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In the standard hot big bang theory, when the Universe was about 1–10 �s old, the cosmological matter

is conjectured to undergo quantum chromodynamics (QCD) phase transition(s) from quark matter to

hadrons. In the present work, we study the cosmological quark-hadron phase transition in two different

physical scenarios. First, by assuming that the phase transition would be described by an effective

nucleation theory (prompt first-order phase transition), we analyze the evolution of the relevant

cosmological parameters of the early universe (energy density �, temperature T, Hubble parameter H,

and the scale factor a) before, during, and after the phase transition. To study the cosmological dynamics

and the time evolution, we use both analytical and numerical methods. The case where the Universe

evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic

bubbles is also considered in detail. The numerical estimation of the cosmological parameters, a andH for

instance, shows that the time evolution of the Universe varies from phase to phase. As the QCD era turns

to be fairly accessible in the high-energy experiments and the lattice QCD simulations, the QCD equation

of state is very well defined. In light of these QCD results, we develop a systematic study of the crossover

quark-hadron phase transition, and an estimation for the time evolution of the Hubble parameter during

the crossover.
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I. INTRODUCTION

According to the standard model of cosmology, as the
Universe extremely expanded and cooled down, it is likely
to expect that the cosmological background matter should
undergo a series of symmetry-breaking phase transitions,
at which various topological defects may have formed. The
study of phase transition from quark-gluon plasma (QGP)
to hadrons in the early universe dates back to about three
decades ago [1–5]. A first-order phase transition in various
scenarios is assumed to take place [6]. In one scenario, it
has been suggested that QGP thermodynamically conden-
sates into a hadron gas. In the second scenario, it is con-
jectured that the Universe was being supercooled and an
out-of-equilibrium nucleation of hadron bubbles in the
QGP surrounding should take place. In the third scenario,
it has been argued that the phase transition took place
in accompany with a small supercooling. Apparently, the
coexistence of hadrons and QGP is accessible after
the nucleation. The latter would generate fluctuations in
the isothermal baryon density i.e., inhomogeneity and
therefore can lead to drastic astrophysical consequences.
From Yang-Mills theory, we have learned a lot about the
kinetics and order of the phase transition [7]. The lattice

QCD is a reliable method describing the strongly inter-
acting matter for the whole temperature range starting from
very low temperatures (ground state) to very high tempera-
tures (perturbative QCD). Recently, a remarkable dis-
covery of the QGP properties has been achieved in the
heavy-ion collision program [8–11]. The QGP is likely a
strongly correlated phase with finite bulk and shear
viscosity.
A first-order phase transition is proceeded by bubble

nucleation and rapid expansion. When at least 4� n of
these bubbles collide, where n ¼ 0, 1, 2, an n-dimensional
topological defect may form in the region between them
[12]. Recent lattice QCD calculations for two quark flavors
suggest that QCD reliably describes a transition at Tc �
173 MeV [13]. It is neither first nor second order. With
increasing temperature there is a rapid change in all ther-
modynamic quantities. This phase transition, which could
have occurred in the early universe, could lead to the
formation of relic quark-gluon plasma objects, which still
survive today. It will be elaborated below, that the order of
the phase transition strongly depends on the mass and
flavor of the quarks.
As given above, studying the first-order quark-hadron

phase transition in the early universe has a long history. It
can be characterized as follows [12]. As the color decon-
fined QGP cools down below Tc, it becomes energetically
favorable to form color confined hadrons (primarily the
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lightest Goldstone bosons, the pions, and a tiny amount of
neutrons and protons, due to the conserved net baryon
number). However, the new phase does not show up im-
mediately. A characteristic feature of the first-order phase
transition is that a part of the supercooling is needed to
overcome the energy expense of forming the surface of the
bubble and the new hadron phase. When a hadron bubble is
nucleated, latent heat is released, and a spherical shock
wave expands into the surrounding supercooled QGP. This
reheats the plasma to the critical temperature, preventing
further nucleation in a region passed by one or more shock
fronts. Generally, the bubble growth is described by def-
lagrations with a shock front preceding the actual transition
front. The nucleation stops, when the whole universe has
reheated to Tc. This part of the phase transition passes very
fast, in about 0:05 � sec, during which the cosmic expan-
sion is totally negligible. After that, the hadron bubbles
grow at the expense of the quark phase and eventually
percolate or coalesce. When neglecting the possibility of
the quark nugget production, the transition is assumed to
stop, when all QGP has been converted to hadrons.

Depending on the numerical values of the parameters,
both deflagrations and detonations can appear. The hadron
bubbles can nucleate at very large distance scales, and the
phase transition may be completed without reheating to the
critical temperature. During the low temperature phase in
the phase transition, the bubble can grow as a supersonic
deflagration consisting of a Jouguet deflagration followed
by a rarefaction wave. The velocity of the supersonic
deflagration varies between the sound and light velocities
[14]. The small-scale effects of finite wall width and sur-
face tension have been incorporated in a numerical code,
also including both the complete hydrodynamics of the
problem and a phenomenological model for the micro-
scopic entropy production mechanism at the phase transi-
tion surface [15]. The decaying droplets leave behind no
rarefaction wave, so that any baryon number inhomogene-
ity generated previously should survive the decay.

The nucleation of bubbles, the collisions of shock fronts
preceding the bubble, the arrestation of the bubble growth
by the reheating, the condensation of the baryon number
and the resulting density perturbations after a first-order
phase transition through the mixed phase have been studied
in a scenario with small initial supercooling and mono-
tonically growing hadronic bubbles [12]. The growth of
bubbles after the initial nucleation event in the generic
first-order cosmological phase transitions, which is char-
acterized by the latent heat L, the interface tension �, and
the correlation length � and is driven by a scalar order
parameter �, has been considered in Ref. [16]. The mean
distance of the nucleation dnuc in a first-order cosmological
quark-hadron phase transition has been introduced in
Ref. [17]. For a homogeneous nucleation dnuc � 2 cm.
On the other hand, the impurities can lead to heterogeneous
nucleation, with dnuc of several meters. The latter value

could change the outcome of the big bang nucleosynthesis.
The study of the hydrodynamics of the disconnected quark
regions during the final stages of the cosmological quark-
hadron transition has been carried out in Ref. [18]. It has
been shown that a self-similar solution likely exists. The
inclusion of the relativistic radiative transfer produces
significantly different results. Furthermore, it enables the
formation of high density regions at the end of the drop
evaporation [19]. The linear stability analysis of the rela-
tivistic detonation fronts, representing the phase interface
in first-order phase transitions, has been performed in
Ref. [20]. The strong detonations are evolutionary and
stable with respect to the corrugations of the front.
Moreover, Chapman-Jouguet detonations appear to be
unconditionally linearly stable. Taking into account the
simultaneous effects of the baryon number flux suppres-
sion at the phase interface, the entropy extraction by means
of the particles having long mean free paths and baryon
diffusion shows that significant baryon number concentra-
tions, up to densities above that of nuclear matter, represent
an inevitable outcome within this scenario [20].
The abundance and size distribution of the quark nug-

gets formed a few microseconds after the big bang due to a
first-order QCD phase transition have been estimated in
Ref. [21]. The evolution and the collision of slow-moving
true vacuum bubbles are examined in Ref. [22]. The
comoving bubble walls prevent the formation of extra
defects, and may lead to an increase of any primordial
magnetic field. Within an effective model of QCD, the
quark-hadron phase transition was studied in Ref. [23].
In a reasonable range of the parameters of the model,
bodies with a quark content between 10�2 and 10M� could
have been formed in the early universe. A significant
amount of entropy is released during the transition. The
density fluctuations amplified by the vanishing sound
velocity effect during the quark-hadron phase transition
could lead to QGP lumps decoupled from the expansion,
which rapidly transform to quark nuggets [24]. The inho-
mogeneous nucleation, as a new mechanism for the cos-
mological QCD phase transition, was proposed by Ignatius
and Schwartz [25]. In this model the typical distance
between bubble centers is of the order of a few meters.
The resulting baryon inhomogeneities may affect the pri-
mordial nucleosynthesis.
Recent lattice QCD simulations turn to be able to pro-

vide an accurate tool to study—among others—the ther-
modynamics of the strongly interacting matter. The critical
temperature Tc was a subject of different lattice QCD
simulations [26–32]. We know so far that for two quark
flavors (nf ¼ 2) the transition is second order or rapid

crossover and Tc ’ 173� 8 MeV. For nf ¼ 3, we have a

first-order phase transition and Tc ’ 154� 8 MeV. For
nf ¼ 2þ 1 i.e., two degenerate light quarks and one

heavy strange quark, the transition is again crossover
and Tc ’ 173� 8 MeV. For the pure gauge theory,
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Tc ’ 271� 2 MeV and the deconfinement phase transi-
tion is first order. In all these lattice QCD simulations, the
quark masses are much heavier than their physical values.
With recent computational facilities and modern algo-
rithms, it is now possible to use values very close to the
physical masses. This raised the critical temperature, for
instance, Tc ’ 200 MeV for nf ¼ 2þ 1. From this discus-

sion, we conclude that the order of the phase transition can
be either continuous or discontinuous. It depends—among
others—on the quark flavors and their masses. The extreme
conditions in the early universe, like high temperatures,
high densities, and out-of-thermal and out-of-chemical
equilibrium, likely affect the properties of the partonic
matter. Yet, we have no access to study this issue. Recent
lattice QCD outputs have been used in [33] to work out the
expansion law of the Universe during the cosmological
quark-hadron transition. The cosmological behavior found
using lattice data was compared with the one obtainable in
case the transitions were first order. The differences be-
tween these two scenarios are too small to be tested with
cosmological data, but the coming of the era of precision
cosmology might open the possibility of testing the nature
of the QCD transition by using cosmological data.

In the present work, we consider two cases. First, we
assume that the phase transition is of first order. The
cosmological evolutions during the quark and hadron
phases are investigated in detail. The main cosmological
parameters are obtained for each phase. The hadron frac-
tion h, whose time evolution describes the conversion
process, is an important parameter to describe the phase
transition, and its expression is obtained in an analytical
form. h seems to behave as an order parameter. The second
part of this study is devoted to an extension of previous
works [34–40], in which we have applied the equations of
state deduced from recent lattice QCD simulations at
almost physical masses and more accurate lattice configu-
rations in order to study the cosmology of the early uni-
verse. With the use of these equations of state we can study
the evolution equations of the main physical parameters of
the cosmological models. In light of these QCD results, we
develop a systematic study of the crossover quark-hadron
phase transition, and an estimation for the time evolution of
the Hubble parameter during the crossover in the presence
of bulk viscous effects.

This paper is organized in the following manner. In
Sec. II, the background geometry and the gravitational
field equations are written down, and the description of
the viscous effects in different theoretical models is pre-
sented. In Sec. III, we lay down the equations of state and
the relevant physical quantities, necessary for the discus-
sion of the first-order quark-hadron phase transition.
In Sec. IV we analyze in detail the dynamics of the
Universe during first-order quark-hadron phase transition.
The phase transition in the lattice QCD simulations and the
heavy-ion collisions and the QCD equation of state (EoS)

are discussed in Sec. V. The cosmological evolution of the
Universe during the crossover in the presence of bulk
viscous effects is analyzed in Sec. VI. The cosmological
implications of our results are discussed in Sec. VII. We
discuss and summarize our results in Sec. VIII.
In the present paper we use natural units with c ¼ ℏ ¼

kB ¼ 1, in which 8�G¼1=m2
Pl¼1:687�10�43 MeV�2,

where mPl is the ’’reduced’’ Planck mass. The ‘‘reduced’’
Planck time is given by tPl ¼ 1=mPl ¼ 4:0�
1152� 10�22 MeV�1.

II. GEOMETRYAND FIELD EQUATIONS

We assume that the early universe is filled with a bulk
viscous cosmological fluid, and its geometry is given
by a spatially flat Friedmann-Lemaitre-Robertson-Walker
metric

ds2 ¼ dt2 � a2ðtÞ½dr2 þ r2ðd�2 þ sin2�d�2Þ�; (1)

where aðtÞ is the dimensionless scale factor, which de-
scribes the expansion of the Universe. At a vanishing
cosmological constant, the Einstein gravitational field
equations in the flat universe read

Rik � 1

2
gikR ¼ 1

m2
Pl

Tik: (2)

The energy-momentum tensor of the bulk viscous cosmo-
logical fluid filling the very early universe is given by [41]

Tk
i ¼ ð�þ pþ�Þuiuk � ðpþ�Þ�k

i ; (3)

where indices i, k take discrete values 0, 1, 2, 3, � is the
energy density, p is the thermodynamic pressure, � is the
bulk viscous pressure, and ui is the four velocity, satisfying
the normalization condition uiu

i ¼ 1. The particle and
entropy fluxes are defined according to Ni ¼ nui and Si ¼
sNi � ð	�2=2
TÞui, where n is the number density, s is
the specific entropy, T is the finite temperature, 
 is the
bulk viscosity coefficient, and 	 gives the relaxation coef-
ficient for the transient bulk viscous effect (i.e. the relaxa-
tion time), respectively. The evolution of the cosmological
fluid is subject to obeying the dynamical laws of the
particle number conservation Ni

;i ¼ 0 and Gibbs’ equation

Td� ¼ dð�=nÞ þ pdð1=nÞ [41]. In the following, we shall
also suppose that the energy-momentum tensor of the
cosmological fluid is conserved, i.e., Tk

i;k ¼ 0, where ;

denotes the covariant derivative with respect to the metric.
The bulk viscous effects can generally be described by

means of an effective pressure�, formally included in the
effective thermodynamic pressure peff ¼ pþ� [41].
Then in the comoving frame the energy-momentum tensor
has the components T0

0 ¼ �; T1
1 ¼ T2

2 ¼ T3
3 ¼ �peff . For

the line element given by Eq. (1), the Einstein field equa-
tions read
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H2 ¼ 1

3m2
Pl

�; (4)

_H þH2 ¼ � 1

6m2
Pl

ð3peff þ �Þ; (5)

where one dot denotes the derivative with respect to the
time t,G is the gravitational constant, andHðtÞ ¼ _aðtÞ=aðtÞ
is the Hubble parameter. Expressions (4) and (5) lead to a
generic expression for the time evolution of H:

_H ¼ � 1

2m2
Pl

ð�þ pþ�Þ: (6)

From the field equations or with the use of the conservation
of the energy-momentum tensor, we obtain the following
equation (Bianchi identity), relating the time variation of
the energy density to the Hubble parameter:

_�þ 3ð�þ peffÞH ¼ 0: (7)

In order to solve the field equations, we necessarily need an
equation of state and an estimation for the bulk viscous�,
characterizing the viscous properties of the matter in the
expanding universe.

A. Eckart relativistic viscous fluid

The first attempts at creating a theory of relativistic
fluids were those of Eckart [42] and Landau and Lifshitz
[43]. These theories are now known to be pathological in
several respects. Regardless of the choice of the equation
of state, all equilibrium states in these theories are unstable
and in addition signals may be propagated through the fluid
at velocities exceeding the speed of light c violating the
causality principle. These problems arise due to the nature
of the first order of this theory [review Eq. (9)], that it
considers only the first-order deviations from the equilib-
rium leading to parabolic differential equations, because of
the infinite speeds of propagation for the heat flow and
viscosity, which contradicts the principle of causality.
Conventional theory is thus applicable only to phenomena
which are quasistationary, i.e., slowly varying on space and
time scales characterized by mean free path and mean
collision time.

The Eckart theory can be applied on modelling the
cosmic background fluid as a continuum with a well-
defined average 4-velocity field u� where u�u� ¼ �1.
The vector number density n� ¼ nu� can be estimated,
when unbalanced creation/annihilation processes take
place; n�;� ¼ 0. This apparently means that

_nþ 3Hn ¼ 0; (8)

where the Hubble parameter H ¼ u�;�. In the case of a

viscous fluid, the entropy current,

S� ¼ snu�; (9)

is no longer conserved. The covariant form of second law
of thermodynamics is S�;� � 0, and the divergence of

entropy current is given by TS�;� ¼ �3H�. This is another

feature of Eckart’s theory. It violates the second law of
thermodynamics.
The evolution of the cosmological fluid is subject to the

dynamical laws of particle number conservation Ni
;i ¼ 0

and Gibbs’ equation Td� ¼ dð�=nÞ þ pdð1=nÞ. Then,
from the Gibbs equation, the covariant entropy current
can be obtained as

� ¼ �3
H: (10)

This is a linear first-order relationship between the ther-
modynamical flux � and the corresponding force H.
Substituting in Eq. (6) results in

_H ¼ � 1

2m2
Pl

ð�þ p� 3
HÞ: (11)

B. Israel-Stewart relativistic viscous fluid

A relativistic second-order theory was introduced by
Israel and Stewart [44,45], and further developed by
Hiscock and Lindblom [46] through the extended irrevers-
ible thermodynamics. In this model, the deviations from
equilibrium (bulk stress, heat flow and shear stress) are
treated as independent dynamical variables, resulting in 14
dynamical fluid variables to be determined. The causal
thermodynamics and its role in general relativity are
reviewed in Ref. [41]. A general algebraic form for S�

including a second-order term in the dissipative thermo-
dynamical flux � [44,45] reads

S� ¼ snu� þ ��2 u
�

2T
; (12)

where � is a proportionality constant.
For the evolution of the bulk viscous pressure, we adopt

the causal evolution equation [41] obtained in the simplest
way (linear in �) to satisfy the H-theorem (i.e., for the
entropy production to be non-negative, Si;i ¼ �2=
T � 0

[44,45]). According to the causal relativistic IS theory, the
evolution equation of the bulk viscous pressure reads [41]

	 _�þ� ¼ �3
H � 1

2
	�

�
3H þ _	

	
�

_




� _T

T

�
; (13)

where 	 is the relaxation time. In order to have a closed
system from Eqs. (4), (7), and (13), we have to take into
consideration equations of state for the pressure p, the
temperature T, and the relaxation time 	, respectively.

III. FIRST-ORDER QUARK-HADRON
PHASE TRANSITION

In this section, we outline the relevant thermodynamic
quantities of the quark-hadron phase transition, which will
be used in the following sections. Note that the scale of the
cosmological QCD transition is given by the Hubble radius
RH at the transition: RH �mPl=T

2
c � 10 km, where Tc is
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the critical temperature. The mass inside the Hubble vol-
ume is �1M�. The expansion time scale is 10�5 s, which
should be compared with the time scale of QCD, 1 fm=c ’
10�23 s. Even the rate of the weak interactions exceeds the
Hubble rate by a factor of 107. Therefore, in this phase the
photons, the leptons, the quarks and the gluons (or pions)
are lightly coupled and may be described as a single,
adiabatically expanding fluid [17].

At high temperatures T > Tc, the baryon number density
nB may be defined as nB ¼ ð1=3ÞPðnq � n �qÞ, where

nqðn �qÞ is the number density of a specific quark (antiquark)

flavor, and the sum is taken over all quark flavors. In
utilizing these relations, it is apparent that QGP matter is
assumed to be characterized as an ideal gas. At T < 1 GeV
only the u, d, and s quarks contribute significantly. At low
temperatures T < Tc the baryon number density is defined
as nB ¼ Pðnb � n �bÞ, with the summation extended over
all baryon species b. In order to study the quark-hadron
phase transition it is necessary to specify EoS of the matter,
in both quark and hadron state. Giving an equation of state
is equivalent to give the pressure as a function of the
temperature T and chemical potential �.

At high temperatures the quark chemical potentials are
equal, because of the weak interactions which apparently
keep them in chemical equilibrium, and the chemical
potentials for leptons are assumed to vanish. Thus the
chemical potential for a baryon is defined by �B ¼ 3�q.

The baryon number density of an ideal Fermi gas of
three quark flavors is given by nB ’ T2�B=3, leading
to �B=T � 10�9 at T > Tc. At low temperatures �B=T �
10�2. Therefore the assumption of a vanishing chemical
potential at the phase transition temperature in both quark
and hadron phase represents an excellent approximation
for the study of EoS of the cosmological matter in the early
universe. In addition to the strongly interacting matter we
assume that in each phase there are present leptons and
relativistic photons, satisfying equations of state similar to
that of hadronic matter [12].

A. Thermodynamic parameters of the quark
and hadronic matter

The equation of state of the ideal gas in QGP phase can
generally be given in the form

�q ¼ 3aqT
4 þ VðTÞ; (14)

pq ¼ aqT
4 � VðTÞ; (15)

where VðTÞ is the self-interaction potential. aq ¼
ð�2=90Þgq, with gq ¼ 16þ ð21=2ÞNF þ 14:25 ¼ 51:25

and NF ¼ 2. As given in Ref. [23], the self-interaction
potential reads

VðTÞ ¼ Bþ TT
2 � �TT

4; (16)

where B is the bag constant, �T ¼ 7�2=20, and
T ¼ m2

s=4, with ms is the mass of the strange quark

2 ð60–200Þ MeV. The form of the potential V corresponds
to a physical model in which the quark fields are interact-
ing with a chiral field formed with the � meson field and a
scalar field. If the temperature effects can be ignored, EoS
in the quark phase takes the form of the Massachusetts
Institute for Technology bag model equation of state, pq ¼
ð�q � 4BÞ=3. The results obtained in the low energy had-

ron spectroscopy, the heavy-ion collisions and the phe-
nomenological fits of the light hadron properties give an

estimation for B1=4. It ranges between 100 and 200 MeV
[47].
In the hadron phase, we assume that the cosmological

fluid is consisting of an ideal gas of massless pions and
nucleons described by the Maxwell-Boltzmann statistics.
The energy density �h and pressure ph can be, respectively,
approximated by

phðTÞ ¼ 1
3�hðTÞ ¼ a�T

4; (17)

where a� ¼ ð�2=90Þgh and gh ¼ 17:25. For the entropy
densities sðTÞ ¼ dp=dT in the two phases, we obtain

sqðTÞ ¼ �2TT þ 4ðaq þ �TÞT3; (18)

shðTÞ ¼ 4a�T
3: (19)

The critical temperature Tc is defined by the condition
pqðTcÞ ¼ phðTcÞ [12], and is given, in the present

model, by

T2
c ¼

T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
T þ 4ðaq þ �T � a�ÞB

q
2ðaq þ �T � a�Þ : (20)

For ms ¼ 200 MeV and B1=4 ¼ 200 MeV, the transi-
tion temperature is of the order of Tc ’ 125 MeV.
According to the first order of the phase transition, all the
physical quantities, like the energy density, pressure and
entropy, exhibit discontinuities across the critical curve. At
the critical temperature, the ratios of the relevant physical
quantities, the energy, and the entropy density, respec-
tively, are given by

�qðTcÞ
�hðTcÞ ¼

4aqT
4
c � pqðTcÞ
3a�T

4
c

¼ 4aqT
4
c � phðTcÞ
3a�T

4
c

¼ 4aq � a�
3a�

; (21)

and

sqðTcÞ
shðTcÞ

¼
Ta� þ ðaq þ �TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
T þ 4ðaq þ �T � a�ÞB

q
a�ðT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
T þ 4ðaq þ �T � a�ÞB

q
Þ

;

(22)

respectively. For ms ¼ 200 MeV and B1=4 ¼ 200 MeV,
the ratios �qðTcÞ=�hðTcÞ, given by Eq. (21), and

sqðTcÞ=shðTcÞ, given by Eq. (22), equal 3.62 and 4.628,

respectively. So far, we conclude that the energy density
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and entropy suddenly decrease to nearly one-fifth of its
value, when the system undergoes a first-order phase tran-
sition at Tc. According to the first-law of thermodynamics,
the entropy s can be expressed in terms of the pressure p
and the energy density �, so that at vanishing chemical
potential �, sT ¼ pþ �. It is apparent that the sudden
decrease in � nearly equals the decrease in s, at fixed T and
slightly changing constant p. If the temperature effects in
the self-interaction potential V are neglected, �T ¼ T ’
0, then from Eq. (20), we obtain the well-known relation
between the critical temperature and the bag constant,
B ¼ ðgq � ghÞ�2T4

c=90 [12].

IV. DYNAMICS OF THE UNIVERSE DURING THE
QUARK-HADRON PHASE TRANSITION

The quantities to be traced through the quark-hadron
phase transition are the energy density �, the temperature T
and the scale factor a. These quantities are determined by
the gravitational field Eqs. (4) and (7) and by the equations
of state (15)–(17). We shall consider now the evolution of
the Universe before, during and after the phase transition.

A. Cosmological evolution in the quark phase (prior to
the quark-hadron phase transition)

Before the phase transition, at T > Tc, the Universe is
likely in the partonic phase. With the use of the equations
of state of the quark matter, and of the Bianchi identity,
Eq. (7), the time evolution of the scale factor can be written
in the form

HðTÞ ¼ _a

a
¼ � 3aq � �T

3aq

_T

T
� 1

6

T

aq

_T

T3
; (23)

and can be integrated to give the following scale factor-
temperature relation:

aðTÞ ¼ a0ðT=T0Þð�T=3aq�1Þ exp
�
1

12

T

aqT
2
0

��
T0

T

�
2 � 1

��
;

(24)

where a0 is the initial value of the scale factor correspond-
ing to the temperature T ¼ T0 of the Universe, aðT0Þ ¼ a0.
In Fig. 1, the variation of the scale factor of the Universe
during the quark phase is presented as a function of the
temperature T. Because of the expansion of the Universe
the temperature is decreasing with the increase in the
comoving time t. Therefore the scale factor a increases
with the decreasing T. The exact numerical values of aðtÞ
strongly depend on the initial T0 value.

In order to have an analytical insight into the evolution
of the cosmological quark matter, we consider the simple
case in which the temperature corrections can be neglected
in the self-interaction potential V. In this case V ¼ B ¼
constant, and EoS of the quark matter is given by the bag
model equation of state, pq ¼ ð�q � 4BÞ=3. Thus, Eq. (7)
can immediately be integrated to give the following simple
scale factor-temperature relation:

aðTÞ
a0

’ T0

T
: (25)

Hence the presence of a temperature-dependent potential
term VðTÞ in the quark matter EoS drastically modifies the
scale factor-temperature relationship. The same result can
be obtained by taking �T ¼ T ¼ 0 in Eq. (24).
With the use of Eq. (23) and from the gravitational field

equations, we obtain an expression describing the evolu-
tion of the temperature of the Universe in the quark phase,
given by

dT

dt
¼ � T3ffiffiffi

3
p

mPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3aq � �TÞT4 þ TT

2 þ B
q

½ð3aq � �TÞ=3aq�T2 þ ðT=6aqÞ
: (26)

The variation of the temperature in the quark phase is
presented, for different values of the bag constant B, in
Fig. 2. The temperature dependence of the Hubble parame-
ter during the quark-gluon phase is represented, for differ-
ent values of the bag constant B, in Fig. 3.

B. Cosmological dynamics during the first-order
quark-hadron phase transition

During the quark-hadron phase transition, the tempera-
ture and the pressure are constants, T ¼ Tc and p ¼ pc,
respectively. The entropy S ¼ sa3 and the enthalpy W ¼
ð�þ pÞa3 are conserved quantities. The energy density
�ðtÞ decreases from �qðTcÞ 	 �Q to �hðTcÞ 	 �H. At the

critical temperature Tc ¼ 125 MeV, we have �Q ’
5� 109 MeV4 and �H ’ 1:38� 109 MeV4, respectively.
The value of the pressure of the cosmological fluid during
the phase transition is pc ’ 4:6� 108 MeV4. Following
[12], it is convenient to replace �ðtÞ by the volume fraction
of matter in the hadron phase

�ðtÞ ¼ �HhðtÞ þ �Q½1� hðtÞ� ¼ �Q½1þ nhðtÞ�; (27)

140 160 180 200 220 240

0.014
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0.018

0.020

T T0

a
a 0

FIG. 1 (color online). The dependence of the scale factor a of
the temperature T during the quark phase for T0 ¼ 250 MeV.
The a-T relation is almost independent on the mass ms of the
strange quark.
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where n ¼ ð�H � �QÞ=�Q is the relative density and t is
the comoving cosmological time. It is obvious that at the
beginning of the quark-hadron phase transition, the quan-
tity hðtcÞ vanishes, where tc is the time corresponding to
the beginning of the phase transition and �ðtcÞ 	 �Q. At

the end of the quark-hadron transition, hðthÞ ¼ 1, where th
is the time at which the phase transition ends correspond-
ing to �ðthÞ 	 �H. At t > th, the Universe enters in the
hadronic phase.

From Eq. (7), we obtain an expression for the Hubble
parameter

H ¼ � 1

3

ð�H � �QÞ _h
�Q þ pc þ ð�H � �QÞh ¼ � 1

3

" _h

1þ "h
; (28)

where _h denotes the time derivative of the hadron fraction
parameter h, which can be utilized as an order parameter.

" ¼ �H � �Q

�Q þ pc

: (29)

Then, Eq. (28) immediately leads to the scale factor,

aðtÞ ¼ aðtcÞð1þ "hðtÞÞ�1=3; (30)

where we have used the initial condition hðtcÞ ¼ 0. The
evolution of the fraction of the matter in the hadronic phase
is described as

_hðtÞ ¼ � 1

mPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½1þ nhðtÞ��Q

q �
hðtÞ þ 1

"

�
; (31)

with the general solution given by

hðtÞ ¼ n� "

n"
sech2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

�
1� n

"

�
�Q

s
t� tc
mPl

�
� 1

"
: (32)

As given above, the quark-hadron phase transition ends
up, when the value of hðtÞ reaches 1. Then, the time th at
which the phase transition ends reads

th ¼ tc þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"

3ð"� nÞ�Q

s
sec h�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð"þ 1Þ
n� "

s �
: (33)

At the end of the phase transition the scale factor of the
Universe has the value, Eq. (30)

aðthÞ ¼ aðtcÞð"þ 1Þ�1=3: (34)

The variation of the hadron fraction given by Eq. (32), as
a function of the dimensionless time parameter � ¼ffiffiffiffiffiffiffi
�Q

p
tPlt is represented, for different values of the parame-

ter " and for n fixed in Fig. 4. The hadron fraction appar-
ently gives an estimation for hadrons formed inside QGP.

Having the expressions of hðtÞ and _hðtÞ, the analytical
forms for both H and a can be directly obtained. It is
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t t Pl
1 MeV 2
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FIG. 2 (color online). Time dependence of the temperature
of the Universe T during the quark phase for a strange quark
mass ms ¼ 200 MeV and different values of the bag constant:
B1=4 ¼ 100 MeV (solid curve), B1=4 ¼ 200 MeV (dashed
curve), and B1=4 ¼ 250 MeV (long-dashed curve), respectively.
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FIG. 4 (color online). Time evolution of the hadron fraction h
during the quark-hadron phase transition for n ¼ �0:74 and
different values of ": " ¼ �1=4 (solid curve), " ¼ �1=2
(dashed curve), " ¼ �3=4 (long-dashed curve), and " ¼ �1
(very long-dashed curve), respectively.
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FIG. 3 (color online). Temperature dependence of the Hubble
parameter H during the quark phase for a strange quark mass of
ms ¼ 200 MeV and different values of the bag constant: B1=4 ¼
100 MeV (solid curve), B1=4 ¼ 200 MeV (dashed curve), and
B1=4 ¼ 250 MeV (long-dashed curve), respectively.
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straightforward to show that the Hubble parameter during
the phase transition can be expressed as

H ¼ 1ffiffiffi
3

p
mPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ nhðtÞ��Q

q
: (35)

The variation of the dimensionless Hubble parameter
H0 ¼ HmPl=

ffiffiffiffiffiffiffi
�Q

p
is represented, as a function of the di-

mensionless parameter � ¼ ffiffiffiffiffiffiffi
�Q

p
tPlt, for different values

of the parameter " and for n fixed in Fig. 5.

C. Cosmological evolution in the hadronic phase (post
quark-hadron phase transition)

Finally, after the phase transition, the energy density of
the pure hadronic matter is �h ¼ 3ph ¼ 3a�T

4. The
Bianchi identity Eq. (7) gives

aðTÞ ¼ aðthÞTc

T
: (36)

The time evolution of the temperature in the hadronic
phase is governed by the equation

dT

dt
¼ � Tffiffiffiffiffiffiffiffiffiffi

3mPl

p ð3a�T4Þ1=2 ¼ � 1

mPl

ffiffiffiffiffiffi
a�

p
T3; (37)

giving a comoving time

t� th ¼ mPl

2
ffiffiffiffiffiffi
a�

p
�
1

T2
� 1

T2
c

�
: (38)

From Eqs. (36) and (37), the Hubble parameter reads

HðTÞ ¼
ffiffiffiffiffiffi
a�

p
mPl

T2; (39)

HðtÞ ¼
ffiffiffiffiffiffi
a�

p
mPl

1

T�2
c þ ð2 ffiffiffiffiffiffi

a�
p

=mPlÞðt� thÞ
: (40)

During the hadronic phase, the density of the Universe
varies with the time as

�hðtÞ ¼ 3a�
m2

Pl

1

½T�2
c þ ð2 ffiffiffiffiffiffi

a�
p

=mPlÞðt� thÞ�2
: (41)

The temperature dependence of the scale factor a of the
Universe during the hadronic evolution phase is presented
in Fig. 6. The temperature dependence of the Hubble
parameter H is represented in Fig. 7.
Finally, in Fig. 8 we present the time evolution of the

scale factor a of the Universe during the quark phase, the
phase transition and the hadron phase, respectively, for
several values of the bag constant B. We assume that the
quark phase begins at a time t ¼ tQ, when the value of the

scale factor of the Universe is a ¼ aðtQÞ. The phase tran-

sition temperature is assumed to be Tc ¼ 125 MeV, with a
corresponding quark matter energy density at the transition
moment of �Q ¼ 5� 109 MeV4. For the parameter " we

have taken a value of " ¼ �1=4. As one can see from the
figure, an increasing value of the bag constant accelerates,
in the long term, the expansion of the Universe.
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FIG. 5 (color online). Time evolution of the dimensionless
Hubble parameter H0 ¼ H�mPl=

ffiffiffiffiffiffiffi
�Q

p
during the quark-hadron

phase transition as a function of the dimensionless time parame-
ter � ¼ ffiffiffiffiffiffiffi

�Q
p

tPlt for n ¼ �0:74 and different values of ": " ¼
�1=4 (solid curve), " ¼ �1=2 (dashed curve), " ¼ �3=4
(long-dashed curve), and " ¼ �1 (very long-dashed curve),
respectively.
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FIG. 6 (color online). The T dependence of the scale factor a
during the hadronic phase.
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FIG. 7 (color online). The T dependence of the Hubble pa-
rameter H during the hadronic phase.
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V. PHASE TRANSITION IN LATTICE QCD
SIMULATIONS AND HEAVY-ION COLLISIONS

Before introducing the QCD EoS, it is useful to study the
similarities between heavy-ion collisions and the early
universe [5]. It is conjectured that the first-order phase
transition, studied in Sec. III, might take place in the
heavy-ion collisions and/or in lattice QCD simulations.
Such a prompt transition seems to have fundamental as-
trophysical consequences. Its dynamics has been discussed
in the previous section. Despite of the order of phase
transitions, the QGP era seems not to be followed by an
extreme expansion (inflation). This is apparently the case
in heavy-ion collisions, because of the baryon number
conservation and the limitation of baryon-to-photon ratio
ðnb � n �bÞ=n � 10�11 [48]. Therefore, n �p � np recently

measured by the ALICE experiment at 7 GeV can be used
to estimate the photon number density, n ’ 5:5� 104,

while in the CMB era, n ’ 411:4ðT=2:73 KÞ cm�3.

Furthermore, the QGP era seems to be the last
symmetry-breaking era of strongly interacting matter. By
symmetry breaking, we mean deconfinement and chiral
symmetry breaking and/or restoring, respectively.

In an isotropic and homogeneous background, the vol-
ume of the Universe is directly related to the scale factor
aðtÞ, where t is the comoving time. Implementing a baro-
tropic EoS for the background matter makes it possible to
calculate—among others—the Hubble parameter HðtÞ ¼
_aðtÞ=aðtÞ. Focusing the discussion on QCD era of the early
universe, which likely turns to be fairly accessible in high-
energy experiments, the equation of state is very well
defined. In Ref. [40], a viscous EoS for QGP matter has

been introduced and different solutions for the evolution
equation of H have been worked out. The ratio of baryon
density asymmetry to photon density, �, has been mea-
sured in WMAP data [48]. Then n �p � np from the ALICE

experiment at 7 GeV can be used in order to estimate the
photon number density, n ’ 5:5� 104, while in the CMB

era, n ’ 411:4ðT=2:73 KÞ cm�3.

In a comoving volume V � a3ðtÞ, the number density of
noninteracting photons is supposed to remain constant.
Therefore, n � 1=a3ðtÞ. Nevertheless, when the

Universe was expanding, T decreases and a3ðtÞn has to

be affected. The previous values of n support this con-

clusion. There is a conserved quantity accompanying such
a transition, namely, the entropy density s. In a perfectly
closed system like the Universe, s likely remains un-
changed. From the first-law of thermodynamics [40] one
can show that at vanishing chemical potential,

sðTÞ ¼ PðTÞ þ �ðTÞ
T

¼ a1 þ 1

a2
�ðTÞ1�a3 ; (42)

implying that sðTÞ is related to �ðTÞ1�a3 , where a1 ¼
0:319, a2 ¼ 0:718� 0:054, and a3 ¼ 0:23� 0:196. This
relation is valid at low energy, where the dominant degrees
of freedom are given by hadron resonances. Baryon and
boson relative abundances ðnðTÞ � �nðTÞÞ=ðnðTÞ þ �nðTÞÞ
can be studied in hadron resonance gas. It is found that
the abundance approaches 10�3. For instance, the kaon
relative abundance is by about 1 order of magnitude higher
than that of the proton. It is obvious that the abundances of
the light elements (7Li, 4He, 3He, and 2H) produced in the
early universe are sensitive indicators of number density
[49]. Recent lattice QCD calculations [50,51] give estima-
tions for the equation of state, temperature, and bulk vis-
cosity of hadronic and partonic matter at high temperatures.
As we will show below, the gravitational cosmological

field equations, Eqs. (4) and (7), relate the cosmological
parameters, like the Hubble parameter H and the scale
factor a, to the energy density �. Again, the barotropic
equations of state for the thermodynamic parameters are
standard in analyzing the viscous cosmological models,
whereas the equation for 	 is a simple procedure to ensure
that the speed of viscous pulses does not exceed the speed
of light.
Using this set of equations seems to define the validity

of this treatment. Apparently, it depends on the validity of
the equations of states, which we have derived from the
lattice QCD simulations at temperatures larger than Tc ’
0:19 GeV. Below Tc, as the Universe is cooled down, not
only the degrees of freedom suddenly increase [52], but
also the equations of state turn out to be the ones character-
izing the hadronic matter. Such a phase transition—from
QGP to hadronic matter—would characterize one end of
the validity of our treatment. The other limitation is pro-
vided by the very high temperatures (energies), at which
the strong coupling �s entirely vanishes.
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FIG. 8 (color online). Time evolution of the scale factor during
the quark phase (solid line, quark-hadron phase transition
(dashed line), and hadron phase (long-dashed line), respectively,
for several values of the bag constant B: B1=4 ¼ 100 MeV,
B1=4 ¼ 200 MeV, and B1=4 ¼ 250 MeV. The numerical values
of the scale factors raise with increasing B. The quark phase
begins at t ¼ tQ ¼ 0, when the value of the scale factor is given

as a0 ¼ aðtQÞ ¼ að0Þ ¼ 10�4. The assumed critical transition

temperature is Tc ¼ 125 MeV, the quark density is �Q ¼
5� 109 MeV4, while � ¼ �1=4.

QUARK-HADRON PHASE TRANSITIONS IN THE VISCOUS . . . PHYSICAL REVIEW D 85, 084032 (2012)

084032-9



The lattice QCD simulations benefit from the rapid
progresses achieved in computational facilities and algo-
rithms. The accuracy of recent lattice results is comparable
with the laboratory experiments. Currently, it is possible to
perform lattice QCD simulations at almost physical quark
masses. Recent results on QCD equations of states have
been reported in [53]. It is apparent, that the influence of
radiation and leptons on phase transition are minimized
[54].

A. Equations of state of the viscous quark-gluon plasma

In this section, we give a list of barotropic equations of
states deduced from the lattice QCD simulations [53] (an
analytic crossover phase transition is obtained) and the
quasiparticle model [55]. The latter is utilized when no
lattice QCD results are available. Figure 9 depicts the
pressure p in dependence on the energy density � in a
wide range of temperatures, 1=2< T=Tc < 3. Details on
the lattice configurations are described in [53]. It is obvious
that the (barotropic) pressure—energy density dependence
is almost linear referring to the nature of the phase tran-
sition from hadrons to quarks and vice versa. This
confinement-deconfimement phase transition seems to be
smooth i.e., simply continuous and takes place very slowly.
This kind of transitions is a very moderate than the second-
order one. The nature of the phase diagram in lattice QCD
has been discussed in [56]. In Fig. 9, the dashed line
represents the fitting in the entire T-region. Ignoring the
dip around Tc, the results can be fitted as a power law,

pð�Þ ¼ �1�
�2 ; (43)

where �1 ¼ 0:178� 0:009 and �2 ¼ 1:119� 0:011, re-
spectively. In the hadronic phase i.e., at temperatures<Tc,

the previous power law dependence seems to remain valid.
Little changes appear in the parameters; �1 ¼ 0:096�
0:003 and �2 ¼ 1:03� 0:04. In the quark phase i.e., at
temperatures >Tc, the following polynomial

pð�Þ ¼ �1
3 þ �1�

�2 (44)

describes this barotropic equation of state, where �1 ¼
0:221� 0:004 and �2 ¼ 1:072� 0:005.
Apparently, expressions (43) and (44) imply that the

speed of sound drastically changes with the changes in
the phases:
(i) hadron and quark phase: c2s ¼ @p=@� ’ 0:199�0:119

i.e., the sin the peed of sound depends on the energy
density. The latter has a nonmonotonic behavior
when going from hadronic to partonic phases and
vice versa.

(ii) in the hadron phase: c2s ’ 0:098,
(iii) in the quark phase: c2s ’ 0:237.
Figure 10 presents the barotropic dependence of T as

calculated in lattice QCD. The relation can nicely be fitted
by the polynomial

Tð�Þ ¼ �1 þ �2�
�3 ; (45)

where �1 ¼ 0:123
 0:004, �2 ¼ 0:058� 0:0038, and
�3 ¼ 0:39� 0:013. Again, the specific heat in the whole
phase of hadrons and quarks seems to depend on the energy
density, strongly

cV ¼ @�

@T
� 44:247�0:61: (46)

In determining this value, the volume V is conjectured to
remain unchanged.
Based on the quasiparticle model [57], which is an

effective model used to reproduce the lattice QCD results
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FIG. 9 (color online). The pressure density, p, is drawn in
dependence on the energy density �. Both quantities are given
in physical units. Symbols are lattice QCD calculations using p4
action and temporal lattice size, N	 ¼ 8 [53]. The dotted curve is
the fitting in the quark phase, Eq. (44). The dash-dotted curve
gives the fitting in the hadronic phase. The overall fitting is given
by Eq. (43) (double-dotted curve). The small dip at Tc seems to
reflect the slow phase transition known as crossover.
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FIG. 10 (color online). The symbols are the lattice QCD
calculations for the barotropic dependence of temperature Tð�Þ
using p4 action and temporal lattice size, N	 ¼ 8. Details on the
lattice configurations are given in Ref. [53]. The solid curve
gives the fitting according to Eq. (45).
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on various thermodynamic and transport properties [58],
the bulk viscosity 
 reads


ðTÞ¼ g

2�2

1

3T

Z 1

0
~p2dp

	

�
f0ð1þf0Þ

�
~p2

3�
�
�
��T

@�

@T

�
@p

@�

�

�
�
2T2@�ðTÞ

@T2
��ðTÞ

�
; (47)

where g is the degeneracy factor of quarks, gluons and
their antiparticles. The function f0 gives the distribution
function ðexpð�Þ � 1Þ�1 of boson and fermion particles,

respectively. The quantity � ¼ ½ ~p2 þ�ðTÞ�1=2 stands for
the effective dispersion relation of single particles. It de-
pends on the particle mass �ðTÞ which in turn varies with
the effective coupling GðTÞ. Therefore, the effective cou-
plingGðTÞ plays an essential role in this model. It has to be
adjusted to reproduce lattice QCD results. In top panel of
Fig. 11, the bulk viscosity coefficient 
 is given as a
function of T. The results are fitted very well as


ðTÞ ¼ ln

�
T � 1

2

�
½3 þ 4ðT � 5Þ6�: (48)

At high T, the fitting parameters are 1 ¼ 1:042� 0:067,
2 ¼ �0:0035� 0:0059, 3 ¼ �0:329� 0:058, 4¼
25:666�1:521, and 5 ¼ �0:367� 0:0159. At low T,
the fitting parameters read 1 ¼ 0:801� 0:595, 2¼
�0:352�0:558, 3 ¼ �0:350� 0:174, 4¼303:582�
3:126, and 5 ¼ 0:189� 0:054. In this region the expo-
nent 6 ¼ 1. In the high-T region, 6 ¼ 6.

Again, in quasiparticle model [55,57], the relaxation
time reads

	�1ðTÞ ¼ a�
32�2

TG4ðTÞ ln
�
a��

G2ðTÞ
�
; (49)

where a� ¼ 6:8 [57]. The results are drawn in bottom panel

of Fig. 11. Fitting of these results leads to

	ðTÞ ¼ �1 ln

�
��2T � �3

�4

�
�5 �6

T�7
; (50)

where �1 ¼ 2:362� 1:318, �2 ¼ �0:022� 0:056, �3 ¼
�3:176� 1:05, �4 ¼ 0:435� 0:126, �5¼2:362�0:318,
�6 ¼ 3, and �7 ¼ 1:25� 0:12.

From the two expressions (48) and (50), it is obvious that
the barotropic relations of 
 and 	 are related to each other.
Such a relation has been modeled by the projection opera-
tor method [59] as

	 ¼ 

T

ð13 � c2sÞ � 2
9 ð�� 3pÞ : (51)

Furthermore, the bulk stress is to be related to the distri-
bution function of relaxation time [60]. Such a dependence
has to follow the causality principle and fits perfectly with
the laws of thermodynamics [61]. The speed of sound c2s ¼
@p=@�, can be taken from the lattice QCD simulations
[53]. The results of c2sðTÞ are given in Fig. 12. Below Tc,

the lattice results show a small peak. Remarkable work has
been devoted to accurate its location and altitude. The
results from the hadron resonance gas model are given,
as well. Although the appearance of the peak, the disagree-
ment is not to be neglected. With reference to the restricted
causality principle, the nonmonotonic behavior of c2s below
Tc would be explained in the light of:
(i) baryon and strange degrees of freedom which would

play an essential role in reproducing c2sðT;�bÞ,
where �b is the baryo-chemical potential,
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FIG. 11 (color online). The top panel depicts the dependence
of the bulk viscosity �ðTÞ on the temperature T as deduced from
the quasiparticle model (symbols) [55,57]. The dotted curve
gives the fitting of results related to the hadronic phase. The
fitting of the results in the partonic phase is given by the dashed
curve, Eq. (48). The two regions meet at Tc � 270 MeV.
Amazingly, this value finds its root in lattice QCD. The
quenched lattice QCD calculations, where the quark masses
are supposed to be very heavy, predict that the critical tempera-
ture separating hadrons from QGP has the same value. In bottom
panel, relaxation times 	 is drawn against T in MeV units. The
solid curve gives the fitting according to Eq. (50). Again, there
are two separate regions. In the first one, 	 raises with increasing
T. While, in the second region, 	 decreases with increasing T.
Such a nonmonotonic behavior is characterized at Tc �
270 MeV.
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(ii) the interpolation of both entropy sðT;�bÞ and spe-
cific heat cVðT;�bÞ which has been suggested to
partly explain nonmonotonic behavior below Tc,

(iii) the condition(s) deriving the chemical and thermal
freeze-out which would enlighten such a behavior,

(iv) the interactions between the constituents of the
hadronic phase are conjectured which would be
able to explain the nonmonotonic entropy and spe-
cific heat production, and

(v) the time-varying equation of state in the hadronic
phase which refers to out-of-equilibrium processes,
while their modification in thermal and dense matter
would refer to symmetry changes.

B. Bulk Viscosity in the hadronic phase

The treatment of bulk viscosity in Hagedorn fluid has
been studied in Ref. [39]. Such a fluid is conjectured to be
composed of hadrons and resonances with masses m<
2 GeV. The treatment is based on the relativistic kinetic
theory formulated under the relaxation time approxima-
tion. The in-medium thermal effects on bulk (and shear)
viscosity and the averaged relaxation time with and with-
out the excluded-volume approach are deduced. It has been
suggested that the dynamics of the heavy-ion collisions,
the nonequilibrium thermodynamics and the cosmological
models, require thermo- and hydrodynamic equation(s) of
state. When assuming vanishing chemical potential and the
heat conductivity, the bulk viscosity in thermal medium
reads


ðTÞ¼ g

2�2

	

T

X
i

�ðmiÞ
Z 1

0
n0ð1þn0Þ

�
c2s"

2
i �

1

3
~p2

�
2
p2dp;

(52)

where �ðmiÞ is the Hagedorn mass spectrum �ðmÞ, which
implies growth of the hadron mass spectrum with increas-
ing the resonance masses.

�ðmÞ ¼ Aðm2
0 þm2Þk=4 expðm=THÞ; (53)

with k ¼ �5, A ¼ 0:5 GeV3=2, m0 ¼ 0:5 GeV, and TH ¼
0:195 GeV. The number density n0 is related to the devia-
tion of energy-momentum tensor from its local equilibrium
�T��. Such a deviation is corresponding to the difference
between the distribution function near and at equilibrium,
�n ¼ n� n0. The latter can be determined by the relaxa-
tion time approximation with vanishing external and self-
consistent forces [62,63]

�nðp; TÞ ¼ �	ðTÞ p�

~p � ~u @�n0ðp; TÞ: (54)

The nonequilibrium number density nðp; TÞ is to be
decomposed using the relaxation time approach into n ¼
n0 þ 	n1 þ � � � . Alternatively, as nðp; TÞ embeds the
1st-rank tensor u, �T�� can be decomposed into u [62]
in order to deduce its spatial components.
The relaxation time depends on the relative cross

section as

	ðTÞ ¼ 1

nfðTÞhvðTÞ�ðTÞi ; (55)

where vðTÞ and nfðTÞ is the relative velocity of two

particles in case of binary collision and the density of
each of the two species, respectively. The thermal-
averaged transport rate or cross section is hvðTÞ�ðTÞi.
The ratio of bulk to shear viscosity, 
=�, can be related

to the speed of sound c2s in a gas composed of massless
pions. Apparently, there are essential differences between
this system and the Hagedorn fluid. According to [64],
the ratio of 
=� in N ¼ 2� plasma is conjectured to
remain finite across the second-order phase transition. In
Hagedorn fluid, the system is assumed to be drifted away
from equilibrium and it should relax after a characteristic
time 	. Should we implement a phase transition in
Hagedorn fluid, then 	 / 
z, where z is the critical expo-
nents, which likely diverges near Tc.

C. Deconfinement and chiral phase transitions
(crossover) in lattice QCD simulations

Remarkable advances have been made in studying the
equilibrium properties of the phase transitions. Obviously,
the phase transition is coupled with symmetry breaking
and out-of-equilibrium. Therefore, it is natural to turn our
attention to the consequences when the system is enforced
to go through an out-of-equilibrium phase transition.
Thermodynamically, the first- and second-order phase
transitions are described by continuous first and second
derivative of the free energy, respectively. The infinite
order phase transition is also continuous. But it breaks
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FIG. 12 (color online). The speed of sound c2s ¼ @p=@� is
drawn versus T in the physical units. The symbols represent the
results from lattice QCD calculations [53], using p4 action and
temporal size N	 ¼ 8. Below Tc, results from the hadron reso-
nance gas model are given (solid curve on the left). The other
two curves are fittings for lattice QCD data.
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no symmetry. A famous example for it is the Kosterlitz-
Thouless transition in the two-dimensional XY model [65].
The crossover phase transition of lattice QCD simulations
is likely a continuous one. An out-of-equilibrium state is
reached when the system in deviated from its equilibrium
state by applying an instantaneous perturbation. The sys-
tem will relax to its equilibrium state by dissipating the
energy transferred during the transition [66]. Relating the
amplitude of this dissipation to the amplitude of fluctua-
tions in equilibrium dates back to Einstein’s work on the
Brownian motion in 1905. Lars Onsager established a
hypothesis that the relaxation of a macroscopic nonequi-
librium perturbation follows the same laws which govern
the dynamics of fluctuations in equilibrium systems. In
other words, the regression of microscopic thermal fluctu-
ations at equilibrium follows the macroscopic law of
relaxation of small nonequilibrium disturbances [67].

The lattice QCD simulations turn out to be an accurate
tool to study—among others—the thermodynamics of the
hadronic and partonic matter up to temperatures of couple
Tc, the critical temperature Tc [26–32]. For two quark
flavors (nf ¼ 2), the phase transition is second order or a

rapid crossover. Tc ’ 173� 8 MeV. For nf ¼ 3, the phase

transition is first order and Tc ’ 154� 8 MeV. For nf ¼
2þ 1, the transition is again crossover and Tc ’ 173�
8 MeV. For the pure gauge theory, Tc ’ 271� 2 MeV and
the phase transition is first order. In all these lattice QCD
simulations, the quark masses are heavier than their physi-
cal values. At physical masses, the critical temperature for
nf ¼ 2þ 1 is ’ 200 MeV. Apparently, we conclude that

the order of the deconfinement phase transition can be
either first, or second or crossover (infinite). It depends
on the quark flavors and their masses. The extreme con-
ditions in the early universe likely affect the properties of
the hadronic and partonic matter.

The chiral phase transition is assumed to accompany the
deconfinement one, especially at vanishing chemical po-
tential. It is expected that the restoration of the chiral
symmetry breaking takes place in full-perturbative and
nonperturbative QCD at high temperatures, if the matter
is assumed to be exclusively built of light and strange
quarks [68]. In perturbative QCD, the chiral symmetry is
valid for massless quarks. It is entirely broken in the
hadronic phase. It not yet completely clear what is the
order of phase transition between hadronic and partonic
QCD phases when the broken symmetry is restored at finite
temperatures and densities. Different lattice QCD simula-
tions, mainly referring to chiral condensate and chiral
susceptibilities [69] indicate that the chiral phase transition
is of the second order at vanishing chemical potential:

SU ðnfÞl � SUðnfÞr ! SUðnfÞV: (56)

The chiral condensate vanishes at the limit mq ! 0 [70].

Below Tc, the chiral condensate entirely vanishes, as well.
It is finite above Tc,

hc �c i ¼ � T

V

@

@mq

lnZ; (57)

where lnZ is the partition function describing the system.
The chiral perturbation theory proved to be a very impor-
tant method in determining some essential observables in
QCD, which are dominated at low temperature, such as the
masses of pseudoscalar mesons, their decay constants and
the chiral observables. It provides an explanation why
pseudoscalar mesons are very light. The Goldstone theo-
rem states that for each generator of a spontaneously
broken symmetry, there exists a massless Goldstone boson
� with spin 0, and with symmetry properties that are
related to those of the symmetry transformation. The
Goldstone bosons of the chiral perturbation theory are
just the pseudoscalar mesons. This can be utilized as a
signature for the phase transition.

VI. DYNAMICS OF THE BULK VISCOUS
QUARK-GLUON PLASMA

FILLED UNIVERSE

In the following we consider the cosmological evolution
of the viscous quark-gluon plasma filling the Universe in
the framework of both Eckart and the full causal ap-
proaches to dissipative processes.

A. Evolution of the hubble parameter in
the eckart model

Substituting the barotropic expressions (43), (45), and
(48) in Eq. (11) and by assuming for the bulk viscous
pressure the Eckart relation, given by Eq. (10), we obtain
for the evolution of the Hubble parameter the equation
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FIG. 13 (color online). The comoving time t is drawn (solid
curve) in dependence on the Hubble parameter H, Eq. (60). The
background fluid is characterized by Eckart theory. The dotted
curve gives the results when viscous QGP equation of state is
implemented [34–38,71,72]. The dashed curve shows the results
when the background geometry is assumed to be filled with an
ideal gas. The Planck scale is given in physics units.
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_Hþ 3

2A

�
AH2 þ �1A

�2H2�2 � 3 ln

�
�2A

�3H2�3 � 1

2

�

� ð3 þ 4ð�2A
�3H2�3 � 5Þ6ÞH

�
¼ 0; (58)

where A ¼ 3=ð8�GÞ. As given in the introduction,
the Planck units are given by this parameter, A ¼
1:778� 1037 GeV2. This differential equation can be
solved, analytically, when assuming that

H2�3 ¼ ð1 þ 2Þ=�2A
�3 : (59)

Then, in terms of H, the comoving time reads

t¼2A
ln½�Að1þ�2�3�24Þþ3ð3�45Þ=H�

9ð3�45Þ : (60)

Figure 13 shows the dependence of t on H. It describes a
universe, where its background fluid is characterized by
Eckart theory. The three curves differentiate between dif-
ferent types of the background matter. A discussion about
the effect of background matter is given in Sec. VII A. The
collision-free and nonviscous background matter is given
by the dashed curve. Solid and dotted curves describe the

t�H relation when the background geometry is filled
with viscous hadron-QGP and nonviscous QGP, respec-
tively. At small H values, there are obvious differences
between the latter types of matter and between them and
the ideal matter. At large H values, the comoving time
behaves very smooth withH, although hadron-QGP results
in larger t than QGP. In both of them, t is larger than in
ideal matter.

B. Evolution of the hubble parameter in the full
causal approach

Comparing Eq. (51) with the expressions (48) and (50)
makes it quite apparent to have a barotropic expression for
the relaxation time [41]

	 ¼ 
=�; (61)

i.e., the relaxation coefficient for the transient bulk viscous
effect is referred to as the relaxation time.
With the use of Eqs. (43), (45), (48), and (13), respec-

tively, we obtain the following equation describing the
cosmological evolution of the Hubble parameter H:

€Hþ
��
7

2
� 1

2�
� 3�1

4�

�
þ 3

2�

��
43 þ �24

ffiffiffiffi
6

�
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H� 445
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��2

ffiffiffi
6
�

q
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���1
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�
H _H� 1
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4
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ffiffiffiffi
6

�
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�
ln

��2

ffiffiffi
6
�

q
H � 41

42

���1
H4 ¼ 0: (62)

In obtaining this equation we have introduced a number of very tiny approximations. To the exponents �2, �3, and 6 we
have assigned the values, 1, 1=2, and 1, respectively. In order to derive an analytical solution for this Abel differential
equation, we follow the procedure given in [37,71]. After some Algebra, it ends up with these two functions,

gðHÞ ¼ � 4�H�1�1=4�

14�� 2� 3�1 þ 4�=f½43 þ �24

ffiffiffiffiffiffiffiffiffi
6=�

p
H � 445� ln½ð�2

ffiffiffiffiffiffiffiffiffi
6=�

p
H� 41Þ=42�g

; (63)

zðHÞ ¼ H1�1=4�

ð4�� 1Þð8�� 1Þ�2
2

2
4

� f4�ð1� 8�Þ3 þ 4�ð8�� 1Þ½45 þ ð3 � 45Þ�

þ �24ð4�� 1Þ½ ffiffiffiffiffiffiffi
6�

p þ ð14�� 2� 3�1Þ�24�Hg; (64)

which are plotted in Fig. 14. They play an essential role in deriving an analytical solution for Eq. (14). Approximating the
parametric dependence of gðHÞ on zðHÞ, Fig. 15, we get the linear dependence,

gðzÞ � 0:192z: (65)

Then, from the definition of �, we simply derive

� ¼ �H�1=4� _H: (66)

In order to reduce this expression to the canonical equation of Abel type, we use the relation � ¼ z=P . Then from
Eqs. (66) and (64), we obtain a first-order differential equation for H,

P _H¼ ð4��1Þð8��1Þ�2
2

2
4

Hf4�ð1�8�Þ3þ4�ð8��1Þ½45þð3�45Þ�þ�24ð4��1Þ½ ffiffiffiffiffiffiffi
6�

p þð14��2�3�1Þ�24�Hg ; (67)
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where P is a free parameter. The solution simply reads

t ¼ ð8�� 1Þ�24P

½ ffiffiffiffiffiffiffi
6�

p þ ð14�� 3�1 � 2Þ�24�H
: (68)

The dependence of the cosmological comoving time t on
the Hubble parameter H is graphically illustrated in
Fig. 16. It is apparent that tðHÞ is monotonic. The same
dependence has been obtained, when assuming that the
background matter is characterized as an ideal gas, t ¼
2=ð3HÞ. All this is summarized in Fig. 16. Solid, dashed,
and dotted curves represent the results for viscous hadron-
QGP, viscous QGP, and ideal (nonviscous and collision-
less) matter, respectively.

VII. COSMOLOGICAL IMPLICATIONS

Assuming that the background geometry is filled with
Eckart relativistic viscous fluid, the comoving time t is
given as a function of the Hubble parameter H in
Eq. (60) and drawn in Fig. 13 (solid curve). The dotted
curve gives the results when viscous QGP EoS is imple-
mented [34–38,71,72]. The dashed curve draws the results
when the background geometry is assumed to be filled with
an ideal gas. In Fig. 16, another t-H dependence is obtained
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FIG. 14 (color online). Parametric functions given in Eqs. (63) and (64) are depicted in dependence on H. This illustration gives an
indication about the dependence of the function g on the independent functional parameter z. Such a dependence is given in Fig. 15.
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FIG. 15 (color online). The parametric dependence of the function g on the independent functional parameter z. Apparently, it has a
nonmonotonic behavior. At H values, where this study is valid, the dependence is apparently linear, gðzÞ / z.
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FIG. 16 (color online). The cosmological comoving time t vs
Hubble parameter H, Eq. (68), is graphically illustrated. The
treatment of background matter is done by Israel-Stewart theory.
The solid curve represents the results of present work, where the
background matter is assumed to be characterized by viscous
hadron and QGP. The dotted and dashed curves give the results
when viscous QGP and an ideal (collisionless and nonviscous)
gas, respectively, are assumed to fill the background geometry.
Planck scale is given in physical units.
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when assuming that the cosmological background is filled
with Israel-Stewart relativistic viscous fluid. The solid
curve represents the results of present work, in which the
background matter is assumed to be characterized by vis-
cous hadrons and QGP i.e., including phase transition(s).
The same treatment is applied for viscous QGP and ideal
gas. The results are drawn by dotted and dashed curves,
respectively.

Before discussing the potential cosmological implica-
tions, it is in order now to elaborate essential aspects. We
start with the phase transition in the early universe. The
first-order phase transition has been discussed in Sec. III.
Section V was devoted to discuss the phase transition(s) as
measured in lattice QCD simulations. Accordingly, we
conclude that the order of the confinement-deconfinement
phase transition depends among others on the effective
degrees of freedom and the matter content (quark flavors,
etc.) The results given in Figs. 13 and 16 illustrate the
effects of degrees of freedom (ideal gas, QGP, and hadron-
QGP matter) and in indirect way the phase transition (QGP
matter above Tc and hadron-QGP matter over a wide range
of temperatures). The evolution of the Hubble parameter
obviously depends on all these factors. This might have a
direct cosmological implication that our picture about the
expansion of the Universe has to be revised, accordingly.

Other cosmological implications might arise as a con-
sequence of the phase transition itself. The first-order
phase transition is to be characterized by a sudden change
in the symmetry. It exhibits a discontinuity in the first
derivative of the free energy with respect to some thermo-
dynamic variable. In the cosmological context, such a
transition is accompanied by bubble nucleation [73]. In
light of this, the Universe is conjectured to go from a
metastable state to a new phase, a true vacuum state
through the nucleation of bubbles of the new state [73].
Implementing this model to the hadron-QGP transition
makes it possible to suggest a scenario, in which the
Universe starts from QGP state and ends up in the hadronic
state through the nucleation of hadrons. Depending on the
kinematics of the bubble nucleation, the Universe might or
might not ’’recover’’ from this type of phase transition, and
its relics are left behind i.e., relic QGP objects. The latter
would survive for a very long time. The abundance and the
size of the quark nuggets have been discussed in [21].
Objects with a quark content ranging from 10�2 to 10M�
could have been formed during the cosmological phase
transition.

Furthermore, a significant amount of entropy production
is to be released during such a process, so that at vanishing
chemical potential s ¼ ðc2s þ 1Þ�=T. The density fluctua-
tions are assumed to be amplified by vanishing speed of
sound during the quark-hadron phase transition, Fig. 12.
The lattice QCD and hadron resonance gas calculations
show that the speed of sound reaches a minimum value,
c2s ’ 0:1, at Tc. On the other hand, the density fluctuations

could produce QGP lumps decoupled from the expansion,
which rapidly transform into quark nuggets. Typical dis-
tance between bubble centers is conjectured to be of the
order of a few meters. It is worthwhile to mention here that
the resulting baryon inhomogeneities may affect the pri-
mordial nucleosynthesis. Such a cosmological conse-
quence can be observed. The origin of inhomogeneities
in the matter distribution, which are assumed to be respon-
sible for the later formation of galaxies, cannot be ex-
plained by density fluctuations alone. After fixing the
baryon number, the appearance of these fluctuations is
almost purely adiabatic. Any departure from adiabaticity
falling off is inversely proportional to the mass of the
perturbation [74]. This will be elaborated in next
paragraph.
At the phase transition, the scale of the cosmological

QCD transition is assumed to be given by the Hubble
radius RH. Quantitatively, RH ’ mPl=T

2
c ’ 10 km. The

mass inside the Hubble volume is ’ 1M�. At the QCD
phase transition, the expansion time scale is 10�5 s, which
is very large in comparison with the time scale of QCD,
1 fm=c ’ 10�23 s. Even the rate of weak interactions
seems to exceed the Hubble rate by a factor of 107.
Therefore, we conclude that photons (radiation), leptons,
quarks (fermions), and gluons (bosons) are lightly coupled
and may be described by an adiabatically expanding fluid
[40,72], as the transition takes place in an extremely short
time.
The current heavy-ion experiments program, LHC,

seems to be very close to probe early eras of the
Universe. It seems to produce similar antiparticle and
particle, when not entirely identical [75]. This can be taken
as another supportive indicator for utilizing EoS deduced
from heavy-ion collisions and/or lattice QCD calculations.
It seems that the observed matter-antimatter asymmetry
can be explained without recourse to the hypothesis of
specific initial conditions [74].

A. Different types of background matter

The different phase transition(s) likely change the sym-
metries and thereupon different phases or types of matter
are to be expected. The dynamics of the Universe during
the fist-order phase transition from QGP to hadrons has
been discussed in Sec. IV. Such a transition is assumed to
go over three phases defined by various symmetries. Prior
to the phase transition i.e., partonic (QGP) symmetry, the
evolution of some cosmological parameters (H, a, and �)
have been studied by using the Bianchi identity. To have an
analytical insight into the evolution, T corrections are
neglected in the self-interaction potential. The second
phase deals with the dynamics of the Universe during the
phase transition i.e., mixed phase symmetry. Here, T and p
are assumed to remain unchanged. The entropy s and
enthalpy W remain conserved, as well. The third phase is
the one in which the dynamics of the Universe is studied

A. TAWFIK AND T. HARKO PHYSICAL REVIEW D 85, 084032 (2012)

084032-16



post quark-hadron phase transition era (hadronic symme-
try). First, we start with the time evolution of T. Then, we
estimate the comoving time t. Again, the Bianchi identity
helps us in expressing the scale factor a and the Hubble
parameter H. The time evolution of the hadron fraction h
describes the conversion process of QGP into hadrons.
Therefore, it can be taken as a parameter describing the
phase transition itself.

Again, in this type of transition (a first-order phase
transition through hadron nucleation), the numerical esti-
mation of the cosmological parameters gives a clear in-
dication that their time evolution varies from phase to
another. In the QGP phase, the scale factor a normalized
to a0 is much smaller than that in the hadronic phase
(compare Fig. 1 with the top panel in Fig. 6). When study-
ing the Hubble parameter H, the T dependence is just the
opposite of aðTÞ (compare Fig. 3 with the bottom panel in
Fig. 6).

This behavior can be compared with the case of another
types of phase transitions, crossover. In Figs. 13 and 16, we
notice that the time evolution ofH also depends on the type
of matter filling the background geometry. If it is filled with
QGP, the values of H are relatively large. It is relatively
small, if the background geometry is filled with quarks and
hadrons, especially when crossover phase transition is
allowed to take place. Consequently, it is likely to predict
that H in the hadron era is smaller than its value in the
previous eras: mixed phase of partons, hadrons, and QGP.

It seems to be in order now to highlight the differences
between viscous and nonviscous background matter. By
eliminating the dynamics controlling the phase transition,
for instance, we assume that the background geometry is
only filled with QGP. For simplicity, we utilize the Eckart
theory. A comparison is illustrated in Fig. 17. We notice that
the viscosity seems to drastically slow down the evolution
of the Hubble parameter. Should this result be confirmed, it
would mean that the whole picture about the evolution of

early universe has to be revised. As a prompt consequence,
one would expect a considerable delay in all phases post to
QGP era. In order to make an estimation for this effect,
other initial conditions have to be taken into consideration,
for example, dynamics of phase transition(s), interaction(s),
out-of-equilibrium processes, etc.

VIII. DISCUSSIONS AND FINAL REMARKS

In natural units, ℏ ¼ c ¼ kB ¼ 1, all expressions are
given the Planck mass mpl. We consider the cosmic evo-

lution of the early universe in the regime of confinement
QCD phase transition taking finite bulk viscous effects into
account. Thereby, it is assumed that the bulk thermody-
namic quantities are dominated by the strongly interacting
matter component. Two cases, a first-order phase transition
scenario and an analytic crossover transition, are consid-
ered. In this respect, the present work continues a
previous series [34–40,71,72] in several aspects. Refined
equation(s) of state based on newer lattice QCD results are
considered. Different bulk viscosity expressions based on
quasiparticle model are used. Finite cosmological constant
has been utilized in Ref. [36]. Moreover, the influence that
a first-order phase transition (neglecting viscous effects) is
elaborated in the present work.
Many details of QCD phase transition(s) are not yet

conclusively understood. Even the order of transition is
still a matter of debate. An advance in understanding the
numerical values of the QCD coupling constants would be
very helpful in obtaining accurate cosmological conclu-
sions [38]. Such an advance may also provide a powerful
method for testing on a cosmological scale the theoretical
predictions of the brane world models and the possible
existence of the extra dimensions. Furthermore, the critical
temperature Tc has been a subject of different lattice QCD
calculations [26–32]. In addition to this, it is still an open
question whether both deconfinement and chiral phase
transitions take place at the same Tc.
The cosmological behavior in first-order phase transition

can be characterized as follows. At the critical temperature,
the energy � and entropy s densities decrease, suddenly. At
fixed T and constant p, both quantities have the same rate.
Depending on the symmetries, the transition is assumed to
go through three phases. Prior to the phase transition i.e.,
partonic (QGP) symmetry, the evolution of some cosmo-
logical parameters (H, a, and �) have been studied by
using Bianchi identity. To have an analytical insight into
the evolution, T corrections are neglected in the self-
interaction potential. The second phase is the one during
the phase transition i.e., mixed phase symmetry. Here, T
and p are assumed to remain unchanged. Also the entropy
s and enthalpyW remain conserved. The third phase is the
one in which the dynamics of the Universe is studied post
quark-hadron phase transition era i.e., hadronic symmetry.
The Bianchi identity helps in expressing scale factor a and
Hubble parameter H. The behavior of a and H with the
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FIG. 17 (color online). The t�H relation in Eckart relativistic
QGP fluid. Solid and dotted curves represent viscous and non-
viscous QGP fluid, respectively. It is obvious that the viscosity
slows down the evolution of the Hubble parameter.
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cosmological comoving times follows the standard cosmo-
logical model. Both quantities are expressed in terms of the
fraction of matter. The latter gives an estimation for had-
rons that are formed inside QGP. The time evolution of the
hadron fraction describes the conversion process of QGP
into hadrons. Therefore, it can be taken as a parameter
describing the phase transition itself. A quantitative com-
parison between the evolution of scale factor a in the three
phases show that a increases while moving from quarks to
hadrons over the mixed phase. The values of the bag
pressure are reflected in these calculations. In all phases
we find that increasing the bag pressure raises the value of
the scale factor.

Taking into account the recent lattice QCD results, we
find that the order of the phase transition can be either
continuous or discontinuous. It seems to depend on the
quark flavors and their masses. The extreme conditions in
the early universe, i.e., high temperatures, high densities,
and out-of-thermal and out-of-chemical equilibrium,
likely affect the properties of the partonic matter and
control the dynamics of the phase transition. The equation
of state deduced from lattice QCD calculations (and
quasiparticle model) plays a very essential role in present
work. It sets the validity of the entire treatment. The high
temperatures (energies), at which the strong coupling �s

nearly vanishes, defines the upper end of limitation. The
lower one is characterized by the hadronic era. When
applying Eckart theory, we find that the evolution of the
Hubble parameter follows the same line defined by the

standard cosmological model. The comparison with vari-
ous types of matter shows that the comoving time behaves
very smooth with H, although viscous hadron-QGP re-
sults in larger t than in viscous QGP. In both of them, t
seems to be larger than in the collision-free and non-
viscous ideal matter. Israel-Stewart theory is assumed to
solve the constrains of Eckart theory. Therefore, reliable
results are to be expected. In order to make a qualitative
estimation for the effect of viscosity, we compare the time
evolution of the Hubble parameter in a viscous and non-
viscous background matter. Apparently, we find that the
viscosity drastically slows down the evolution. Should
this result be confirmed, the whole picture about the
evolution of early universe has to be revised, accordingly.
In order to make an estimation for this effect, the
dynamics of phase transition(s), interaction(s), and out-
of-equilibrium and dissipative processes should be taken
into account. The effect of the cosmological constant on
the anisotropy and homogeneity and the cosmological
density perturbations in the early universe would play
an essential role in characterizing the evolution of the
cosmological parameters as well.
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