dimensional
spacetime, i.e., domain wall, or thick brane in modern
terminology which was used as a new approach to solve
the problem of the unobservability of the extra dimensions
[10]. According to the idea, particles corresponding to
electromagnetic, weak and strong interactions are confined
on some hypersurface called a brane. Only gravitation and
some exotic matter could propagate in the extra dimension.
And in [10] the authors found that particles with spin 0 and
1=2 can be trapped on the domain wall described by a
scalar field without gravity. During the 80s and the early
90s, one of the most striking facts which activated the
studies on brane models was the development in super-
string theory and M-theory since the mid-90s, especially
the discovery of D-brane solutions [11,12]. In 1999,
Randall and Sundrum (RS) proved that gravitation also
can be localized on the brane if one takes the gravity into
consideration [1]. This is the famous RS brane model
which attracts much concentration from physicists because
of its theoretic value, observable effect and solving the
long-standing hierarchy problem and cosmological con-
stant problem. And graviton resonances were previously
considered in thick brane scenario in [5,6].

So far, various thick brane or domain wall solutions have
been investigated (a review in Ref. [13]) and the trapping
of all kinds of matter fields on the single-brane or multi-
branes are also discussed for both thin or thick branes
[14–31]. All of these works only considered the contribu-
tion of spacetime curvature without torsion. In this paper
we would like to investigate thick brane solutions caused
by the spacetime torsion. An applicable theory is the tele-
parallel equivalent of General Relativity (TEGR) [32–37]
which instead of using the curvature defined via the Levi-
Civita connection, it uses the Weitzenböck connection that
has no curvature but only torsion. This theory allows us to
interpret general relativity as a gauge theory for a trans-
lation group. And in this context, gravity is not due to
curvature, but to torsion, and torsion accounts for gravita-
tion not by geometrizing the interaction, but by acting as a
force.
A question that will be asked is that what is the role of

torsion or the difference between torsion and curvature
[32,38]. Although the equations of motion in teleparallel
gravity are dynamically equivalent to those in general
relativity and relate to the same degrees of freedom of
gravity (more general relativity theories, like Einstein-
Cartan and gauge theories for the Poincaré and the affine
groups, consider curvature and torsion as representing
independent degrees of freedom), the teleparallel gravity
describes a different geometry, the Weitzenböck space-
time. The spacetime metric g�� plays no dynamical role

in the teleparallel description of gravitation.
If we want to investigate the influence of spacetime

torsion, we should modify the teleparallel gravity.
Following the spirit of fðRÞ gravity (see [39] for a review,
[40–44] for applications in braneword), a generalization of
teleparallel gravity is fðTÞ gravity which was first proposed
by Bengochea and Ferraro to explain the observed accel-
eration of the universe [45]. And models based on modified
teleparallel gravity were also found to provide an alterna-
tive to inflation without inflaton [46,47]. It therefore has
attracted some attention recently. More recently, Linder
[48] proposed two new fðTÞ models to explain the accel-
erating expansion and found that the fðTÞ theory can unify
a number of interesting extensions of gravity beyond gen-
eral relativity.
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The fact that we should note is that fðTÞ gravity could be
a phenomenological extension of the teleparallel gravity,
inspired by the fðRÞ generalization of the general relativity.
Although the fðRÞ gravity is probably not the low-energy
limit of some fundamental theory, it does include models
that can be motivated by effective field theory. In contrast,
fðTÞ gravity seems at this stage to be just an ad hoc
generalization. Recently it was pointed out that fðTÞ
gravity violates the local Lorentz invariance [49,50].
Nevertheless, it still attracts an increasing interest in the
literature because of its advantage over fðRÞ gravity,
namely, its field equations are at most second-order instead
of fourth-order. The validity of fðTÞ gravity as an alter-
native also has been investigated by analyzing the large-
scale structure [51] and the observational constraints on
model parameters [52,53]. Apart from obtaining accelera-
tion, one can reconstruct a variety of cosmological evolu-
tions [54–57], can consider the possibility of the phantom
divide crossing [58–61], and can investigate the vacuum and
matter perturbations [62–64] beyond the background evolu-
tion. For other investigations, see for examples [65,66].

Considering the increasing interest in fðTÞ gravity and
the possibility as an alternative to general relativity, in this
paper we investigate the impact of torsion instead of cur-
vature on the structure of thick branes and the localization
of fermions on the thick branes. The spacetime torsion can
result in the splitting of the thick brane with an internal
structure which is called double-kink defect since it seems
to be composed of two standard kinks. In the works of
Bazeia and his collaborators [67–71] a class of defect
structures were obtained by a�4 potential. The appearance
of the structure will result in a split in the matter energy
density in the center of the brane. And the resonances of
gravitons and fermions in the such structure scenario have
been considered in recent works [72–77]. In our work we
use the resonance detecting method to analyze the KK
modes of fermion fields and how the internal structure
due to geometric effect influence the resonances of fermion
in the splitting brane.

The paper is organized as follows: In Sec. II, we first
give a brief review of the teleparallel gravity and then give
the field equations for the five-dimensional fðTÞ brane. In
Sec. III, because their equations are still second-order, we
obtain some exact analytic domain wall solutions for a
given warped factor. In Sec. IV, we study the localization
of fermion fields on the thick branes by presenting the
potential of the Schrödinger equations.

II. SET UPS AND DYNAMICAL EQUATIONS

Before we set up our model, let us briefly give a review
of the teleparallel gravity. In teleparallel gravity, it is the
vierbein or tetrad fields, haðx�Þ (rather than the metric) that
work as the dynamical variables. At each point of the
manifold, the tetrad fields form an orthonormal basis
for the corresponding tangent space of the point. In

four-dimensional teleparallel gravity, Latin indices
a; b; . . . and Greek indices �; �; . . . both run from 0 to 3,
label coordinates of the tangent space and the spacetime,
respectively. For a specified spacetime coordinate basis the
components of haðx�Þ are h�a . Clearly, h�a are both space-
time vectors and Lorentz vectors.
The relation between the tetrad fields and the metric is

given by

g�� ¼ �abh
a
�h

b
�; (1)

where �ab ¼ diagð�1; 1; 1; 1Þ is the Minkowski metric for
the tangent space. From the relation (1), it follows that

h
�
a ha� ¼ �

�
� ; h

�
a hb� ¼ �b

a: (2)

Instead of using the Levi-Civita connection ��
��, we

would like to apply the Weitzenböck tensor

~� �
�� ¼ h

�
a@�h

a
�; (3)

and the torsion

T�
�� ¼ ~��

�� � ~��
��; (4)

to establish the teleparallel gravity. The difference between
the Levi-Civita connection and Weitzenböck connection is
the well-known contortion tensor [78]

K�
�� � ~��

�� � ��
�� ¼ 1

2
½T�

�
� þ T�

�
� � T�

���: (5)

By defining a tensor S�
��:

S�
�� ¼ 1

2
½K��

� � ��
�T

��
� þ �

�
�T��

��; (6)

one can write the Lagrangian of the teleparallel gravity as
[32–36]

LT ¼� c4h

16�G
T¼� c4h

16�G
S�

��T�
��

¼� c4h

16�G

�
1

4
T�

��T�
��þ1

2
T�

��T
��

��T��
�T��

�

�
;

(7)

where h ¼ detðha�Þ ¼ ffiffiffiffiffiffiffi�g
p

, with g the determinant of the

metric g��. It is well-known that the teleparallel gravity is

equivalent to general relativity. Therefore, in order to dis-
cuss the effects of the torsion, we have to generalize the
gravity.
As to the fðTÞ gravity, we need only to replace the T in

Lagrangian (7) by an arbitrary differentiable function of T,
and then the action in five-dimensional gravity is

S ¼ � 1

4

Z
d5xhfðTÞ þ

Z
d5xLM; (8)

where we have taken c4

4�G5
¼ 1 for convenience. The cor-

responding field equations read
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h�1fT@QðhSNMQÞ þ fTTSN
MQ@QT � tN

M ¼ �TN
M;

(9)

where f � fðTÞ, fT � @fðTÞ=@T, fTT � @2fðTÞ=@T2

and tMN ¼ fT~�
R
SNSR

MS � 1
4�N

Mf, TM
N is the energy-

momentum tensor of the matter field. Capital Latin indices
M;N . . . ¼ 0, 1, 2, 3, 5. Here the field equations are
expressed in purely spacetime form, not containing coor-
dinates of the tangent space.

In our work we consider the static flat braneworld sce-
nario with the metric

ds2 ¼ e2AðyÞ���dx
�dx� þ dy2; (10)

where ��� ¼ diagð�1; 1; 1; 1Þ is the four-dimensional

Minkowski metric, and e2AðyÞ is the warped factor. Then
the tetrad fields are ha� ¼ diagðeA; eA; eA; eA; 1Þ, T ¼
�12A02. From now on, the prime always denotes the
derivative with respect to y, unless specified.

In our model, we take fðTÞ ¼ T þ kTn, and LM ¼
hð� 1

2@
M�@M�� Vð�ÞÞ [33], where � � �ðyÞ depends

only on the extra dimension y. And then the field equations
are given as follows

�00 þ 4A0�0 ¼ dVð�Þ
d�

; (11)

1

4
½12A02 þ ð�1Þn�112nkð2n� 1ÞA02n� ¼ �V þ 1

2
�02;

(12)

ð�1Þn�122n�33nkð2n�1ÞA02n�2ð2A02þnA00Þþ3A02þ3

2
A00

¼�V�1

2
�02: (13)

Note that there are only two independent equations in the
above equations. Therefore, we need only to consider
Eq. (12) and the following one:

�02 ¼ �½12A02 þ ð�1Þn�112nknð2n� 1ÞA02n�A00

8A02 ; (14)

which is obtained by the combining of Eqs. (12) and (13).

III. SOLUTIONS FOR fðTÞ BRANE
Although the model is a second-order derivative theory,

it is hard to give an analytic solution for general cases. For
simplicity, let us take

e2AðyÞ ¼ cosh�2bð	yÞ; ðb > 0Þ; (15)

and consider the following cases.

A. n ¼ 1
2

For n ¼ 1=2, Eqs. (12) and (13) reduce to

3A02 ¼ �
�
V � 1

2
�02

�
; (16)

3A02 þ 3

2
A00 ¼ �

�
V þ 1

2
�02

�
: (17)

They are the same equations as those in Refs. [5,30], where
the gravity is described by general relativity. As a conse-
quence, the solutions of this case are equivalent to those in
the case fðTÞ ¼ T. A domain wall solution has been ob-
tained in [5,30] by using a superpotential approach:

�ðyÞ ¼ ffiffiffiffiffiffi
6b

p
arctan

�
tanh

�
	y

2

��
; (18)

Vð�Þ ¼ 3b	2

4

�
ð1þ 4bÞcos2

�
2�ffiffiffiffiffiffi
6b

p
�
� 4b

�
: (19)

Obviously, 	 is a parameter which fixes the thickness of
the wall. As stated in Ref. [5], as y ! �1, AðyÞ !
�b	jyj. Thus, the spacetime described by the metric
(10) and (15) is asymptotically AdS5.

B. Other positive integers n

With the substitution of (15) into (14), we should have
the following condition

� � ð�1Þn12n�1nð2n� 1Þkb2n�2	2n�2 � 1; (20)

to make the right side of (14) nonminus. Only when (20) is
satisfied, we can obtain a real function solution. Note that
the existence of ð�1Þn constraints the values of n and k.
For n ¼ 2, we yield an analytic domain wall solution:

�ðyÞ ¼
ffiffiffiffiffiffi
3b

4

s
½i ffiffiffi

2
p ½Eði	y; 1� 72kb2	2Þ � Fði	y; 1� 72kb2	2Þ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 72kb2	2 þ ð1� 72kb2	2Þ coshð2	yÞ

q
tanhð	yÞ�;

(21)

where Fði	y; 1� 72kb2	2Þ, Eði	y; 1� 72kb2	2Þ are the first and second kind elliptic integrals, respectively. One can
prove that �ðyÞ is real provided that 1� 72kb2	2 � 0 as required by (20). Specially, when 1� 72kb2	2 ¼ 0,

�ðyÞ ¼
ffiffiffiffiffiffi
3b

2

s
tanhð	yÞ; (22)
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which is a kink solution. However, for large enough 1�
72kb2	2, the solution (21) turns to be a double-kink, as
shown in Fig. 1.

For other values n, an analytical solution like (21) is
hard to obtain, but when � ¼ 1, (14) reduces to

3

2
b	2 sech2ð	yÞ � 3

2
b	2 sech2ð	yÞtanh2n�2ð	yÞ ¼ �02:

(23)

For n ¼ 2, it gives (22). For n ¼ 3,

�ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b

8
coshð2	yÞ

s

�
�
2icosh2

�
	y

2

�
�Fði arcsinhðZÞ; 17þ 12

ffiffiffi
2

p Þ

þ 4icosh2
�
	y

2

�
��ð3þ 2

ffiffiffi
2

p
; i arcsinhðZÞ; 17

þ 12
ffiffiffi
2

p Þ þ sechð	yÞ tanhð	yÞÞ
�
; (24)

where

Z � tanhð	y2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
2

pp ;

� � sechð2	yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 2

ffiffiffi
2

p Þð1þ Z2Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3þ 2

ffiffiffi
2

p Þ2Z2

q
;

and �ð3þ 2
ffiffiffi
2

p
; i arcsinhðZÞ; 17þ 12

ffiffiffi
2

p Þ is the third kind
elliptical integral. For n ¼ 4,

�ðyÞ ¼ i
ffiffiffiffiffiffi
2b

p �
2E

�
2i	y;

3

4

�
þ F

�
2i	y;

3

4

��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð5þ 3 coshð	yÞÞ

q
tanh3ð	yÞ: (25)

Generally, for different values n, via numerical approach,
we find that the solution is a kink when 0<�< 1 and
a double-kink as � is less than some negative value. From

Eq. (14), we can see that the domain wall solution turns out
to be a double-kink solution when the contribution from the
second term of right side exceeds the first term. So� shows
the strength of the geometrical effect of torsion.
Commonly, the appearance of a double-kink solution

means that the domain wall at y ¼ 0 symmetrically splits
into two branes. This can be seen from the distribution of
the energy density

�ðyÞ ¼ 3

2
b	2 sech2ð	yÞ � 3b2	2tanh2ð	yÞ

� ð�3Þn22n�3kb2n�1	2nð2n� 1Þ
� ðn csch2ð	yÞ � 2bÞtanh2nð	yÞ;

(26)

as shown in Fig. 2. Locations of those two peaks are where
two sub-branes inhabit. At the boundary of the spacetime

�ð�1Þ ¼ �3b2	2 þ ð�3Þn22n�2kb2n	2nð2n� 1Þ (27)

is a minus constant if Eq. (20) is satisfied.

C. The split of brane

In Ref. [79], the authors investigated the split of thick
brane, which is generated by a complex scalar field
coupled to gravity. They showed that the split of the brane
is due to a first-order transition when the temperature
approaches the critical value and a new disordered phase
would appear between these two sub-branes.
At zero temperature, the split of thick brane was

realized by using a real scalar field [70]. In this model,

k= - 0.005

k= - 0.05

k= - 0.2

4 2 0 2 4
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5

0

5

10
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y

FIG. 1. The shape of the scalar �ðyÞ plotted with n ¼ 2, b ¼
1, 	 ¼ 1. With the decrease of k, double-kink solutions will be
more notable.
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FIG. 2. The density �ðyÞ of the scalar field �ðyÞ with n ¼ 2,
	 ¼ 1, b ¼ 1 (top) and b ¼ 0:01 (bottom). A trend of brane-
splitting can be seen from the transition.
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the engendered internal structure depends on a real pa-
rameter, which changes the self-interaction of the scalar
field. The split of brane was also investigated by using two
real scalar fields [71,80–83].

In our work, the internal structure is different, because
the energy density of the scalar field is nonvanished at
y ¼ 0, i.e., �ð0Þ ¼ 3

2b	
2 � 0. Such a structure indicates

that the split of the brane is incomplete, and there is a
connection between the two sub-branes. While for the case
with �ð0Þ ¼ 0, the original brane is completely split, and
the newly generated branes are independent. The energy
density dwelling on the split branes becomes more notable
with the increase of the contribution from torsion to which
the phase transition is due. It indicates that the geometric
effect will influence the distribution of the energy density.
It should be noted that the distance between the two split
branes is mainly determined by 	 and b, which also
determine the thickness of the domain wall.

A probable explanation to the changeable k is that k
might relates to the evolution of universe. Note that the
temperature of the cosmological background is a character-
istic parameter relevant to the evolution, so we can recog-
nize k as a function of temperature. Therefore, there might
exists a critical temperature Tc, at which, the brane splits
into two sub-branes.

IV. LOCALIZATION OF SPIN- 12 PARTICLES

Whether various bulk fields could be confined to the
brane by a natural mechanism is an interesting and impor-
tant issue to build up the standard model. It has been known
that massless scalar fields [19] and gravitons [1,5,6] can be
localized on branes of different types. Abelian vector fields
can be localized on the RS brane in some higher-
dimensional cases [20] or on thick dS branes and Weyl
branes [25,26]. The localization of fermion fields is also
interesting. In order to localize fermions, the coupling
between the fermion fields and the background scalars
should be introduced. With different scalar-fermion cou-
plings, a single bound state and a continuous gapless
spectrum of massive fermion KK states can be obtained,
see for example [21–24]. In some other models, there exist
finite discrete KK states (mass gap) and a continuous
gapless spectrum starting at a positive m2 [26–28,72,73]
or even only exist bound KK modes.

From the results in Refs. [26,28] we note that the effec-
tive potentials of the KK modes of scalar and vector fields
are free of gravity model and only dependent on AðyÞ. It
can be easily verified that the zero mode of these fields can
be localized on the brane we obtianed here. However, the
effective potentials of fermion fields couple to the back-
ground scalar, so the localization is model-dependent.

In this section we will investigate how the spacetime
torsion influences the localization of fermion fields on the
brane. Following the suggestion on fermion fields in
Refs. [33,38], the equations will also be equivalent to the

case in general relativity. Thus we can take the approach in
general relativity, only in appropriate time we take our
results into consideration. Via performing the conformal

transformation dz ¼ e�AðyÞdy [5], we can represent the
metric in conformal coordinates. Taking the simply
Yukawa coupling, the 5-dimensional Dirac action of a
massless spin 1=2 fermion coupled to the background
scalar � is

S1=2 ¼
Z

d5xhð ���Mð@M þ!MÞ�� � ����Þ: (28)

The nonvanishing components of the spin connection !M

for the background metric are

!� ¼ 1

2
A0
�
5 þ !̂�; (29)

where prime denotes the derivation with respect to confor-
mal coordinate z from now on, and !̂� is the spin connec-

tion on the brane and vanishes here. Then the equation of
motion is given by

½
�@� þ 
5ð@z þ 2A0Þ � �eA��� ¼ 0: (30)

The sign of the coupling� of the spinor� to the scalar� is
arbitrary, and without loss of generality, we assume �> 0.
According to (30) � can be expanded by

� ¼ X
n

½�L;nðxÞfL;nðzÞ þ�R;nðxÞfR;nðzÞ�e�2A (31)

with �L ¼ �
5�L and �R ¼ 
5�R being the left-
handed and right-handed components of a 4D Dirac field,
respectively. By demanding �L;R satisfy the 4D massive

Dirac equations 
�@��L;R ¼ m�L;R, we yield the follow-

ing coupled equations

½@z þ �eA��fLðzÞ ¼ mfRðzÞ; (32)

½@z � �eA��fRðzÞ ¼ �mfLðzÞ: (33)

These equations can be reduced to the Schrödinger-like
equations for the KK modes of left and right chiral
fermions

½�@2z þ VLðzÞ�fLðzÞ ¼ m2fLðzÞ; (34)

½�@2z þ VRðzÞ�fRðzÞ ¼ m2fRðzÞ; (35)

where the effective potentials are given by

VLðzÞ ¼ ð�eA�Þ2 � �@zðeA�Þ; (36)

VRðzÞ ¼ VLðzÞj�!��: (37)

The index n is dropped for convenience.
Since the Yukawa coupling is an odd function of the

extra dimension z, the effective potential VL;RðzÞ of left-
and right-chiral fermions are invariant under the reflection
symmetry z ! �z. Here we discuss the case n ¼ 2, and
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get the effective potential in proper coordinate y from Eqs.
(15) and (21):

VLðyÞ ¼ 1

4
cosh�2b�2ð	yÞ½ ffiffiffiffiffiffi

3b
p

	�ð2b�sinh2ð	yÞ
þ i

ffiffiffi
2

p
b� sinhð2	yÞ � 2�Þ þ 3b�2ð�2sinh2ð	yÞ

þ i
ffiffiffi
2

p
�� sinhð2	yÞ � 2�2cosh2ð	yÞÞ�; (38)

where

� ¼ Eði	yj1� 72kb2	2Þ � Fði	yj1� 72kb2	2Þ;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 72kb2	2 þ ð1� 72kb2	2Þ coshð2	yÞ

q
:

For simplicity, we take b ¼ 1, and obtain the analytical

transformation y ¼ arcsinh½z	�
	 . Further, we can reexpress

VLðyÞ as the function of the conformal coordinate z,
VLðzÞ and VLðzÞ are plotted in Fig. 3 for different values
of k.

Since b ¼ 1, we can get a simple expression of the

warped factor in conformal coordinate, i.e., AðzÞ ¼
� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2	2

p
. Note that at z ¼ 0, Að0Þ ¼ A0ð0Þ ¼

�ð0Þ ¼ 0, so VLð0Þ ¼ ��eAð0Þ�0ð0Þ ¼ �
ffiffi
3
2

q
�	. For posi-

tive �, VLð0Þ< 0. From Fig. 3, it can be seen that VLð�1Þ
vanishes at infinity, therefore there is only one bound
massless mode for left-chiral fermions followed by a con-
tinuous gapless spectrum of KK states with �> 0.

From Fig. 3, we find that, with the decrease of k, the
height of the potential well will increase, then there will be

two minima in the potential well, namely, double well.
Although there is only one bound massless mode, but some
resonances may appear which can tunnel from the brane to
the bulk. In the case shown in Fig. 3, only the zero mode
exists. But for k ¼ �0:5 there exists an extra resonance
with m2 ¼ 3:2369, probability 0.472493 and odd wave-
function. For k ¼ �1:5, there are two resonances with
m2 ¼ 5:2925, 10.3974. For k ¼ �4, the resonances
increase to three, m2 ¼ 7:84658, 17.899, 25.032. So the
resonant states will increase with the contribution from
torsion. For the right-chiral KK modes, there have no
bound modes but continuous and gapless spectra which
are the same with the left-chiral KK modes.
Note that the height of the potential well will also

increase with b and 	, but the width becomes narrower,
then there will be a double well with a smaller VLð0Þ. The
coupling constant � can also affect the width and the
height of the well, but there will be no transition from
one minimum in the potential well to two minima.
Similarly the well has a smaller VLð0Þ.
Next we discuss the condition of the localization. The

zero mode for the left-chiral fermions reads [72,73,82]

fL0ðzÞ / exp

�
��

Z z

0
d!eAð!Þ�ð!Þ

�
: (39)

In order to check whether the zero mode can be localized
on the brane, we should check whether the normalization
condition for the zero mode is satisfied, namely, whether
the integral

Z
fL0ðzÞ2dz /

Z
exp

�
�2�

Z z

0
d!eAð!Þ�ð!Þ

�
dz (40)

is finite. Since eAð!Þ�ð!Þ ! 0 when ! ! 1, so it is clear
that the integral (40) is finite for positive �, namely, the
zero mode for left-chiral fermions can be localized on the
brane for positive �.
Since b ¼ 1, we can get a simple expression of the

warped factor in conformal coordinate, i.e., AðzÞ ¼
� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2	2

p
. At the infinity, eA ! 1

	jzj , hereby,

fL0ðz ! �1Þ ! jzj���1=	 ; (41)

where �1 is

�ðz!1Þ!
ffiffiffi
3

2

s �
�iEð1�72k	2ÞþKð72k	2Þ

þið1�72k	2ÞEð 1
1�72k	2Þþi72k	2Kð 1

1�72k	2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�72k	2

p
�
:

(42)

If the normalization condition is satisfied, we can get the
following equivalent condition,

Z
jzj�2��1=	dz<1: (43)
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FIG. 3. The effective potential of left-chiral fermions with n ¼
2, b ¼ 1, 	 ¼ 1, � ¼ 1 in different coordinate systems.
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Only when �> �0 ¼ 	
2�1

, the above integral is conver-

gent, which means that the left-chiral zero mode can be
localized on the brane under this condition.

From Eq. (20), we can find that the consequences here
can also be obtained for the even integer n. For the odd
integer n and with k bigger than some positive value, we
also obtain the similar consequences here. Note that k
represents the strength of the contribution from torsion,
so the results are applicable only when the torsion have a
significant effect.

V. CONCLUSION

In this paper, we investigate the geometric effect of
torsion on thick branes in gauge theory, and find some
analytic domain wall solutions for some specific values
of n. We also find that the geometric effect determines
whether the domain wall solution is a kink or double-kink.
With the increase of the contribution of torsion, the
configuration of the solution changes from a kink to

double-kink. The more significant the effect is, the more
energy dwells on the sub-branes. We also study the local-
ization of fermion fields on the brane described by the
domain wall solution. It is shown that there is only one
bound massless mode on the brane, but when the spacetime
torsion has a significant effect, the potential well for the
fermion KKmodes will become more and more deeper and
more resonant states of left-chiral fermions with short
lifetime will appear. With the coupling parameter k being
a function of temperature, the evolution of universe can
influence not only the split behavior of the thick brane via
changing the contribution from the spacetime torsion, but
also the number of fermion resonate states.
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