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Deformed brane with finite extra dimension
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We construct a deformed brane solution generated by a double-kink scalar field and a dilaton scalar
field. In this brane scenario the extra dimension is finite, which is due to the introduction of the dilaton
field with a special form. The finity of the extra dimension will result in the localization of the zero mode
for the vector fields, while the localization of the Kalb-Ramond fields depends on the coupling to the
dilaton. For the fermion fields, with different values of the dilaton-fermion coupling constant, there are
three types of the effective potential for the fermion Kaluza-Klein modes. Moreover, we investigate the
effect of the deformation of the brane on the localization, and find that the number of the resonances will

increase with the distances of the two sub-branes.
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L. INTRODUCTION

Extra dimensions and braneworld theories [1-3] have
attracted more and more attention, because they can pro-
vide an interesting new way for solving problems involving
cosmological constant and hierarchy [4-6], such as the
Arkani-Hamed-Dimopoulos-Dvali (ADD) model and
the Randall-Sundrum (RS) model. In these two models,
the extra dimensions are flat and compact for the former
one and infinite for the latter one, but both the branes in the
two models have no thickness. So the thick brane models
were built, which are naturally generated by one or more
real scalar fields [7-22], and the extra dimensions are
usually infinite in these models.

In Ref. [23], the author investigated the splitting of the
thick Minkowski brane generated by a complex scalar field
coupled to gravity, and showed that the deformation of the
brane is due to a first-order phase transition. And in another
aspect, the authors in Refs. [24-27] built brane models
described by real or complex scalar fields, which also
engender internal structure. The internal structure depends
on the properties of the scalar fields.

In this paper we would like to construct a deformed
brane with finite extra dimension and study the effect of
the deformation on the localization of various matter fields.
Usually, a scalar potential with two vacua would generate a
single thick brane. Such a potential could be chosen as a
usual ¢* one. However, in order to generate a deformed
brane containing two sub-branes, it needs a potential with
three vacua. So for simplicity, the scalar potential is se-
lected as the usual ¢° one for the purpose of generating the
splitting brane. On the other hand, the extra dimension for
the one-scalar generated brane is infinite, which is the
reason that the vector cannot be localized on the brane in
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five dimensions. So in the paper we add another scalar, a
dilaton, with which the extra dimension would become
finite and the vector could be localized on the brane. In a
word, we would obtain a thick flat split-brane solution with
internal structure and the extra dimension is finite in this
brane model. Then we will investigate the localization of
various bulk fields on this brane world.

The localization of various bulk matter fields is impor-
tant to build up the standard model. It has been known that
massless scalar fields and gravitons can be localized on
branes with an exponentially decreasing warp factor
[5,28]. The spin-1 Abelian vector fields usually can only
be localized on the RS brane in some higher-dimensional
cases [29], or on the thick de Sitter brane and the Weyl
thick brane [30,31]. But in our thick flat brane model, the
vector fields also can be localized, which can be seen in the
following discussion.

The antisymmetric Kalb-Ramond (KR) tensor field B,,,,
was first introduced in the string theory as a massless
mode. Then it was used to explain the torsion of the
space-time in the Einstein-Cartan theory. While in theories
of extra dimensions, they indicate new types of particles
[32]. So any observational effect involving the KR fields is
a window into the inaccessible world of very high
energy physics. Thus the investigation of KR fields in the
context of extra dimension theories has been carried out
[33-38]. We are also interested in the localization of the
KR field.

The localization of spin 1/2 fermion fields is also inter-
esting. It has been proved that, in order to normalize the
zero mode, the fermion fields should couple with the
background scalars. With different scalar-fermion cou-
plings, there will exist a single bound state and a continu-
ous gapless spectrum of massive fermion Kaluza-Klein
(KK) states [13,26,39-42], finite discrete KK states
(mass gap) and a continuous gapless spectrum starting at
a positive m? [12,27,31,43-45], or even only bound KK
modes [46—48]. We will show that with one type of scalar-
fermion coupling there also can exist the above three cases,
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which is decided by the value of the dilaton-fermion cou-
pling constant.

This paper is organized as follows: In Sec. II, we use a
numerical method to obtain a solution of a thick flat split-
brane, in which the extra dimension is finite. Then, in
Sec. III, we study the stability of the solution and inves-
tigate localization of vector, KR, and fermion fields on this
brane world. Finally, a brief discussion and conclusion are
given in Sec. I'V.

II. THE DEFORMED BRANE WITH FINITE
EXTRA DIMENSION

In this paper we consider the model of thick branes
generated by two interacting scalars ¢ and 7. The corre-
sponding action of the system is

R 1 1 _
s= dw——g[2—K§ ~ @87 ~ 3P = V(4. m)]
(1)

where K% = 87 G5 with G5 the five-dimensional Newton
constant, and V(¢, ) is the potential making the thick
branes realized naturally. Here we set k5 = 1. The line-
element of the five-dimensional space-time is assumed as

ds* = eO(n,, dxtdx” + dz?), 2)

where 7 stands for the extra coordinate, and e**? is the
warp factor. According to the symmetry of the metric, we
can suppose that the background scalars ¢, 7 are only the
functions of z. Then the equations of motion from the
action (1) with the ansatz (2) read

¢/2 + 77./2 — 3(14/2 _ AII), (3)

- 2V(¢, m) = 3e A(3A” + A), )

avf;i; ) _ e—zA(d)// + 34’9, (5)

_a\?f;z;, ™) — e (" + 347 ©)
w

First we analyze the character of the extra dimension
through Eq. (3). Inspired by the idea in Ref. [20], we
assume that the dilaton field has the form 7 = \/%A
with b a positive constant, thus Eq. (3) is reduced to

Al = —%dﬂ + (1= b)A". (7

So for ¢'(z — +o0) — 0, we have A” = (1 — b)A”, from
which we could obtain the behavior of the warp factor at
infinity:

1ﬂ[|(b1—1b)z|] for b # 1

. (8)
klz| for b =1

Az — *o00) — {
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Here we are interested in the case of » # 1. Thus whether
the physical length of the extra dimension y is finite or not
can be checked by performing a coordinate transformation
dy = e*dz. From the following expression

, + o0 +o00
Vay= [T e0az— [0 - b1V
Yo 20 20
bh—1 B
o lim (/=1 — /=1y ©)

7—+00

where y, and z, are positive constants, it is clear that, for
0<b <1, we will get a finite extra dimension with two
boundaries at y = *y,. Therefore, throughout this paper,
the parameter » will be limited to 0 < b < 1. Note that for
the standard Randall-Sundrum brane scenario (the case
b = 0), it can be shown that the physical extra dimension
is infinite.

For our choice of 7 = +/3bA, we get the following
relation from Eqs. (4) and (6) for the potential V(¢, 7):

aV(ep, m)
omr

—2V(, m) = 3/b (10)

which results that the potential should be taken in the form

of V =V(p)e 2VP/37 And the equations of motion
(3)-(6) are simplified as

1
A= =247+ (1= b)A”, (11)

I — ez(l—b)A dV(g{))

¢ id

—3A'¢/, (12)

2V(p) = 2= DA[$2 + 3(b — 4)A]. (13)

Now there are left three equations for three variables,
but these equations are not independent. So if given the
potential

V() = vy + g1¢* — g2¢* + g30° (14)

with v, g1, g2, g3 all positive constants, we can get the
brane solutions by numerical method with the boundary
conditions

A(0) = A'(0) = ¢(0) = 0, $(z— T0) = T,

(15)

Here ¢, is a positive constant. For this brane world, it is the
form of the dilaton that is crucial to the finity of the extra
dimension.

The shapes of the warp factor, scalar fields ¢ and 7, and
the profiles of energy density Ty,, which is defined as
Too = ¢"> + 3(b — 2)A”, are plotted in Fig. 1. And we
find that for some proper values of g; there exists a double-
kink solution for the scalar field ¢. Thus the brane splits
into two sub-branes. With the increase of g;, the distance
of the two sub-branes will increase.
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The warp factor e>A®

e2A(z)

(2)
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The scalar field ¢(z)
15 T - .

FIG. 1 (color online). The shapes of the warp factor ¢4, the scalar field ¢(z), the dilaton field 77(z), and the energy density Ty (z).

The parameters are set to g, = 3.5, g3 = 1, b = 0.5.

In the following section, we will investigate the local-
ization of bulk matters in this braneworld. And we will
mainly analyze the effect of the finity of the extra dimen-
sion and the dilaton scalar on the localization.

III. LOCALIZATION AND MASS SPECTRA
OF VARIOUS BULK MATTER FIELDS
ON THE BRANE

In this section we will investigate the localization and
mass spectra of various bulk matter fields.
First, we can see whether the solution is stable by giving

the metric a fluctuation 4, so the metric (2) reads as

ds* = e*O[(n,, + h,,)dx*dx” + dz?].  (16)

Using the gauge choice hj, = d*h,, = 0, we can find the
h,, takes the following form

[02 + 3A'(2)9, + OW]h,,,(x*,2) =0 (17)

with O% = »#*V,V, and V,, the covariant derivative
with respect to the four-dimensional metric 7,,.

Then through the KK decomposition #,,,(x¢, z) =

e(x*)&(z)e 342, we can obtain the following Schrodinger
equation for the KK modes

(=02 + V)é(z) = m*£(2), (18)

where m? are the masses of the KK modes and the effective
potential is V, =3A"” +2A”. Because the formulation
(18) can be written as

[-0.—3a0][0. - 3400 - meo. a9

there is no tachyon. We plot the shapes of the potential in
Fig. 2, from which it can be seen that there exists a zero
mode &, oc e34/2. As

62 —_ 1 —_
O [(1 = b)z]B/20 0D

0, (20)

the integral [ &3dz is finite for 0 < b < 1, so the zero mode
(four-dimensional massless graviton) can be localized on

the brane. The shape of the zero mode is also plotted in
Fig. 2.
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FIG. 2 (color online). The shapes of the potential V,(z) for the gravity KK modes and the gravity zero mode &,(z). The parameters

are setto g, = 3.5, g3 =1, b =0.5.

A. Spin-1 vector fields

Now we investigate the localization of the massless spin-

1 vector fields in five-dimensional space-time. The action

of a massless vector field coupled with gravity and the
dilaton is

1

Sy = ~2 [dsx\/__geUWgMRgNSFMNFRS, (21

where the field strength tensor is given by Fyny = d/Ay —

dyAy and o is the coupling constant. Then the

equations of motion can be obtained using the background
geometry (2):

1 56VP & 5 — o
e’ —0,([—88"Pg"F ) + gHre 49 (€Ut ,)

V=8
=0, (22)

€770, (J=28""F,5) = 0. (23)

With the decomposition of the vector field A, (x, z) =

3 ,aW (x)p,(z)e 1+V380)4/2 and  the gauge choice
Ay = 0, we find that the KK modes of the vector field
satisfy the following Schrodinger-like equation:

[—02 + Vi(@)]p,(z) = myp,(2)

with m,, the masses of the four-dimensional vectors, and

(24)

V] (Z) = (25)

(1+ \/?TI;O')ZA,2 N 1+ \/EEO'A”.
4 2

And furthermore providing the orthonormality condition

/ dzp(2)pn(2) = Sy, (26)

we can get the four-dimensional effective action:

A~ 1 AL AY n n
5123 [ a7 (- gararingy

1
- —mggWaif)a&")), 27)

2
where fﬁf,), =9 Mag,") - ayaﬁf) is the four-dimensional field
strength tensor.

With the conditions (15), it can be found that the poten-
tial trends to _l%ﬁ—b" ¢'(0)* at z =0, and vanishes at
infinity. So when o > —1/ \3b, there may exist a bound
zero mode, which can be obtained by setting m, = 0:

po o< e((1++350)/2)A(2). (28)

We can check whether it satisfies the normalization condi-
tion (26):

foo p%dz o foo e(1+J3_bo)A(z)dZ < 00, (29)
which is equivalent to
ﬁo[(l — )] VI Vg < oo (30)

We can find that the vector zero mode can be localized on
the region between the sub-branes with o > —4/b/3 and
0 < b < 1. If there is no coupling (o = 0), the vector zero
mode will be p, = coe?/?, so with the coordinate trans-
formation dz = e “dy the integral (26) becomes

[ pidz = fyb cddy = 2cy, = 1,

Vb

(3D

and the normalization coefficient is ¢, = 1/4/2y,. Because
the physical extra dimension y is finite, the above integral
is finite. Hence, the vector zero mode can also be localized
on the brane even without the coupling, which could be
seen from Fig. 3. The shapes of the potential with the
coupling and the zero mode are also plotted in Fig. 3.
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FIG. 3 (color online).
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The shapes of the potential V,(z) and the vector zero mode pq(z) with g, = 3.5, g3 = 1, b = 0.5.

TABLE I. The mass m?2, width 8m, and lifetime 7 for resonances of the vector field for different g1-
g1 n m? m om T
2 1 6.63921 2.57667 0.006518451883 153.41066
2.6 1 1.94348 1.39409 0.000118884093 8411.55427
2 5.69137 2.38566 0.078850635906 12.68221
1 0.33613 0.57976 1.9641206011 X 107 50913.37057
2.676 2 1.30244 1.14124 7.3715986182 X 107 13565.57854
3 2.79574 1.67205 0.002230625464 448.30475
4 4.65884 2.15844 0.038868015350 25.72810

From Fig. 3, we can see that there may exist some vector

can get the

resonances for o # 0. Following Refs. [49] we calculate
numerically the masses and the lifetime for the resonances
in Table I, and find that the number and the lifetime of the
resonances increase with the distance between the two sub-
branes.

B. The Kalb-Ramond fields

>, 6B U, (e TTTRON e
Schrédinger equation for U, (z):
[—0? + Vir(2)]U,(2) = myU,(2),

where m,, are the masses of the four-dimensional KR fields
and the effective potential is

(35)

V3b{ — 1)? \V3bd — 1
VKR = ( i ) 14/2 + g AH. (36)
We now turn to the KR fields in this subsection. The ) . o
action of a KR field coupled with the background dilaton ~ Provided the orthonormality condition

scalar 7 is

SKR = — fdsx\/—_ge{”HMNLHMNL (32)
with Hyyy, = ¢ 0By the field strength for the KR field
B,y and ¢ the coupling constant between the KR field and
the dilaton field. Then the equations of motion derived
from this action and the conformally flat metric (2) are

e {70, (J=gH ) + ,(=geTHYP) =0, (33)

e 479, (J"gHMF) = 0.

If we choose the gauge B, =0 and make a
decomposition of the KR field as Bzf (x*, z) =

(34)

[* dzU,,(2)U,(z) = §8,,,, the action of the KR field
(32) is reduced to the following four-dimensional effective
action:

Skr = —Z[d4xJ—_g<gM’#ga/“gﬁ’ﬁhi’z,)a,ﬂ,hmﬁ

o (37)

] / - ~
w0
with ﬁifl g = 6[Ml;a ) the four-dimensional field strength
tensors.
We can find the behavior of the potential for the KR field
at z =0 and z — oo:

Vir(z — 0) — 1_—6@5 ¢'(0)%, (38)
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Vikr(z = 00) — 0. 39)

So in order to localize the zero mode, we must make sure

{ > 1//3b.

By setting my = 0, we can solve the zero mode for the
KR field:

Uy e(W3b{—1)/24 (40)

One can check whether the zero mode satisfies the normal-
ity condition [, dzUj(z) < co. Because we have

jU%dz o« [(1 = b)|Z|](\/§E{_2+b)/(b_l) for z — *oo,
41

for > (2 — b)//3b the zero mode can be localized on the
brane, but it cannot for = 0, which is different with the
vector field.

C. The spin-1/2 fermion fields

In this subsection, we investigate the spin-1/2 fermion
fields. The Dirac action of a massless spin 1/2 fermion
coupled with gravity and the background scalars ¢ and 7
in five-dimensional space-time is

Saup = [dsx\/__g[q’FM(aM + wy)¥ — nVF(¢, m)V]
(42)

with F(¢, ) the type of the coupling and 7 the coupling
constant. As in Refs. [49], we have '™ = (e " 4y*, e 4y°),
w, =%(0.A)y,ys, ws =0, where y* and y° are the
usual flat gamma matrices in the four-dimensional Dirac
representation. Then the five-dimensional Dirac equation
is

[y#0, + ¥ (9, +20,A) — ne*F(¢p, m)]¥ =0, (43)

where y*#d, is the four-dimensional Dirac operator.
By the general chiral decomposition W(x,z) =

e_ZAZn(lan(x)an(Z) + (pRn(x)fRn(Z))a we get the fol-
lowing coupled equations of f;,(z) and fg,(z):

[az + neAF(¢’ 77-):lan(Z) = mnfRn(Z)J
[az - UeAF(dk W)]fRn(Z) = _mnan(Z)’

where i, r,(x) satisfy the four-dimensional massive
Dirac  equations  y#d,,(x) = m,g,(x)  and
Y#9 ¢ gy (x) = m, 1, (x). Furthermore we can get the
following Schrodinger-like equations for the KK modes
of the left- and right-hand fermions from the above coupled
equations:

(44a)
(44b)

(=02 + V(@) f1a = mif
(_a% + VR(Z))fRn = m%fRn’

where the effective potentials take the following form

(45a)
(45b)
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V() = (et F(, m)* — ma (e F(¢, m)),
Vr(z) = VL(Z)|7,—>—1]~

(46a)
(46b)

And we can obtain the standard four-dimensional action
for a massless and a series of massive fermions:

S =3 f dx i Oy#a, — m () @7)

with the following orthonormality conditions for f;, and

fRn:

[7 fmeLndZ = 5an -[7 mefRndZ: 8mn’

| fintuadz =0 (48)

If the type of the scalar-fermion coupling is considered
to be F(¢, m) = e*™ ¢ with A the dilaton-fermion coupling
constant, we can get

V, (z) = mell+V3P0A (g h2e(1+301)A

— (1 +3bV)A'$ — 3,¢), (49a)
VR(Z) = VL(Z)|W—>777' (49b)

Thus we obtain the behavior of the potential at z = 0 and
7 — o0

Vi r(z = 0) = n¢'(0), (50a)
Vi(e = %00) = 21 — b)lz[Je0 /PG
— no(1 + V3bA)
x [(1 — b)lzl][(l‘*'\/gz)t)/(b_l)]_l’ (50b)
‘/R(Z - iOO) = VL(Z * oo)l”r]—»*n' (SOC)

So it can be seen that the behavior of the potentials at
7 — *oo is decided by the dilaton-fermion coupling con-
stant A, and there are three types of potentials for different
A, which are similar with that in Ref. [33]. For A =
-1/ V3band A > —1 / J3b the potential for the left-hand
fermion is PT-like and volcano-like ones, respectively. For
A< —1/ \/E it is infinite potential well. And there is
always a zero mode for the left-hand fermion with n >0
for these three cases, which takes the form:

Fro(@) eXP<—n [0 * dzeMOF((2), w(z»). 51)

Then we can check whether the zero mode can be localized
on the brane by checking whether the following integral

[ itz [exo(=2m [ azerr (2, mte iz
(52)

is finite. As we have
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e F(p, m) = [(1 = b)z]TVPV/E=D when 7 — oo,
(53)
the integral (52) becomes:

[ oy — [ e /(1B BT/

when z — oo,

(54)

So it is clear that for A < —4/b/3 the integral is finite, and
hence the zero mode can be localized on the brane.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we obtain a solution of a thick flat split-
braneworld, which is generated by a double-kink scalar
and a dilaton scalar. In this brane model, the extra dimen-
sion is finite, which is due to the choice of the form of the
dilaton field 7 = \/3_bA with 0 < b < 1. And because
another scalar is a double-kink one, the brane is split.

Because the extra dimension is finite, the zero mode for
the spin-1 vector fields can be localized on the brane. And
if we consider the coupling to the dilaton, there will be
resonances. The number of the resonances will increase
with the distance between the two sub-branes.

PHYSICAL REVIEW D 85, 084023 (2012)

But for KR fields, we have to introduce the coupling to
the dilaton to localize the zero mode. And only when the
coupling constant satisfies ¢ > (2 — b)/~/3b can the zero
mode be localized.

For spin 1/2 fermion fields, we considered the coupling
both with the double-kink and the dilaton, i.e.,
nVF(p, m)¥ with F(¢, ) = e’ ¢. It was shown that
there are three types of potentials for both chiral fermions,
which are decided by the value of the dilaton-fermion
coupling constant A. However, only when A < —m,
can the zero mode for the left-hand fermion be localized
on the brane with > 0.
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