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1 We discuss the propagation of gravitational waves in a recently discussed class of theories containing

N � 2 metric tensors and a corresponding number of standard model copies. Using the formalism of

gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed

of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of

gravitational waves may exist, depending on the parameters entering the field equations. This corresponds

to E(2) representations N2, N3, III5 and II6. We finally apply our general discussion to a recently presented

concrete multimetric gravity model and show that it is of class N2, i.e., it allows only two tensor

polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests

of multimetric gravity theories using the upcoming gravitational wave experiments.

DOI: 10.1103/PhysRevD.85.084024 PACS numbers: 04.50.Kd, 04.30.Nk

I. MOTIVATION

This article continues a series of articles [1–3] dis-
cussing gravity theories with N � 2 metric tensors gI

and a corresponding number of standard model copies
�I, where each copy of the standard model couples only
to its own metric tensor and the interaction between the
different standard model copies is mediated solely by an
interaction between the different metrics. We are par-
ticularly interested in theories that exhibit repulsive
gravitational forces between different standard model
copies in the Newtonian limit which are of equal
strength compared to the attractive gravitational force
within each standard model copy. While this is not
possible [1] for N ¼ 2, it may serve as a potential
explanation for the observed late-time acceleration of
the universe [2] for N � 3 and is consistent with high-
precision solar system experiments at the post-
Newtonian level [3]. The theories we consider satisfy
the following assumptions:

(i) The action is of the form

S ¼ SG½g1; . . . ; gN� þ
XN
I¼1

SM½gI;�I�; (1)

where SG is the gravitational part of the action and
SM is the standard model action.
This assumption guarantees that each standard
model copy�I couples only to its own metric tensor
gI, so that the standard model fields satisfy the same
field equations as they would in a single-metric
theory. It further excludes any nongravitational in-
teraction between the different standard model cop-
ies, which implies that the different standard model
copies appear mutually dark.

(ii) The gravitational field equations are obtained by
variation with respect to the metrics g1ab . . .g

N
ab,

and so are a set of symmetric two-tensor equations
of the form Kab ¼ 8�GNTab.
This employs the well-known principle of stationary
action. It follows that the number of field equations
equals the number of field components.

(iii) The geometry tensor Kab contains at most second
derivatives of the metrics, which can be achieved
by a suitable choice of the gravitational action.
This assumption is one of mathematical simplicity
and guarantees a reasonable amount of technical
control over the partial differential field equations.
It will be used to restrict the possible terms in the
linearized field equations of our theory.

(iv) The field equations are symmetric with respect to
arbitrary permutations of the sectors (gI, �I).
This is another assumption made for simplicity; it
employs the Copernican principle in the sense that
the same laws of nature should hold within each
sector. It also follows that the interaction between
the different sectors will satisfy Newton’s principle
that action equals reaction for the gravitational
forces in the Newtonian limit.

(v) The vacuum solution is given by a set of flat metric
gIab ¼ �ab.

Cosmological constants are excluded because we
are interested in multimetric gravity theories in
which the accelerating universe is modeled by a
repulsive interaction between different standard
model copies, as we have shown in [2]. Further
assuming a simultaneous maximal set of Killing
symmetries for all metrics yields the stated vacuum
solution.

The aim of this article is to examine the propagation
of gravitational waves in the weak field limit of multi-
metric gravity theories satisfying the aforementioned*manuel.hohmann@desy.de
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assumptions. Note that in addition to the recently dis-
cussed theories with N � 3 this also includes bimetric
gravity theories such as [4–6]; see [7] for an overview
of bimetric theories and a discussion of their weak field
limits. In particular, we aim to calculate two properties
of gravitational waves which are expected to be accessible
by the upcoming detector experiments. One of these prop-
erties is the polarization of gravitational waves. Metric
gravity theories can be classified by the presence of up to
six polarizations in terms of representations of the little
group E(2), which may be distinguished by measuring the
electric components R0�0� of the Riemann tensor [8,9].

Although gravitational waves have not been observed yet,
the sensitivity of present and future experiments is contin-
uously being improved, and it is expected that a sensitivity
sufficient for the detection of gravitational waves will be
reached within the next years, hence providing a valuable
instrument for testing gravity theories [10,11].

The other property is the propagation velocity vg, which

equals the speed of light in general relativity, but may
differ significantly in multimetric gravity theories contain-
ing massive gravitons [12,13]. Theories of this type may be
tested by comparing the arrival times of gravitational
radiation and light from distant supernovae [14], taking
into account the possibility of a different Shapiro delay for
both types of radiation [15,16]. Apart from the direct
observation of gravitational waves, bounds on vg can

also be obtained through indirect observations. An upper
bound on c� vg is placed by the observation of high-

energy cosmic rays: massive particles whose velocity
exceeds vg should be decelerated due to the emission of

gravitational bremsstrahlung [17]. Another bound on
c� vg can be obtained from pulsar timing: if vg < c, the

interaction between electromagnetic and gravitational ra-
diation should influence the arrival times of radio signals in
a gravitational wave background [18,19].

A complete calculation of the aforementioned effects
such as the Shapiro delay of both light and gravitational
waves in cosmic gravitational fields or the mutual interac-
tion between both types of radiation requires a treatment
based on the full nonlinear field equations of a concrete
multimetric gravity theory. Since it is the aim of this article
to derive the general properties of gravitational waves for a
large class of multimetric gravity theories, we will not
perform this calculation here. Instead, we will make use
of assumption (v) and consider the propagation of gravi-
tational waves in a flat background metric. We then com-
pare their propagation velocity vg to the fundamental

velocity c which equals the physical speed of light in this
background according to assumption (i).

The outline of this article is as follows. In Sec. II we will
determine the propagation velocity of gravitational waves
in a flat Minkowski background. For this purpose we will
apply the gauge-invariant linear perturbation formalism
known from cosmological perturbation analysis [20–22]

to the most general linearized vacuum field equations of
multimetric gravity in Sec. II A. This formalism allows us
to separate the physical degrees of freedom from pure
gauge quantities. In Sec. II B we will discuss the role of
the Bianchi identities in the class of theories we consider.
We will then calculate the wavelike solutions of the line-
arized vacuum field equations in subsection II C and show
that all wavelike solutions are null waves. In Sec. III we
will use the Newman-Penrose formalism [23] to determine
the allowed polarizations. The findings of Secs. II and III
will then be applied to two concrete example theories in
Sec. IV. We will conclude with a discussion in Sec. V.

II. PROPAGATION VELOCITY

In this section we will calculate the propagation velocity
vg of gravitational waves within the class of multimetric

theories satisfying assumptions (i) to (v) stated in the
introduction. The starting point of our calculation will be
a perturbation ansatz around the vacuum solution, which is
a set of flat Minkowski metrics according to assumption
(v). This ansatz leads us to the most general linearized
multimetric vacuum field equations satisfying our assump-
tions. We will employ the gauge-invariant formalism de-
tailed in [1] in order to determine the physical degrees of
freedom. It will turn out that the only wavelike solutions of
the gauge-invariant field equations are null waves.
From assumption (i) it follows further that light rays

constituted by the electromagnetic field of one standard
model copy �I follow the lightlike geodesics of the cor-
responding metric gIab. The fact that we use the aforemen-

tioned perturbation ansatz allows us to conclude that these
geodesics are the lightlike directions of the Minkowski
background, up to higher order perturbations which we
neglect. Hence, we will conclude that all gravitational
waves propagate at the speed of light.

A. Gauge-invariant formalism

For the derivation presented in this section it is sufficient
to treat gravitational waves as a small perturbation of the
metrics around a vacuum solution of the field equations.
Making use of assumption (v), we thus use the perturbation
ansatz

gIab ¼ �ab þ hIab; (2)

where the components hIab are small, jhIabj � 1. Under this
condition the most general linearized vacuum field equa-
tions compatible with our assumptions (i)–(v) stated in the
introduction take the form [1]

0 ¼ Kab

¼ P � @p@ðahbÞp þQ �hhab þ R � @a@bh
þM � @p@qhpq�ab þ N �hh�ab; (3)
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where indices are raised with the flat metric � and
h ¼ �ab@a@b. The matrices P, Q, R, M, N are constant

parameters. Note that these parameter matrices are not
completely arbitrary within the class of theories we con-
sider, but are further restricted by our assumptions, as we
will show in the remainder of this section. It will turn out
that our assumptions do not uniquely fix the parameter
matrices. For any concrete multimetric gravity theory, their
values depend on the choice of the gravitational action SG
introduced in Eq. (1), and can be calculated by an explicit
linearization of the full nonlinear field equations. We will
give the values of the parameter matrices for two example
theories in Sec. IV.

We now apply the gauge-invariant linear perturbation
formalism known from cosmological perturbation analysis
[20–22] to the linearized field equations (3) in order to
determine the physical degrees of freedom. We only sketch
the procedure here; see [1] for full detail. First, we perform
a purely algebraic (1þ 3) split of the spacetime coordi-
nates xa ¼ ðx0; x�Þ into time and space, and correspond-
ingly decompose the metric perturbations hab and the
geometry tensors Kab. Second, we perform a differential
decomposition of the metric perturbations,

h 00 ¼ �2�; h0� ¼ @�~Bþ ~B�;

h�� ¼ �2c��� þ 24��
~Eþ 4@ð�~E�Þ þ 2~E��;

(4)

into four scalars �, c , ~B, ~E, two divergence-free (or

transverse) vectors ~B�, ~E� and one divergence-free,
trace-free tensor ~E��. Here 4�� ¼ @�@� � 1

3���4 de-

notes the trace-free second derivative. A similar decom-
position of the geometry tensor,

K 00; K0� ¼ @� ~W þ ~W�;

K�� ¼ 1
3Z��� þ4��

~Zþ 2@ð�~Z�Þ þ ~Z��;
(5)

shows that its scalar components K00, ~W, Z, ~Z depend only
on scalar components of the metrics, its transverse vector
components ~W�, ~Z� depend only on vector components,
and its transverse trace-free tensor components ~Z�� de-

pend only on tensor components. In other words, the scalar,
vector, and tensor components of the field equations de-
couple. In the next step we replace the components of the
metric perturbations by the potentials

I1 ¼ �þ @0~B� @20~E; I2 ¼ c þ 1
3 4 ~E;

I3 ¼ ~B; I4 ¼ ~E; I� ¼ ~B� � 2@0~E�;

I0� ¼ ~E�; I�� ¼ ~E��:

(6)

Using these quantities, we finally obtain the scalar
equations

K00 ¼ 2ðPþQþ RþMþ NÞ � @20I1 � 2ðQþ NÞ � 4I1 � 6ðRþ NÞ � @20I2 þ 2ðMþ 3NÞ � 4I2

þ 2ðPþQþ RþMþ NÞ � ð�@30I3 þ @40I4Þ þ ðPþ 2Qþ 2Mþ 2NÞ � @0 4 I3 þ 2ðR�QÞ � @20 4 I4

� 2ðMþ NÞ � 4 4 I4; (7a)

~W ¼ ðPþ 2RÞ � @0I1 � ðPþ 6RÞ � @0I2 � 1
2ð3Pþ 2Qþ 4RÞ � @20I3 þ 1

2ðPþ 2QÞ � 4I3

þ ðPþ 2RÞ � @0ð@20 þ4ÞI4; (7b)

Z ¼ �6ðMþ NÞ � @20I1 þ 2ðRþ 3NÞ � 4I1 þ 6ðQþ 3NÞ � @20I2 þ 2ðR�QÞ � @20 4 I4

� 2ðPþ 3Qþ 3Rþ 3Mþ 9NÞ � 4I2 þ 6ðMþ NÞ � ð@30I3 � @40I4Þ � ðPþ 2Rþ 6Mþ 6NÞ � @0 4 I3

þ 2ðPþQþ Rþ 3Mþ 3NÞ � 4 4 I4; (7c)

~Z ¼ 2R � I1 � 2ðPþ 3RÞ � I2 � ðPþ 2RÞ � @0I3 þ 2ðR�QÞ � @20I4 þ 2ðPþQþ RÞ � 4I4; (7d)

the vector equations

~W� ¼ �1
2ðPþ 2QÞ � ð@20I� � 2@0hI0�Þ þQ � 4I�; (8a)

~Z� ¼ �1
2P � @0I� þ ðPþ 2QÞ �hI0�; (8b)

and the tensor equations

~Z �� ¼ 2Q �hI��: (9)

The reason for this rewriting becomes apparent when we
determine the physical degrees of freedom. These are
linear combinations of the components of the metrics

which are invariant under gauge transformations. Since
the gravitational fields of our theory are a set of metric
tensors, the only gauge transformations we allow are
diffeomorphisms of the underlying manifold, as it is also
the case in general relativity. Any such gauge transforma-
tion is generated by a vector field � and simultaneously
changes all tensor fields F by their Lie derivatives, ��F ¼
L�F. Considering the special case F ¼ gI, we find that the
components of the metric perturbations transform accord-
ing to

��h
I
ab ¼ @a�b þ @b�a; (10)
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where �a ¼ �ab�
b. Note that this gauge freedom is more

restrictive than it would be for a set of N independent spin-
2 fields, where each field has its own set of gauge trans-
formations [3,24]. Since we further wish to keep the formal
structure of the perturbation ansatz (2), we only consider
gauge transformations in which the components �a are of
order OðhÞ. Applying the decomposition from Eq. (4) to
the vector field �a,

�0 ¼ �; �� ¼ @� ~�þ ~��; (11)

we obtain two scalars � and ~� and one divergence-free
vector ~��. These can be used to write the change of the
potentials (6) under gauge transformations in the form

��I
I
1 ¼ ��I

I
2 ¼ 0; ��I

I
3 ¼ @0 ~�þ �; ��I

I
4 ¼ ~�;

��I
I
� ¼ 0; ��I

0I
� ¼ 1

2
~��; ��I

I
�� ¼ 0: (12)

One can now immediately read off the gauge-invariant
quantities I1, I2, I�, and I��. Further, linear combinations
of the form cII

I
3, cII

I
4, and cII

0I
� (where summation over I is

implied) are gauge invariant if and only if the sum of the
coefficients cI vanishes. It thus makes sense to consider the
linearly related quantitiesI ¼ U � I, where the matrixU is
given by

UIJ ¼

8>>>><
>>>>:

1ffiffiffi
N

p if I ¼ 1 or J ¼ 1;

1þ 1ffiffiffi
N

p þ 1
1� ffiffiffi

N
p if I ¼ J > 1;

1
1� ffiffiffi

N
p otherwise:

(13)

One can easily check that the gauge-invariant degrees of
freedom are then given by II

1, I
I
2, I

I
�, I

I
�� and Ii

3, I
i
4,

I0i
�, where uppercase indices I; J; . . . run from 1 toN, while

lowercase indices i; j; . . . run from 2 to N. The remaining
quantities I1

3, I
1
4, I

01
� are pure gauge degrees of freedom

and correspond to the two scalars and the transverse vector
component of the diffeomorphism vector field �.

The choice of the basis transformation (13) has another
advantage. From assumption (iv) it follows that the field
equations must be invariant under arbitrary permutations of
the sectors. For the linearized vacuum field equations this
implies that the parameter matrices must be invariant under
simultaneous permutations of both indices, i.e., under
transformations of the form

OIJ � OKL�I
K�

J
L; (14)

for arbitrary permutation matrices �. It then follows that
the entries OIJ must be independent of the individual
values of the indices I, J, and they may only depend on
whether I and J are equal or not. This is the case if and only
if the parameter matrices are of the form

OIJ ¼ O� þ ðOþ �O�Þ�IJ (15)

with diagonal entries Oþ and off-diagonal entries O� for
O ¼ P, Q, R,M, N. An explicit calculation shows that the
matrix U simultaneously diagonalizes the parameter ma-

trices, so that

O ¼ U �O �U�1 ¼ diagðO1; O0; . . . ; O0Þ; (16)

where O0 ¼ Oþ �O� and O1 ¼ Oþ þ ðN � 1ÞO� are
the eigenvalues of O. Further introducing h

ab
¼ U � hab,

the most general linearized field equations can bewritten in
the equivalent form

0 ¼ Kab

¼ P � @p@ðahbÞp þQ �hh
ab

þR � @a@bh
þM � @p@qh

pq
�ab þN �hh�ab; (17)

where the parameter matrices P, Q, R, M, N are now

diagonal matrices of the form (16). Thus, the equations
decouple and we can write them as

0 ¼ K1
ab ¼ P1@

p@ðah1bÞp þQ1hh1ab þ R1@a@bh
1 þM1@

p@qh1pq�ab þ N1hh1�ab; (18a)

0 ¼ Ki
ab ¼ P0@

p@ðahibÞp þQ0hhiab þ R0@a@bh
i þM0@

p@qhipq�ab þ N0hhi�ab: (18b)

A similar decomposition can be applied to Eqs. (7)–(9) in
terms of the quantities I ¼ U � I. These equations are
invariant under gauge transformations if and only if they
can be expressed in terms of gauge-invariant quantities
only, i.e., they must not depend on the gauge-dependent
quantities I1

3, I
1
4 and I01

� . This is the case if and only if
the eigenvalues of the parameter matrices satisfy the
conditions

P1 þ 2Q1 ¼ P1 þ 2R1 ¼ M1 þ N1 ¼ 0; (19)

as we have shown explicitly in [1]. In the following we will
consider only multimetric theories which satisfy these
gauge invariance conditions.

B. Bianchi identities

In the preceding subsection we have shown that the

parameter matrices P, Q, R, M, N are significantly re-

stricted by the assumptions (i)–(v) stated in the introduc-

tion. In this subsection we will derive further restrictions

which originate from the Bianchi identities. These are

expected to hold since the theories we consider are derived

from an action according to assumption (i). Writing the

gravitational part SG½g1; . . . ; gN� of the action as an inte-

gral of the Lagrangian density L and demanding that it is

invariant under diffeomorphisms generated by an arbitrary

vector field � leads to the condition
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0 ¼ ��SG ¼ �2
Z

d4x
XN
I¼1

ffiffiffiffiffi
gI

q
rI

a

�
1ffiffiffiffiffi
gI

p �L
�gIab

�
gIbc�

c:

(20)

Using the perturbation ansatz (2) and the basis transforma-
tion (13) this reduces to the linearized Bianchi identity

0 ¼ @aK1
ab

¼
�
1
2P1 þQ1

�
h@ah1ab þ

�
1
2P1 þM1

�
@b@

p@qh1pq

þ ðR1 þ N1Þh@bh
1; (21)

which is a geometric identity. It then follows that the
parameters must satisfy the additional constraints

P1 ¼ �2Q1 ¼ �2M1; R1 ¼ �N1: (22)

Together with the gauge-invariance conditions (19) these
constraints restrict the eigenvalues P1, Q1, R1, M1, N1 of
the parameter matrices to only one free parameter, e.g., P1,
and the remaining parameters are determined as

P1 ¼ �2Q1 ¼ �2R1 ¼ �2M1 ¼ 2N1: (23)

Note that in the single-metric case, in which the parameter
matrices P, Q, R, M, N are replaced by their unique

eigenvalues P1, Q1, R1, M1, N1, this determines the line-
arized field equations of a single-metric theory to be iden-
tical to those of general relativity, up to a constant factor.

The situation is different for the remaining linear com-
binations hiab of the metric perturbations. For these we do

not obtain any constraints from the diffeomorphism-
invariance of the gravitational action, since they are gauge
invariants according to (10). However, we do obtain con-
straints from the fact that the matter action SM½gI;�I� for
each of the standard model copies is diffeomorphism
invariant and so the corresponding energy-momentum ten-
sors TI

ab are conserved. Since the field equations are of the

form Kab ¼ 8�GNTab according to assumption (ii), this
leads to the remaining linearized Bianchi identities

0 ¼ @aKi
ab

¼
�
1
2P0 þQ0

�
h@ahiab þ

�
1
2P0 þM0

�
@b@

p@qhipq

þ ðR0 þ N0Þh@bh
i; (24)

which must be satisfied by all solutions of the linearized
field equations (3). Note that in contrast to the Bianchi
identity (21), which follows from the diffeomorphism in-
variance of the gravitational action, these additional
Bianchi identities are in general not geometric identities,
and are not necessarily satisfied by arbitrary metric pertur-
bations. In order to satisfy (24) we are thus left with two
possibilities:

(1) The Bianchi identities (24) are geometric identities
and satisfied by arbitrary perturbations hiab of the

metric tensors.

This is the case if and only if the eigenvalues of the
parameter matrices satisfy the additional constraints

P0 ¼ �2Q0 ¼ �2M0; R0 ¼ �N0: (25)

It then follows that we are left with only three free
parameters, e.g., P1, P0, R0.

(2) The Bianchi identities (24) are not geometric iden-
tities and satisfied only by solutions of the gravita-
tional field equations.
In this case we do not obtain any additional
constraints on the parameter matrices. Note that
even in this less restrictive case the Bianchi identi-
ties (24) are implied by the gravitational field equa-
tions, taking into account that the source of the
gravitational field is given by the matter energy-
momentum tensors, which must be divergence-free
due to the diffeomorphism invariance of the matter
action. Thus, (24) must be satisfied by all solutions
of the gravitational field equations.

In the remainder of this article we will not assume that the
Bianchi conditions (25) on the parameters are satisfied in
general, and instead use the smaller set (23) of combined
Bianchi and gauge conditions. Wewill explicitly show how
the different sets of conditions influence the possible wave-
like solutions in the following section.

C. Wave ansatz

We are now in the position to explicitly construct wave-
like solutions to the gauge-invariant field Eqs. (7)–(9). For
simplicity, we apply the basis transformation (13), so that
all occurring parameter matrices become diagonal and the
field equations are written in terms of the gauge-invariant
quantities I. For these quantities we use the wave ansatz

I ¼ Î expðikaxaÞ; (26)

for a single Fourier mode, where Î are constants which
determine the amplitude of the wave and ka is a constant
covector. The aim of this section is to compute for which
amplitudes and wave covectors the field equations are
satisfied.
First we solve the tensor equations (9). Using the basis

transformation (13), these take the form

0 ¼ 2Q1hI1
��; 0 ¼ 2Q0hIi

��: (27)

If one of the eigenvalues Q0, Q1 vanishes, the correspond-
ing equation is satisfied identically. In this case the line-
arized field equations (3) are not sufficient to solve for
some of the modes II

�� and a calculation based on the full

nonlinear field equations is required. We will not attempt
such a calculation in this article and restrict ourselves to the
case that both Q0 and Q1 are nonzero. We then insert the
wave ansatz (26) and obtain the equations
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0 ¼ �2Q1kak
aI1

��; 0 ¼ �2Q0kak
aIi

��: (28)

We immediately see that nonvanishing wavelike solutions
exist if and only if the wave covector ka is null, kak

a ¼ 0,
while the amplitudes II

�� may be arbitrary.

Second we consider the vector equations (8). After
applying the basis transformation and inserting the wave
ansatz, these can be written in the form

0¼
1
2P1k�k

� 0

� i
2P1k0 0

 !
� I1

�

I01
�

 !
; (29a)

0¼
1
2P0k

2
0�Q0kak

a � i
2ðP0þ2Q0Þk0kaka

� i
2P0k0 �1

2ðP0þ2Q0Þkaka
 !

� Ii
�

I0i
�

 !
;

(29b)

where we already used the gauge invariance conditions
(19) to eliminate Q1. Consequently, the pure gauge quan-
tity I01

� drops out and the field equations depend only on
the physical degrees of freedom. From Eq. (29a) we see
that we can solve for the quantities I1

� using the linearized
field equations only if P1 � 0. It then follows that there are
no wavelike solutions for I1

�, since the field equations
require that both k0 and k� must vanish. Similarly, a

solvable equation for Ii
� and I0i

� requires that both Q0

and P0 þ 2Q0 are nonzero. It then follows that wavelike
solutions exist if and only if the determinant of the matrix
in Eq. (29b) vanishes,

1
2Q0ðP0 þ 2Q0ÞðkakaÞ2 ¼ 0; (30)

i.e., for null waves, kak
a ¼ 0. For these solutions I0i

� is
always allowed to be nonzero, while Ii

� is allowed to be
nonzero only if P0 ¼ 0. Note that P0 þ 2Q0 for theories in
which the Bianchi identities (24) are geometric identities
and in which the parameters satisfy the conditions (25). In
this case the linearized field equations are not solvable for
the vector potential I0i

�. The remaining vector potential Ii
�

must vanish for P0 � 0 and cannot be determined from the
linearized equations for P0 ¼ 0.
Finally we discuss the scalar equations (7). We can

proceed in complete analogy to the vector equations shown
above. We apply the basis transformation (13), insert the
wave ansatz (26) and make use of the gauge invariance
conditions (19) in order to eliminate the parametersQ1, R1

and N1. The equations for the first component I1 can then
be written in matrix form as

0 ¼
�ðP1 þ 2M1Þk�k� 4M1k�k

� � 3ðP1 þ 2M1Þk20 0 0
0 2iP1k0 0 0

ðP1 þ 6M1Þk�k� �4ðP1 þ 3M1Þk�k� þ 3ðP1 þ 6M1Þk20 0 0
�P1 P1 0 0

0
BBB@

1
CCCA �

I1
1

I1
2

I1
3

I1
4

0
BBB@

1
CCCA: (31)

We immediately see that these do not depend on the pure
gauge quantities I1

3 and I1
4 as a consequence of the gauge

invariance conditions. For the gauge-invariant quantities
I1

1 and I
1
2 we must distinguish two different cases. If P1 �

0, it follows from the second component equation of (31)
that there are no wavelike solutions for I1

2. From the last
component equation we further see that I1

1 ¼ I1
2 and thus

there are no wavelike solutions for I1
1 either. In the case

P1 ¼ 0 the equations are not sufficient to determine the
quantities I1

1 and I1
2.

For the remaining quantities Ii we proceed similarly
and write the field equations in matrix form. As we already
have done for the vector Eq. (29b), we calculate the deter-
minant of the occurring matrix, which takes the form

f3Q0ðP0 þ 2Q0Þ½Q0ðP0 þQ0 þ R0Þ þM0ðQ0 � 3R0Þ
þ N0ð3P0 þ 4Q0Þ�gðkakaÞ4 ¼ 0: (32)

Again we distinguish two cases. If the constant factor in
curly brackets vanishes, the linearized field equations are
not sufficient to solve for the quantities Ii. Otherwise, the
field equations can be solved by the wave ansatz if and only
if the determinant vanishes, which is the case for null
waves. A quick calculation shows that the solutions take
the form

I i
1 ¼ �Ii

2 ¼
P0 þ 2R0

4P0 þ 16R0

ðiIi
3 þ 2Ii

4Þ: (33)

Note further that if the parameters satisfy the Bianchi
conditions (25), the determinant (32) vanishes identically
so that the linearized field equations are not solvable for the
scalar potentials Ii.
This result completes our discussion of gravitational

waves in the gauge-invariant formalism. We have shown
that we need to impose several conditions on the eigenval-
ues of the parameter matrices P, Q, R, M, N. From

assumption (iv) we concluded that they must be of the form
(15) and can be diagonalized according to Eq. (16). The
gauge conditions (19) guarantee that the linearized field
equations are gauge-invariant and thus depend only on the
physical degrees of freedom. The solvability conditions

Q0 � 0; P1 ¼ �2Q1 � 0; P0 þ 2Q0 � 0;

Q0ðP0 þQ0 þ R0Þ þM0ðQ0 � 3R0Þ
þ N0ð3P0 þ 4Q0Þ � 0 (34)

allow a complete treatment of gravitational waves using
the linearized field equations. Under these conditions,
wavelike solutions for the scalar, vector and tensor
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components of the gauge-invariant quantities exist if and
only if the wave covector ka is null, kak

a ¼ 0. Since we
treat gravitational waves as a small perturbation of the flat
Minkowski background, whose null directions govern the
propagation of light within our approximation, it then
follows that the speed of gravitational waves equals the
speed of light, vg ¼ c. In the more general case that a

concrete theory does not satisfy all of the solvability con-
ditions (34), a calculation based on the full nonlinear field
equations is necessary to determine whether additional
wavelike solutions exist. Since we do not perform such a
calculation in this article, we restrict ourselves to the null
wave solutions we have found so far and determine their
possible polarizations in the following section.

III. NEWMAN-PENROSE FORMALISM AND
POSSIBLE POLARIZATIONS

In the preceding section we have shown that the most
general linearized vacuum field equations (3) can be solved
by the wave ansatz (27) only if the wave covector is null.
We will now turn our focus to the possible polarizations of
gravitational waves. Since we are dealing only with null
waves, the polarizations can easily be decomposed by
employing the Newman-Penrose formalism introduced in
[23]. We will then employ the classification scheme de-
tailed in [8,9] in order to determine the E(2) class of
multimetric gravity, which could be measured by the up-
coming gravitational wave experiments. The connection
between these experiments and the class of multimetric
theories we consider in this article is established by as-
sumption (i) stated in the introduction. It follows from this
assumption that a gravitational wave experiment built up
from visible matter, i.e., only one standard model copy�1,
is sensitive only to the corresponding metric g1ab. Thus, it is
sufficient to determine the possible polarizations of wave-
like solutions for the metric g1ab. From assumption (iv) it

follows further that the possible polarizations are the same
for all sectors ð�I; gIÞ.

Basic ingredient of the Newman-Penrose formalism is a
convenient double null basis of the tangent space. In the
following, we will use the notation of [14] and denote the
basis vectors by la, na,ma, �ma. In the x0, x� basis they take
the form

la ¼ ð1; 0; 0; 1Þ; na ¼ 1

2
ð1; 0; 0;�1Þ;

ma ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; �ma ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ:
(35)

In the new basis the flat Minkowski metric takes the form

�ab ¼
0 �1 0 0
�1 0 0 0
0 0 0 1
0 0 1 0

0
BBB@

1
CCCA: (36)

We now consider a plane wave propagating in the positive
x3 direction. The wave covector then takes the form ka ¼
�!la and the metric perturbations are given by

h ab ¼ ĥabe
i!ðx0�x3Þ ¼ ĥabe

i!u (37)

for the retarded time u ¼ x0 � x3. The effect of this wave
on a set of test masses consisted by one type�1 of standard
model matter depends only on the Riemann tensor of the
corresponding metric g1ab. As shown in [9], the Riemann

tensor of a plane wave is determined completely by the six
so-called electric components. For the wave (37), these can
be written as

�2 ¼ � 1

6
Rnlnl ¼ 1

12
€hll;

�3 ¼ � 1

2
Rnln �m ¼ � 1

2
Rnlnm ¼ 1

4
€hl �m ¼ 1

4
€hlm;

�4 ¼ �Rn �mn �m ¼ �Rnmnm ¼ 1

2
€h �m �m ¼ 1

2
€hmm;

�22 ¼ �Rnmn �m ¼ 1

2
€hm �m;

(38)

where dots denote derivatives with respect to u. We now
examine which of the components (38) may occur for
gravitational waves satisfying the linearized field equations
(3). Inserting the wave ansatz (37) we immediately see that
the terms containingQ andN drop out, sincehhab ¼ 0 for

a null wave. Writing the curvature tensor Kab in the
Newman-Penrose basis, we find that the five component
equations

0 ¼ Kll ¼ Kmm ¼ K �m �m ¼ Klm ¼ Kl �m (39)

are satisfied identically, while the remaining five compo-
nent equations take the form

0 ¼ Knn ¼ 2R � €hm �m � ðPþ 2RÞ � €hln; (40a)

0 ¼ Kln ¼ �1
2ðPþ 2MÞ � €hll; (40b)

0 ¼ Knm ¼ �1
2P � €hlm; (40c)

0 ¼ Kn �m ¼ �1
2P � €hl �m; (40d)

0 ¼ Km �m ¼ M � €hll: (40e)

Recall that the parameter matrices can be brought into
diagonal form using the basis transformation (16) so that
the field equations decouple as shown in (18). Applying
this decomposition to Eq. (40a) we obtain

0 ¼ K1
nn ¼ 2R1 � €h1m �m � ðP1 þ 2R1Þ � €h1ln; (41a)

0 ¼ Ki
nn ¼ 2R0 � €him �m � ðP0 þ 2R0Þ � €hiln; (41b)
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and similarly for the remaining four component equations.
Let hab denote one of the metric perturbations hIab and P,
R, M the corresponding eigenvalues of the parameter
matrices P, R, M. We distinguish the following cases:

(1) M ¼ P ¼ 0: In this case Eqs. (40b) and (40e) are

satisfied identically for arbitrary amplitudes ĥll. For
waves of this type the corresponding component
Rnlnl ¼ �6�2 of the Riemann tensor is allowed to
be nonzero. Following the classification detailed in
[9], they belong to the E(2) class II6.

(2) M � 0 and P ¼ 0: Equation (40e) forbids waves

with a nonzero amplitude ĥll, and thus �2 ¼ 0.
Eq. (40c) and (40d) are satisfied identically for

arbitrary amplitudes ĥlm and ĥl �m. It then follows
that Rnln �m ¼ �2�3 is allowed to be nonzero.
Waves of this type belong to the E(2) class III5.

(3) P � 0 and Pþ 2R � 0: For P � 0 it follows from

Eqs. (40b)–(40e) that ĥll ¼ ĥlm ¼ ĥl �m ¼ 0, and
thus �2 ¼ �3 ¼ 0. The remaining Eq. (40a) is

solved for 2Rĥm �m ¼ ðPþ 2RÞĥln. Hence, the cor-
responding component Rnmn �m ¼ ��22 of the
Riemann tensor is allowed to be nonzero and the
wave belongs to E(2) class N3.

(4) P ¼ �2R � 0: This is the most restrictive case.

Equations (40) are satisfied only for ĥll ¼ ĥlm ¼
ĥl �m ¼ ĥm �m ¼ 0, and thus �2 ¼ �3 ¼ �22 ¼ 0.
The only allowed polarization is Rn �mn �m ¼ ��4

and the wave belongs to E(2) class N2.
The classification can be summarized in a convenient

graphical form. The following diagram shows how the E(2)
class is determined by the values of the parameters P, R,M
in the linearized field equations:

The parameters P, R, M in this diagram are either the set
P1, R1, M1, which yields the E(2) class for waves of
type h1ab, or P0, R0,M0, which instead yields the E(2) class

for waves of type hiab. We thus obtain two E(2) classes for

the different linear combinations of the metric perturba-
tions hab.

We finally turn our focus to the viewpoint of a physical
observer. From assumption (i) in the introduction it follows
that any experimental setup consisting of visible matter
only, i.e., of only one copy �1 of the standard model, is
affected by only one metric tensor g1ab. A gravitational

wave detector consisting of visible matter can thus measure
only one of the Riemann tensors R1

abcd. From the basis

transformation (13) it follows further that each Riemann
tensor RI

abcd depends on all metric perturbations hIab. As a

consequence, it is not possible to measure the metric

perturbations hIab separately. A gravitational wave experi-

ment can only indicate whether a wave with certain polar-
ization exists for any of the linear combinations hIab. Thus,

only the larger of the two aforementioned E(2) classes can
be determined.

IV. EXAMPLES

In the previous Sec. III we constructed a formalism to
calculate the E(2) class of multimetric gravity theories that
determines the possible polarizations of gravitational
waves. It turned out that the E(2) class is fully determined
by the eigenvalues of the parameter matrices P,Q, R,M,N

in the linearized vacuum field equations (3). We will now
apply this classification to a number of example theories.

A. General relativity

Although general relativity is not a multimetric theory,
we can apply a slightly modified version of the calculations
presented in this article. For the case of N ¼ 1 metric
tensors, we replace the parameter matrices in the linearized
vacuum field equations by their unique eigenvalues. For
general relativity, these take the values

P1 ¼ 1; Q1 ¼ R1 ¼ M1 ¼ �1
2; N1 ¼ 1

2: (42)

One easily checks that they satisfy the gauge invariance
conditions (19) and the Bianchi conditions (22). Following
the calculation presented in Sec. II C, one finds that the
wave solutions are completely determined by the linear-
ized field equations, and that the only permitted nonzero
amplitude is the tensor I1

��. Finally, a comparison of the

parameters (42) with the diagram at the end of Sec. III
correctly shows that the E(2) class of general relativity is
N2. Note that this is the generic case for single-metric
theories due to the parameter constraints (23).

B. A simple multimetric theory

A simple class of multimetric gravity theories with
N � 2 metrics, which also contains the theories presented
in [2,3], is given by the gravitational action

SG½g1; . . . ; gN� ¼ 1

16�

Z
d4x

ffiffiffiffiffi
g0

p �
x
XN
I;J¼1

gIijRJ
ij

þXN
I¼1

gIijðyRI
ij þ u~SIi ~S

I
j þ v~SIk ~S

Ik
ij

þ w~SIkim ~S
Im

jk þ gIklgImnðr~SImik
~SInjl

þ s~SImij
~SInklÞÞ�

(43)

where the connection difference tensors ~SIkij, ~S
I
i are de-

fined as

MANUEL HOHMANN PHYSICAL REVIEW D 85, 084024 (2012)

084024-8



SIJijk ¼ �Ii
jk � �Ji

jk; SIJj ¼ SIJkjk;

~SJijk ¼
1

N

XN
I¼1

SIJijk;
~SJj ¼ ~SJkjk;

(44)

the volume form is given by g0 ¼
Q

N
I¼1ðgIÞ1=N, and x, y, u,

v, w, r, s are constant parameters. Starting from the action
(43), we derive the gravitational field equations by varia-
tion with respect to the metric tensors and use the pertur-
bation ansatz (2) to keep only the terms of linear order
OðhÞ. This yields the eigenvalues of the parameter matrices

P1 ¼ �2Q1 ¼ �2R1 ¼ �2M1 ¼ 2N1 ¼ Nxþ y;

R0 ¼ M0 ¼ Nx� vþ 2s

2
;

P0 ¼ �Nxþ y� wþ r� 2s;

Q0 ¼ Nx� yþ w� 3r

2
;

N0 ¼ �Nx� y� uþ v� s

2
;

(45)

which satisfy the gauge invariance conditions (19) and the
Bianchi conditions (22) since we started from a
diffeomorphism-invariant action. The extended Bianchi
conditions (25) are satisfied if and only if the parameters
satisfy the constraints

0 ¼ sþ r ¼ uþ vþ w ¼ uþ y� s: (46)

It thus follows from our discussion of the Bianchi identities
in Sec. II B that in the generic case, in which the conditions
(46) are not satisfied, the Bianchi identities (24) are not
geometric identities, but satisfied only by solutions of the
gravitational field equations. Next, we apply the linearized
multimetric extension of the parametrized post-Newtonian
formalism detailed in [3]. Consistency with solar system
measurements of the parametrized post-Newtonian pa-
rameters requires

y ¼ 1

2� N
� Nx; v ¼ 6� N

4� 2N
� Nxþ 2u;

w ¼ � 6� N

4� 2N
þ Nx� 3u; r ¼ � 1

2� N
þ Nx� u;

(47)

which leaves us with only three free parameters x, u, s and
restricts the number of metrics to N > 2. In terms of these
remaining parameters the eigenvalues of the parameter
matrices take the values

P1 ¼ �2Q1 ¼ �2R1 ¼ �2M1 ¼ 2N1 ¼ 1

2� N
;

R0 ¼ M0 ¼ � 6� N

8� 4N
þ Nx� uþ s;

P0 ¼ 6� N

4� 2N
� 2Nxþ 2u� 2s; Q0 ¼ � 1

4
;

N0 ¼ 4� N

8� 4N
þ�Nxþ u� s

2
:

(48)

Using the calculation of Sec. II C, we find the following
wave solutions for the gauge invariant potentials I:
(i) Tensor modes—Since both Q1 and Q0 are nonzero,

wavelike solutions for all tensor potentialsII
�� exist.

(ii) Vector modes—From P1 � 0 it follows that there
are no wavelike solutions for the vector potential
I1

�. If the parameters satisfy the condition

Nx� uþ s ¼ 1

2� N
; (49)

the linearized field equations are not sufficient to
determine the vector potentials I0i

� and the remain-
ing vector potentials Ii

� must vanish. Otherwise,
wavelike solutions for the vector potentials I0i

� ex-
ist, and wavelike solutions forIi

� exist if and only if
the parameters satisfy

Nx� uþ s ¼ 6� N

8� 4N
: (50)

(iii) Scalar modes—From P1 � 0 it follows that there
are no wavelike solutions for the scalar potentials
I1

1, I
1
2. If the parameters satisfy the conditions

(49), the linearized field equations are not sufficient
to determine the scalar potentials Ii

1, I
i
2, I

i
3, I

i
4.

Otherwise, wavelike solutions for Ii
1, I

i
2, I

i
3, I

i
4

exist and satisfy (33).
Finally, we determine the E(2) class of our example

theory. A comparison of the eigenvalues (48) with the
classification detailed in Sec. III shows that the E(2) class
for the symmetric linear combinations h1ab of metric per-

turbations, for which the eigenvalues P1, R1, M1 of the
parameter matrices are relevant, is N2. The E(2) class for
the remaining linear combinations hiab, and thus the effec-

tive E(2) class of the theory, is II6 if the parameters satisfy
the condition (50), and N2 otherwise. This means that the
only polarizations that can be measured by a gravitational
wave experiment are the two tensor polarizations which are
also present in general relativity, unless the parameters
satisfy (50), in which case all six possible polarizations
of gravitational waves may be present.

V. CONCLUSION

In this article we have discussed the propagation of
gravitational waves in theories with N � 2 metric tensors
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and a corresponding number of standard model copies.
These theories were designed to explain the observed
cosmological late-time acceleration while being consistent
with solar system experiments. We have examined two
characteristic properties of gravitational waves: their
propagation velocity and their polarization. We have
shown that in a weak-field approximation around a flat,
maximally symmetric Minkowski background all gravita-
tional waves propagate at the speed of light. Using the
Newman-Penrose formalism we found that there are
always two tensor modes; in addition two vector modes
and two scalar modes may exist. In terms of E(2) repre-
sentations this means that multimetric gravity theories can
be of class N2, N3, III5, or II6.

We then applied our construction to two examples. First,
we discussed general relativity and showed that our for-
malism can also be applied to the special case N ¼ 1 of a
single-metric gravity theory. We reobtained the well-
known result that general relativity is of classN2, i.e., there
are only two tensor polarizations of gravitational waves.
Second, we applied our construction to a class of multi-
metric gravity theories including the theories proposed in
[2,3] and showed that these are either of class N2 or II6,
depending on the choice of parameters.

Our results connect the theoretical framework of multi-
metric gravity to the physics of gravitational waves, which
is the subject of several current and upcoming experiments.
It is expected that these will be able to measure both the
propagation velocity and the polarization of gravitational
waves, which are the two properties addressed in this
article. A question of particular interest is whether scalar
or vector polarizations will be detected. While these do not
exist in general relativity, they are allowed in certain multi-
metric gravity theories.

Now that we examined the propagation of gravitational
waves in multimetric gravity theories, the next task that
should be performed is to discuss their production by
sources such as binary stars. Further research on this topic
should show which of the propagating wave polarizations
are emitted from a given source. Moreover, quantitative
calculations should yield the amplitude of the emitted
waves in the different metric sectors. Since energy may
be emitted in all metric sectors, but only one of them is
visible to gravitational wave detectors, one might expect a
difference between the directly observed energy emission
and the total energy loss inferred from the orbital decay.
This could provide another test bed for multimetric gravity
both by the upcoming gravitational wave experiments
[10,11] and existing observations of binary pulsars
[25–27].
Finally, it should be examined how the presence of

cosmic gravitational fields affects both electromagnetic
and gravitational radiation as they propagate from a com-
mon source, such as a supernova or a binary pulsar,
towards our solar system. Calculations of this type are
crucial for the interpretation of experiments which com-
pare the arrival times of both types of radiation, as they
might undergo a different Shapiro delay [15,16] or a differ-
ent gravitational lensing.
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