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The peeling behavior of the Weyl tensor near null infinity is determined for an asymptotically flat

higher dimensional spacetime. The result is qualitatively different from the peeling property in 4

dimensions. To leading order, the Weyl tensor is type N. The first subleading term is type II. The next

term is algebraically general in 6 or more dimensions, but in 5 dimensions another type N term appears

before the algebraically general term. The Bondi energy flux is written in terms of ‘‘Newman-Penrose’’

Weyl components.
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I. INTRODUCTION

In 4 spacetime dimensions, theWeyl tensor of an asymp-
totically flat spacetime exhibits the ‘‘peeling’’ property:

C���� ¼ ��1CðNÞ
���� þ ��2CðIIIÞ

���� þ ��3CðIIÞ
����

þ ��4CðIÞ
���� þOð��5Þ; (1)

where indices �; �; . . . refer to a basis parallelly trans-
ported along an outgoing null geodesic with affine parame-

ter �. In the first term, CðNÞ
���� is a Weyl tensor of algebraic

type N and the subsequent terms involve Weyl tensors of
algebraic types III, II, and I. The tangent to the geodesics is
the repeated principal null direction for the type N, III and
II terms, and a principal null direction for the type I term.

This result was originally derived using Bondi coordi-
nates [1,2]. In this approach, one assumes that the metric
components can be expanded in inverse powers of a coor-
dinate r. A more geometrical proof can be given using the
definition of asymptotic flatness in terms of a conformal
compactification [3,4]. In this case, the result follows from
the assumed smoothness of the unphysical spacetime. This
smoothness assumption (or the assumption of an expansion
in inverse powers of r) excludes some spacetimes in which
radiation is present near spatial infinity. In this case, the
peeling property is modified by an Oð��4 log�Þ term [5,6]
(see also [7]).1

In d > 4 dimensions, a definition of asymptotic flatness
at null infinity using conformal compactification is pos-
sible only for even d [8,9]. It has been shown that this
definition is preserved by linearized metric perturbations
arising from compactly supported initial data [8]. It has
also been argued that a vacuum spacetime satisfying this
definition arises from initial data describing a small (but
finite) perturbation of Minkowski spacetime that coincides
with Schwarzschild initial data outside some compact set

[10]. Just as in 4 dimensions (4d), there are more general
initial data that do not give a smooth null infinity [11].
For odd d, conformal compactification is unsatisfactory

because the unphysical spacetime cannot be smooth in any
radiating spacetime [12]. Instead, one can follow the older
approach of defining asymptotic flatness at null infinity
using Bondi coordinates [13,14]. In Sec. II we will weaken
this definition slightly and demonstrate equivalence of the
conformal and Bondi definitions for even d. For odd d, it
remains to be shown that there exists an interesting class of
initial data that gives rise to a spacetime which satisfies this
definition.
The goal of this paper is to determine how the Weyl

tensor peels near null infinity in a spacetime satisfying one
of the above definitions of asymptotic flatness. As just
mentioned, at least for even d, this includes a large
class of physically interesting spacetimes, but probably
also excludes some physically interesting spacetimes.
However, we can hope that in the latter case, just as in
4d, the peeling behavior is modified only at a sufficiently
high order that our result is still useful.
Two previous papers have investigated peeling using the

conformal approach to asymptotic flatness [15,16]. Both
papers concluded that peeling is similar to the d ¼ 4 case.
They started from the assumption that all components of
the unphysical Weyl tensor decay at the same (unspecified)
rate near null infinity. However, Ref. [12] showed that this
assumption is not true even for linearized perturbations of
Minkowski spacetime, and argued that peeling should be
qualitatively different for d > 4. This is what we find.
In Sec. III, we determine the behavior of the Weyl tensor

near null infinity in a spacetime satisfying the ‘‘Bondi
definition’’ of asymptotic flatness (since this is valid for
odd or even d and equivalent to the conformal definition for
even d). For d � 6, we find the following result:

C���� ¼ ��ðd=2�1ÞCðNÞ
���� þ ��d=2CðIIÞ

����

þ ��ðd=2þ1ÞCðGÞ
���� þ . . . (2)
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Again � is an affine parameter along a null geodesic and
�; �; . . . refer to a parallelly transported basis. The super-
scripts N, II, G refer to the higher dimensional classifica-
tion of the Weyl tensor developed in Ref. [17], based on the
concept of Weyl aligned null directions (WANDs). A
type N or type II Weyl tensor admits a ‘‘multiple
WAND,’’ in this case it is the tangent to the geodesic.
The type II term in (2) is not the most general type II
Weyl tensor: it obeys additional restrictions explained
below. Type G denotes an algebraically general Weyl
tensor. The ellipsis in (2) denotes terms of order

��ðd=2þ2Þ (even d) or ��ðd=2þ3=2Þ (odd d).
For even d, the derivation of this result requires no more

than the definition of asymptotic flatness. We do not use the
Einstein equation, so this result is valid for any energy-
momentum tensor consistent with asymptotic flatness. For
odd d, we need to use some additional information from
the Einstein equation: a mild condition on the decay of the
Ricci tensor near null infinity is required to eliminate a

term of order ��ðd=2þ1=2Þ from (2).
The case d ¼ 5 is exceptional. In this case, the Einstein

equation no longer eliminates the term of order

��ðd=2þ1=2Þ ¼ ��3. Instead, it fixes this term to be quadratic
in the leading order metric perturbation and hence nonzero
in any radiating spacetime. The result is that an additional
type N term appears between the type II and type G terms:

C���� ¼ ��3=2CðNÞ
���� þ ��5=2CðIIÞ

���� þ ��3CðNÞ0
����

þ ��7=2CðGÞ
���� þOð��4Þ: (3)

The subleading type N term is distinct from the leading
order type N term. The presence of this term can be attrib-
uted to the nonlinearity of the Einstein equation. For d > 5,
nonlinear effects decay faster and this term does not arise.

References [8,9,13,14] gave expressions for the rate of
change of the Bondi energy at null infinity. For applications
(e.g. higher dimensional numerical relativity), it is conve-
nient to have results that can be calculated easily and do not
refer to a particular coordinate chart. This can be achieved
by writing the result in terms of the asymptotic Weyl tensor
components. We do this in Sec. IV.

II. DEFINITIONS OFASYMPTOTIC FLATNESS

A. Conformal definition for even d

For even d > 4, Ref. [8] defined a spacetime ðM;gÞ to be
asymptotically flat at null infinity as follows. Given the
(physical) metric g and the Minkowski metric �, we would
like to specify the precise rate at which g approaches �
asymptotically. We do this by conformally compactifying
bothM and Minkowski spacetime so that ‘‘infinity’’ is now
at a finite metric distance. Thus, we obtain the ‘‘unphys-
ical’’ spacetime ð ~M; ~gÞ and the ‘‘background’’ spacetime
ð �M; �gÞ, where the metrics ~g and �g are related to the re-
spective physical and flat metrics via

~g ab ¼ �2gab; �gab ¼ �2�ab (4)

with the conformal factor �2 satisfying the usual suitable
properties.
Now, the spacetime is defined to be asymptotically flat at

null infinity if

~gab � �gab ¼ Oð�d=2�1Þ;
~�a1...ad � ��a1...ad ¼ Oð�d=2Þ;

ð~gab � �gabÞðd�Þa ¼ Oð�d=2Þ;
ð~gab � �gabÞðd�Þaðd�Þb ¼ Oð�d=2þ1Þ;

(5)

where ~gab and �gab are the inverse metrics of ~g and �g,
respectively, and ~� and �� are the volume forms on ð ~M; ~gÞ
and ð �M; �gÞ, respectively. Following Ref. [4], if Lab...c is a
tensor field on ~M then the notation Lab...c ¼ Oð�sÞ means
that ��sLab...c is smooth at future null infinity.

B. Definition using Bondi coordinates

For general d > 4, Ref. [14] defined a spacetime to be
asymptotically flat at future null infinity if, outside some
cylindrical world tube, coordinates ðu; r; xIÞ can be intro-
duced following [2] such that the metric takes the form

ds2 ¼ �AeBdu2 � 2eBdudr

þ r2hIJðdxI þ CIduÞðdxJ þ CJduÞ (6)

with

dethIJ ¼ det!IJ; (7)

where !IJðxÞ is the unit round metric on Sd�2. Surfaces of
constant u are null with topology R� Sd�2 where xI are
coordinates on Sd�2 and R corresponds to the null geo-
desics generators of the surface. These generators are given
by u, xI ¼ constant, and r is a (nonaffine) parameter along
the generators. A, B, CI, and hIJ are functions of all of the
coordinates. It is assumed that, at large r, they be expanded
in inverse powers of r (even d) or

ffiffiffi
r

p
(odd d) with2

A ¼ 1þOðr�ðd=2�1ÞÞ; B ¼ Oðr�d=2Þ;
CI ¼ Oðr�d=2Þ; hIJ ¼ !IJ þOðr�ðd=2�1ÞÞ:

(8)

For odd d it appears that an extra condition is required
(discussed for d ¼ 5 in Ref. [13]). One way of seeing this
is to note that the results of Refs. [8,12] suggest that, for
linearized perturbations of Minkowski spacetime (arising
from compactly supported initial data), the components of
the metric perturbation each will be some half-integer
power of 1=r times a smooth function of 1=r. Hence each
component will involve either integer powers of 1=r or
half-odd-integer powers, but not both. Therefore, the

2Reference [14] took B ¼ Oðr�dÞ, which was obtained by
solving the vacuum Einstein equation. We have weakened this
condition since we do not want to assume vacuum.
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presence of both integer and half-odd-integer powers in the
expansions of individual metric components can be attrib-
uted to nonlinear effects. One would expect these only to
affect terms beyond a certain order in the above expan-
sions. If so, at low enough order, these expansions should
contain only integer powers, or only half-odd-integer
powers. This is indeed the case if one imposes the addi-
tional boundary condition that the expansion of hIJ in
inverse powers of

ffiffiffi
r

p
contains no term of order

r�ðd=2�1=2Þ (see below).

C. Equivalence of definitions for even d

Starting from the Bondi definition, define� ¼ 1=r. It is
straightforward to show that this satisfies the conformal
definition with (conformally flat) background metric

�g ¼ ��2du2 þ 2dud�þ!IJdx
IdxJ: (9)

Now consider a spacetime that is asymptotically flat ac-
cording to the conformal definition. Write the flat metric in
the form

� ¼ �dU2 � 2dUdRþ R2!IJðXÞdXIdXJ: (10)

Now define � ¼ 1=R. The background spacetime is

�g¼�2�¼��2dU2þ2dUd�þ!IJðXÞdXIdXJ: (11)

Iþ is at � ¼ 0 and �> 0 corresponds to the spacetime
interior.

In these coordinates, the definition of asymptotic flatness
reduces to the following conditions on the unphysical
spacetime

~gUU¼��2þOð�d=2þ1Þ; ~gU�¼1þOð�d=2Þ;
~gUI ¼Oð�d=2Þ; ~g��¼Oð�d=2�1Þ;
~g�I ¼Oð�d=2�1Þ; ~gIJ¼!IJþOð�d=2�1Þ;

(12)

and

det~gIJ ¼ det!IJ þOð�d=2Þ: (13)

Now convert to Gaussian null coordinates based on the null
surface Iþ in the unphysical spacetime as follows.
Consider the (past-directed) null geodesic (of ~g) that passes
through the point on Iþ with coordinates ðu; 0; xIÞ and has
tangent vector @=@� there. Let � denote the affine parame-
ter along the geodesic. Since ~g is required to be smooth
near Iþ it follows that the coordinates along the geodesic
are smooth functions of � in a neighborhood of � ¼ 0.
Expanding them in a Taylor series in � and substituting
into the geodesic equations gives

U ¼ uþOð�d=2Þ;
� ¼ �þOð�d=2þ1Þ;
XI ¼ xI þOð�d=2Þ:

(14)

We take ðu; �; xIÞ as new coordinates. In these coordinates,
the unphysical metric is

~g ¼ ½��2 þOð�d=2þ1Þ�du2 þ 2dud�þOð�d=2ÞdudxI
þ ½!IJðxÞ þOð�d=2�1Þ�dxIdxJ; (15)

where all components are smooth at � ¼ 0 and

det~gIJ ¼ det!IJ þOð�d=2Þ: (16)

We now replace � with a nonaffine parameter r defined by

r ¼ ��1

�
det~gIJ
det!IJ

�
1=ð2ðd�2ÞÞ ¼ ��1ð1þOð�d=2ÞÞ; (17)

so

� ¼ r�1ð1þOðr�d=2ÞÞ; (18)

and

��1 ¼ rð1þOðr�d=2ÞÞ: (19)

In coordinates ðu; r; xIÞ the physical metric takes the Bondi
form (6) and (7) with metric coefficients that are smooth
functions of 1=r respecting the fall-off conditions (8).

III. THE WEYLTENSOR

In this section, we determine the asymptotic fall off of
Weyl tensor components for asymptotically flat space-
times, as defined above. We will use Bondi coordinates
since this allows us to treat even and odd d simultaneously.
We perform our calculations using the higher dimensional
Geroch-Held-Penrose (GHP) formalism of Ref. [18] (see
the Appendix for a review).

A. Expansion of metric

We begin with the metric written in Bondi coordinates
(6) and (7). From the definition of asymptotic flatness, we
have [14]3

hIJ ¼ !IJðxÞ þ
X
k�0

hðkþ1Þ
IJ ðu; xÞ
rd=2þk�1

;

A ¼ 1þ X
k�0

Aðkþ1Þðu; xÞ
rd=2þk�1

;

B ¼ X
k�0

Bðkþ1Þðu; xÞ
rd=2þk

;

CI ¼ X
k�0

Cðkþ1ÞIðu; xÞ
rd=2þk

;

(20)

where in all of the summations k 2 Z for even d and 2k 2
Z for odd d. Equation (7) implies that

3Our notation differs slightly from that of Ref. [14], notably in
the expansion coefficients of B.
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!IJhðkþ1Þ
IJ ¼ 0 for k < d=2� 1; (21)

where !IJ is the inverse of !IJ. In particular we have, for
d � 5

!IJhð1ÞIJ ¼ !IJhð3=2ÞIJ ¼ !IJhð2ÞIJ ¼ 0; (22)

and

!IJhð5=2ÞIJ ¼ 0 ðd > 5Þ;

!IJhð5=2ÞIJ ¼ 1

2
hð1ÞIJhð1ÞIJ ðd ¼ 5Þ;

(23)

where all indices on hðkþ1Þ
IJ are raised using !IJ. Some of

the coefficients here have special significance. The Bondi
mass is defined as [14]

MðuÞ ¼ � d� 2

16�

Z
Sd�2

Aðd=2�1Þd!; (24)

where the integral is taken over a sphere at null infinity. In
vacuum it obeys the mass decrease law [14]

_MðuÞ ¼ � 1

32�

Z
Sd�2

_hð1ÞIJ
_hð1ÞIJd!: (25)

This demonstrates that the quantity hð1ÞIJ will be nonzero
when gravitational radiation is present. Reference [14]

showed that hð1ÞIJ is not constrained by the asymptotic
vacuum Einstein equation: it is a free function in the

Bondi approach, just as in 4d [1,2]. _hð1ÞIJ corresponds to
Bondi’s ‘‘news function.’’

B. Null frame and connection components

We choose a null frame ð‘; n;mðiÞÞ for the metric

given by

‘ ¼ mð0Þ ¼ � @

@r
; n ¼ mð1Þ ¼ e�B

�
@

@u
� 1

2
A

@

@r
� CI @

@xI

�
; mðiÞ ¼ eIi

@

@xI
;

‘ ¼ eBdu; n ¼ �
�
drþ 1

2
Adu

�
; mðiÞ ¼ eiIðdxI þ CIduÞ; (26)

where ei form a vielbein for the metric hIJ on Sd�2: hIJ ¼ eiIejJ	ij. We choose this vielbein by using the Gram-Schmidt
algorithm starting from the basis r�1êIi where the vectors ê

I
i ðxÞ form an orthonormal basis for the metric!IJ on S

d�2. This
gives an expansion in inverse powers of r (even d) or

ffiffiffi
r

p
(odd d):

eiI ¼ r

�
êiI þ eð1ÞiI

rd=2�1

�
þOðr�ðd�5Þ=2Þ; eIi ¼ r�1

�
êIi �

eð1ÞIi

rd=2�1

�
þOðr�ðd�1Þ=2Þ; (27)

where 2êiðIe
ð1Þ
jjjJÞ	ij ¼ hð1ÞIJ and eð1ÞIi ¼ !IJeð1ÞiJ .

Using the definition of the connection components given in the Appendix and the null frame given in (26), we find that
the GHP covariant connection components are


i ¼ 0; �ij ¼ � 1

2
eIie

J
j@rðr2hIJÞ; � ¼ �ðd� 2Þ=r; �i ¼ � 1

2
ðei � @Bþ e�BeiI@rC

IÞ


0
i ¼

1

2
e�Bei � @A; �0

ij ¼ �e�BeðijKjejÞ � @CK þ 1

2
eIie

J
jn � @ðr2hIJÞ; �0i ¼ � 1

2
ðei � @B� e�BeiI@rC

IÞ: (28)

The noncovariant coefficients are

L10 ¼ �@rB; L11 ¼ 1

2
e�B@rA; L1i ¼ ��0i M

i

j0 ¼ eI½i@rej�I;

M
i

j1 ¼ e�Be½i � @CKej�K � eI½in � @ej�I; M
i

jk ¼ r2eIie
J
je

K
k @½IhJ�K � eI½iejkj � @ej�I: (29)

Using the asymptotic behavior of the metric components given in (20) gives
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�ij ¼ �	ij

r
þ êIi ê

J
j

4

�
ðd� 2Þ h

ð1Þ
IJ

rd=2
þ ðd� 1Þ hð3=2ÞIJ

rðdþ1Þ=2

�
þOðr�ðdþ2Þ=2Þ; � ¼ �ðd� 2Þ=r;

�0
ij ¼ � 1

2

	ij

r
þ êIi ê

J
j

2

� _hð1ÞIJ

rd=2�1
þ

_hð3=2ÞIJ

rðd�1Þ=2

�
� êIðie

ð1ÞJ
jÞ

_hð1ÞIJ

rd�2
þOðr�d=2Þ;

�0 ¼ � ðd� 2Þ
2r

�
1

r
þ Að1Þ

rd=2�1
þ Að3=2Þ

rðd�1Þ=2

�
þOðr�d=2Þ; 
0

i ¼ Oðr�d=2Þ;

�i ¼ d

4

ê � Cð1Þ

rd=2
þ dþ 1

4

ê � Cð3=2Þ

rðdþ1Þ=2 þOðr�ðd=2þ1ÞÞ; �0i ¼ � d

4

ê � Cð1Þ

rd=2
� dþ 1

4

ê � Cð3=2Þ

rðdþ1Þ=2 þOðr�ðd=2þ1ÞÞ;

(30)

where a dot denotes a partial derivative with respect to u. Also,

L10 ¼ d

2

Bð1Þ

rd=2þ1
þ ðdþ 1Þ

2

Bð3=2Þ

rðdþ3Þ=2 þOðr�ðd=2þ2ÞÞ; L11 ¼ �d� 2

4

Að1Þ

rd=2
� d� 1

4

Að3=2Þ

rðdþ1Þ=2 þOðr�ðd=2þ1ÞÞ;

L1i ¼ Oðr�d=2Þ; M
i

j0 ¼ Oðr�d=2Þ; M
i

j1 ¼ � êIi _e
ð1Þ
jI

rd=2�1
þOðr�ðd�1Þ=2Þ; ði ¼ r�1êi � r þOðr�d=2Þ;

(31)

where rI denotes the covariant derivative induced by !IJ.
Of course, terms with half-odd-integer powers appear only
for odd d.

C. Parallelly transported frame

The null basis introduced above is convenient for calcu-
lations, but it is not parallelly transported along the geo-
desics. A parallelly transported basis is one for which,
in addition to the geodesic equation 
i ¼ 0, we have

�0i ¼ L10 ¼ M
i

j0 ¼ 0. Any such basis will be related to

ours by a boost, spin and null rotation (see the

Appendix). Let ð‘̂; n̂; m̂iÞ be such a basis. ‘̂must be parallel

to ‘, with the coefficient fixed by requiring that ‘̂ corre-
spond to affine parametrization of the geodesics, ensuring


̂i ¼ L̂10 ¼ 0. This gives ‘̂ ¼ e�B‘, corresponding to a
boost with parameter e�B. �0i is invariant under a boost and
transforms covariantly under a spin. But under a null
rotation with parameters zi it transforms inhomogeneously
[18] so zi is determined by �̂0i ¼ 0. This gives

zi ¼ ci þOðr�ðd=2�1ÞÞ; (32)

where the parameters ci are independent of r. Finally, M
i

j0

transforms homogeneously under a boost and trivially
under a null rotation but inhomogeneously under a spin.

Requiring vanishing M̂
i

j0 determines the spin matrix to be

Xij ¼ Oij þOðr�ðd=2�1ÞÞ; (33)

where Oij is a r-independent orthogonal matrix.

Our strategy will be to determine curvature components
in the basis defined previously and then transform our
results to a parallelly transported frame by first performing

a boost with parameter e�B ¼ 1þOðr�d=2Þ, then a null

rotation with parameters zi and finally a spin with parame-
ters Xij as given above.

D. Calculation of curvature components

In the GHP formalism the Weyl tensor components are
denoted

�ij ¼ C0i0j; �ijk ¼ C0ijk; �i ¼ C010i ¼ �jij;

�ijkl ¼ Cijkl; �ij ¼ C0i1j; � ¼ �ii ¼ C0101;

ð2�S
ij ¼ 2�ðijÞ ¼ ��ikjk; 2�

A
ij ¼ 2�½ij� ¼ C01ijÞ;

�0
ij ¼ C1i1j; �0

ijk ¼ C1ijk; �0
i ¼ C101i ¼ �0

jij

(34)

and the Ricci tensor components are

! ¼ R00; c i ¼ R0i; �ij ¼ Rij;

� ¼ R01; c 0
i ¼ R1i; !0 ¼ R11: (35)

The Newman-Penrose equations (see the Appendix) are
used to determine all of these quantities except for those of
boost weight zero (i.e. those written with the letters � or
�). To determine the latter, we used the Bianchi Eq. (A16)
from the Appendix.4

E. Results: even d

In our basis (26), we find that the Ricci tensor compo-
nents are smooth functions of 1=r with

4This involves an integration with respect to r, introducing a
homogeneous term decaying as 1=r into the boost weight zero
quantities. This is not compatible with asymptotic flatness so the
coefficient of this term must vanish. This could be shown e.g. by
using the commutator (C3) of Ref. [18].
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! ¼ Oðr�ðd=2þ2ÞÞ; c i ¼ Oðr�ðd=2þ1ÞÞ;
�ij ¼ Oðr�ðd=2þ1ÞÞ; � ¼ Oðr�ðd=2þ1ÞÞ;
c 0

i ¼ Oðr�d=2Þ; !0 ¼ Oðr�d=2Þ:
(36)

The Weyl tensor components are smooth functions of 1=r
with

�ij ¼ �ðd� 2Þðd� 4Þ
8

êIi ê
J
jh

ð1Þ
IJ

rd=2þ1
þOðr�ðd=2þ2ÞÞ;

�ijk ¼ Oðr�ðd=2þ1ÞÞ; �i ¼ Oðr�ðd=2þ1ÞÞ;
�A

ij ¼ Oðr�ðd=2þ1ÞÞ; � ¼ Oðr�ðd=2þ1ÞÞ;

�S
ij ¼ �ðd� 4Þ

4

êIi ê
J
j
_hð1ÞIJ

rd=2
þOðr�ðd=2þ1ÞÞ;

�ijkl ¼ ðêIi êJ½k	l�j � êIjê
J
½k	l�iÞ

_hð1ÞIJ

rd=2
þOðr�ðd=2þ1ÞÞ;

�0
ijk ¼ Oðr�d=2Þ; �0

i ¼ Oðr�d=2Þ;

�0
ij ¼ � 1

2

êIi ê
J
j
€hð1ÞIJ

rd=2�1
þOðr�d=2Þ:

(37)

Recall that hð1ÞIJ is nonzero in any spacetime containing
outgoing gravitational radiation, and it is not determined
by the asymptotic Einstein equation.

Now we transform to a parallelly transported frame as
determined above. The boost and spin are easy to deal with
since the curvature components transform covariantly with
respect to these. Formulas for the transformation under a
null rotation are given in the Appendix. Using these results,
we see that the transformation to a parallelly transported
frame does not change any of these results (aside
from acting with the rotation matrix Oij on the indices

i, j, k, etc.).
Finally, we have to convert from our parameter r to an

affine parameter along the geodesics. Denote the latter by
�. Then (up to the freedom to multiply by a quantity
independent of r)

� ¼
Z

eBdr ¼ rþ cþOðr�ðd=2�1ÞÞ; (38)

where c is independent of r. Inverting gives

r ¼ �� cþOð��ðd=2�1ÞÞ: (39)

If we substitute this into the above expressions for theWeyl
components, then they become smooth functions of 1=�
with leading order behavior given by replacing r with � in
these expressions. Hence the leading order term in the

Weyl tensor is of order ��ðd=2�1Þ and the only nonvanishing
components at this order are �0

ij, which [from (37)] is

generically nonzero. But this is precisely the definition of
a typeN Weyl tensor with ‘ (the tangent to the geodesics) a
multiple WAND [17].

The next nonvanishing terms in the Weyl arise at order

��d=2. Such terms can arise from �0
ij, �

0
ijk, �

0
i, �ijkl, and

�S
ij. So, at this order, we have �ij ¼ �ijk ¼ �i ¼ 0 and

hence the Weyl tensor is type II with multiple WAND ‘. It
cannot be type III because (37) shows that �S

ij is generi-

cally nonvanishing. However, it is not the most general
possible type II Weyl tensor because (37) shows that it has
vanishing � and �A

ij.

After this, we have terms of order ��ðd=2þ1Þ. At this
order, any of the Weyl components can be nonzero. In
particular, the above expression shows that �ij is generi-

cally nonzero, which implies that the Weyl tensor at this
order is type G (i.e. ‘ is not a WAND).
In summary, for even d > 4, we have demonstrated

that, in a spacetime satisfying the definition of asymptotic
flatness at null infinity of Refs. [8,14], the Weyl tensor
exhibits the peeling behavior described around Eq. (2),
with the type II part obeying the additional conditions
� ¼ �A

ij ¼ 0.

When d ¼ 4, our results for �0
ij, �0

ijk, and �0
i are

consistent with the 4d peeling property. The boost weight
zero terms also are consistent: in 4d, all such terms are

determined by � and �A
ij, which vanish at order ��d=2 ¼

��2. Hence at order ��2 we have a Weyl tensor of type III
instead of type II. More explicitly, in 4d, �ijkl is deter-

mined by its trace�S
ij. But the first term in the expansion of

�S
ij in (37) comes with a coefficient of d� 4. Similar

results hold for the other Weyl components (e.g. the above
expression for�ij has a factor d� 4). This is why peeling

is qualitatively different when d ¼ 4.

F. Results: Odd d

As discussed above, for odd d there is an additional
condition in the definition of asymptotic flatness at future

null infinity, that the term of order r�ðd=2�1=2Þ in the ex-
pansion of hIJ should be absent, i.e.,

hð3=2ÞIJ ¼ 0: (40)

With this condition, we find that the results (36) and (37)
for the Ricci andWeyl components are valid also for odd d,
with the understanding that these formulas now refer to
expansions in inverse powers of

ffiffiffi
r

p
. [Without (40), there

would be e.g. a term of order r�ðd=2�1=2Þ in the expansion of
�0

ij.] Following the same steps as for even d, converting to

a parallelly transported frame and affine parametrization,
we find, just as before, that the leading components of

the Weyl tensor arise at order ��ðd=2�1Þ and this term is

type N as before. There are no terms at order ��ðd=2�1=2Þ

so the next term is at order ��d=2 which is type II with
�A

ij ¼ � ¼ 0, again as for even d.
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A difference between even and odd d arises at next order: for odd d there is the possibility of terms of order r�ðd=2þ1=2Þ.
For example, we find that

�0
ij þ

!0

d� 2
	ij ¼ � 1

2
r�ðd=2�1ÞêIi êJj €h

ð1Þ
IJ þ r�d=2Yij þ 1

4
r�ðd�2Þð4êIðieð1ÞJjÞ €hð1ÞIJ þ êIi ê

J
j!

KL _hð1ÞIK
_hð1ÞJLÞ

� 1

2
r�ðd=2þ1=2ÞðêIi êJj €hð5=2ÞIJ � _Að3=2Þ	ij � 2êijKjêjÞ � r _Cð3=2ÞKÞ þOðr�ðd=2þ1ÞÞ; (41)

where Yij is a quantity whose explicit form wewill not need. TheWeyl components�0
ij are obtained by taking the traceless

part of this equation and the Ricci component !0 by taking the trace. We have retained a term of order r�ðd�2Þ because
r�ðd�2Þ ¼ r�ðd=2þ1=2Þ if d ¼ 5.

The only other Weyl components containing terms of order r�ðd=2þ1=2Þ are �0
ijk and �0

i, which can be obtained from

�0
ijk þ

2

d� 2
c 0

½j	k�i ¼ r�d=2êIi ê
J
½jêk� � r _hð1ÞIJ þOðr�ðd=2þ1ÞÞ;

�0
i �

1

d� 2
c 0

i ¼
d

4
r�d=2êi � _Cð1Þ þ ðdþ 1Þ

4
r�ðd=2þ1=2Þêi � _Cð3=2Þ þOðr�ðd=2þ1ÞÞ;

(42)

where the Weyl and Ricci components can be disentangled
by taking a trace of the first equation and combining with
the second equation.

We will now argue that terms of order r�ðd=2þ1=2Þ can be
eliminated for d > 5 by exploiting the Einstein equation
(which we did not use for even d). We will assume that the
Ricci tensor (and hence the energy-momentum tensor)
decays faster near infinity than the rate which is given by
asymptotic flatness alone [Eq. (36)]. The rate that we
require is faster by a factor 1=r:5

! ¼ Oðr�ðd=2þ3ÞÞ; c i ¼ Oðr�ðd=2þ2ÞÞ;
�ij ¼ Oðr�ðd=2þ2ÞÞ; � ¼ Oðr�ðd=2þ2ÞÞ;
c 0

i ¼ Oðr�ðd=2þ1ÞÞ; !0 ¼ Oðr�ðd=2þ1ÞÞ:
(43)

Imposing these conditions implies that the first few coef-
ficients in the expansions of the metric components must
satisfy the same equations as in a vacuum spacetime, as
determined in Ref. [14]:

Bð1Þ ¼0; Að1Þ ¼� 2

d�2
r�Cð1Þ ¼� 4

dðd�2Þr
IrJhð1ÞIJ ; Cð1ÞI¼ 2

d
rJh

ð1ÞIJ;
8<
:

_Að3=2Þ ¼ 1
6
_hð1ÞIJ _hð1ÞIJ d¼5

Að3=2Þ ¼0 d>5
; Bð3=2Þ ¼

8<
:� 1

16h
ð1ÞIJhð1ÞIJ d¼5

0 d>5
; Cð3=2ÞI¼0; _hð5=2ÞIJ ¼

8<
:
!KLhð1ÞKðI _h

ð1Þ
JÞL d¼5

0 d>5
; (44)

and an equation relating _hð2ÞIJ to Að1Þ,Cð1ÞI and hð1ÞIJ . Note that
the asymptotic Einstein equation implies no restriction on
hð1ÞIJ . Recall that for d ¼ 5, Að3=2Þ determines the Bondi
mass via (24).6

Using these results, we see that the term of order

r�ðd=2þ1=2Þ in (42) is absent and hence such terms do not
appear in �0

ijk and �0
i. However, terms of this order are

absent from (41) if, and only if, d > 5. Hence, for d > 5,
such terms are absent from �0

ij. Transforming to a

parallelly transported frame and affine parametrization,

similar arguments to those used for the even d case estab-
lish the peeling result given in Eq. (2) for odd d > 5. As for
even d, the type II term obeys the additional restrictions
�A

ij ¼ � ¼ 0.

Finally, we must discuss the d ¼ 5 case. For d ¼ 5,

terms of order r�ðd=2þ1=2Þ ¼ r�3 do not drop out of
�0

ij:

�0
ij ¼ � 1

2

êIi ê
J
j
€hð1ÞIJ

r3=2
þ Yij

r5=2
� 1

2r3

�
êIi ê

J
j

�
!KLhð1ÞIK

€hð1ÞJL

þ 1

2
!KL _hð1ÞIK

_hð1ÞJL � 1

6
!IJ

_hð1ÞKL _hð1ÞKL

�

� 2êIðie
ð1ÞJ
jÞ €hð1ÞIJ

�
þOðr�7=2Þ: (45)

Note that the coefficient of r�3 is quadratic in hð1ÞIJ and
its time derivatives and hence generically it is nonzero
if gravitational radiation is present.
Now we must transform to a parallelly transported

frame. As for d > 5, the boost and null rotation do not

5For d > 5, the constraints on !, c i, and �, necessarily imply
the constraints on c 0

i and !0. For d ¼ 5, the constraint on c i
implies the constraint on c 0

i.
6Note also that _hð5=2ÞIJ ¼ 0 for d > 5 implies that one can

impose the additional boundary condition hð5=2ÞIJ ¼ 0 for d > 5.
Reference [14] examined the vacuum Einstein equations to
higher order and the results suggest that the definition of
asymptotic flatness for odd d should be augmented with the
condition hðkþ1Þ

IJ ¼ 0 for k ¼ 1=2; 3=2; . . . ; d=2� 2, although
we will not assume any more than (40).
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change our results. But note that the spin matrix (33)

involves a term of order r�3=2. Hence when the spin acts
on�0

ij this term will combine with the leading term in�0
ij

to produce a new term of order r�3 in �̂0
ij. Could this new

term cancel the terms already present? Generically, no: the

new term will involve €hð1ÞIJ , whereas some of the terms

already present involve only first derivatives of hð1ÞIJ .

Since _hð1ÞIJ is a free function in the Bondi approach, these
terms will not cancel in general. For example, one could

choose €hð1ÞIJ to be zero somewhere, with _hð1ÞIJ nonzero.
The last step is to convert to affine parametrization using

(39), which does not change anything. We conclude that
for d ¼ 5, the Weyl tensor satisfies the peeling property (3)
described in the introduction. Again the type II term obeys
the additional restrictions �A

ij ¼ � ¼ 0.

IV. BONDI FLUX

In 4d, the rate of decrease of the Bondi energy at future
null infinity is given in terms of the Newman-PenroseWeyl
scalar �4 as

_MðuÞ ¼ � lim
r!1

r2

4�

Z
S2

��������
Z u

�1
�4ðû; r; xÞdû

��������
2

d!; (46)

where d! is the volume element on a unit S2. In d > 4
dimensions, the rate of decrease of the Bondi energy at
future null infinity is given by (25) [14]. We can rewrite this
in terms of �0

ij (the analogue of �4) as follows. Assume

that the Bondi flux vanishes in the far past, i.e. _hð1ÞIJ ! 0 as
u ! �1. Then from (37) (which holds for even or odd d),
we have

êIi ê
J
j
_hð1ÞIJ ðu; xÞ ¼ �2lim

r!1r
d=2�1

Z u

�1
�0

ijðû; r; xÞdû; (47)

and hence

_MðuÞ ¼ � lim
r!1

rd�2

8�

Z
Sd�2

�Z u

�1
�0

ijðû; r; xÞdû
�
2
d!;

(48)

where d! is the volume element on a unit Sd�2 and
ðYijÞ2 � YijYij. In practice, the right-hand side is computed

by choosing coordinates so that the asymptotic metric
takes the form

ds2 ��du2 � 2dudrþ r2d!2: (49)

One then chooses a null vector field n that approaches
�ð@=@u� 1

2@=@rÞ asymptotically (the sign does not mat-

ter here) and a set of orthonormal spacelike vectors mðiÞ
(i ¼ 2; . . . d� 1) such that n �mðiÞ ¼ 0. Then �0

ij ¼
Cabcdn

amb
ðiÞn

cmd
ðjÞ.

V. DISCUSSION

We derived our result using Bondi coordinates since this
allows us to treat even and odd d together for much of the
analysis. However, for even d it would be more elegant to
derive the peeling property using the conformal approach.
It would be nice to see this worked out.
For odd d > 5, our result (2) involves only inverse half-

odd-integer powers of �. Inverse integer powers will
appear if one continues to higher orders in the expansion.
It would be interesting to know at what order inverse
integer powers first appear. If one strengthens the definition
of asymptotic flatness as suggested in footnote 6, then it
seems likely that the first such terms will appear at order

��ðd�2Þ, in agreement with our result for d ¼ 5.
Reference [19] studied asymptotically flat solutions in

d > 4 dimensions that are algebraically special. It was
found that the latter condition is incompatible with gravi-
tational radiation (in contrast with the d ¼ 4 case). We can
see a similar result here: if ‘ is a WAND then �ij must

vanish. For d > 4, (37) then requires hð1ÞIJ ¼ 0, which im-
plies vanishing Bondi energy flux, i.e., no gravitational
radiation.
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A. HIGHER DIMENSIONAL GHP FORMALISM

In this appendix, we review the higher dimensional GHP
formalism of [18]. Given a background solution, we
choose a null frame ð‘; n;mðiÞÞ such that in this frame,

the metric takes the form

g�� ¼ 2‘ð�n�Þ þmðiÞ�mðiÞ�: (A1)

In the GHP formalism, one breaks complete covariance
by singling out two null directions (‘ and n) at each point,
but preserves covariance in the remaining directions. This
is in contrast to the NP formalism where none of the
covariance is preserved.
At any point, the Lorentz group is generated by
(i) boosts (� a real function):

‘ ! �‘; n ! ��1n; mðiÞ ! mðiÞ; (A2)

(ii) spins (Xij 2 SOðd� 2Þ):
‘ ! ‘; n ! n; mðiÞ ! XijmðjÞ; (A3)
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(iii) null rotations about ‘ (zi d� 2 real functions):

‘ ! ‘; n ! nþ zimðiÞ � 1

2
z2‘;

mðiÞ ! mðiÞ � zi‘;
(A4)

where � � 0 and Xij is some position-dependent orthogo-

nal matrix.
We would like to keep the subgroup that preserves the

null directions, i.e. the subgroup given by boosts and
spatial rotations, or spins. Thus, we would like to work
with objects that transform covariantly under this
subgroup.

A GHP scalar of boost weight b and spin s is a scalar
�i1...is that transforms covariantly as

�i1...is ! �b�i1...is (A5)

under boosts and

�i1...is ! Xi1j1 � � �Xisjs�j1...js (A6)

under spins. Evidently, the product of two GHP scalars of
boost weights b1 and b2 and spins s1 and s2, respectively,
gives a GHP scalar of boost weight b1 þ b2 and spin
s1 þ s2.

Denote the covariant derivatives of the basis vectors as

L�� ¼ r�‘�; N�� ¼ r�n�; M
i

�� ¼ r�mðiÞ�;
(A7)

Not all the scalars formed from the projection of these
objects into the basis are GHP scalars. Those that are GHP
scalars are listed in Table I [18].

Notice that we have used a prime operation, which
interchanges the null basis vectors

0 : ‘ $ n: (A8)

For a GHP scalar �i1...is of boost weight b and spin s, we

define its GHP covariant derivatives to be7

þTi1i2...is � ‘ � @Ti1i2...is � bL10Ti1i2...is

þ Xs
r¼1

M
k

ir0Ti1...ir�1kirþ1...is ; (A9)

þ0Ti1i2...is � n � @Ti1i2...is � bL11Ti1i2...is

þ Xs
r¼1

M
k

ir1Ti1...ir�1kirþ1...is ; (A10)

ðiTj1j2...js � mðiÞ � @Tj1j2...js � bL1iTj1j2...js

þ Xs
r¼1

M
k

jriTj1...jr�1kjrþ1...js : (A11)

GHP versions of the ‘‘Newman-Penrose’’ and Bianchi
equations are given in Ref. [18]. We will need the NP
equations:

þ�ij � ðj
i ¼ ��ik�kj � 
i�
0
j � �i
j ��ij

� 1

d� 2
!	ij; (A12)

þ�i � þ0
i ¼ �ijð��j þ �0jÞ ��i þ 1

d� 2
c i; (A13)

2ð½jj�ijk� ¼ 2�i�½jk� þ 2
i�
0
½jk� ��ijk � 1

d� 2
c ½j	k�i;

(A14)

þ0�ij � ðj�i ¼ ��i�j � 
i

0
j � �ik�

0
kj ��ij � 1

d� 2

�ð�ij þ�	ijÞ þ �kk þ 2�

ðd� 1Þðd� 2Þ	ij:

(A15)

Another four equations can be obtained by taking the
prime 0 of these four (i.e. by exchanging the vectors ‘
and n). We also need the following components of the
Bianchi identity:

TABLE I. GHP scalars constructed from covariant derivatives of the basis vectors.

Spin coefficient GHP notation Boost weight b Spin s Interpretation

Lij �ij 1 2 Expansion, shear, and twist of ‘
Lii � ¼ �ii 1 0 Expansion of ‘
Li0 
i 2 1 Nongeodesity of ‘
Li1 �i 0 1 Transport of ‘ along n
Nij �0

ij �1 2 Expansion, shear, and twist of n
Nii �0 ¼ �0

ii �1 0 Expansion of n
Ni1 
0

i �2 1 Nongeodesity of n
Ni0 �0i 0 1 Transport of n along l

7Symbols þ and ð, pronounced ‘‘thorn’’ and ‘‘eth,’’ respec-
tively, are old Germanic letters that have been retained in the
Icelandic alphabet.
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� þ ~�ijkl þ 2ð½k ~�l�ij
¼ �2 ~�0

½ijkl
jj� � 2 ~�0
½kjij
jl� þ 4 ~�A

ij�½kl�

� 2 ~�½kji�jjl� þ 2 ~�½kjj�ijl� þ 2 ~�ij½kjm�mjl�
� 2 ~�½ijkl�0jj� � 2 ~�½kjij�0jl� � 2 ~�i½kj�0

jjl� þ 2 ~�j½k�0
ijl�;

(A16)

where the tilde notation indicates components of the
Riemann tensor analogously defined to those of the com-
ponents of the Weyl tensor given in (34). The relation of
these components to the components of the Weyl and Ricci
tensors is given by the definition of the Weyl tensor as the
trace-free part of the Riemann tensor

�ij ¼ ~�ij � !

d� 2
	ij; �ijk ¼ ~�ijk � 2

d� 2
c ½j	k�i;

�i ¼ ~�i þ 1

d� 2
c i;

�ijkl ¼ ~�ijkl � 2

d� 2
ð�i½k	l�j ��j½k	l�iÞ

þ 2

ðd� 1Þðd� 2Þ ð2�þ�mmÞ	i½k	l�j;

�ij ¼ ~�ij � 1

d� 2
ð�	ij þ�ijÞ þ ð2�þ�mmÞ

ðd� 1Þðd� 2Þ	ij;

� ¼ ~�þ 2�

d� 1
� �ii

ðd� 1Þðd� 2Þ ;

�0
ij ¼ ~�0

ij � !0

d� 2
	ij; �0

ijk ¼ ~�0
ijk � 2

d� 2
c 0

½j	k�i;

�0
i ¼ ~�0

i þ 1

d� 2
c 0

i: (A17)

Null rotations

Under a null rotation about ‘ of the form given by
Eq. (A4) the Weyl tensor components transform as

�ij � �ij; (A18)

�i � �i þ�ijzj; (A19)

�ijk � �ijk þ 2�i½jzk�; (A20)

� � �þ 2zi�i þ zi�ijzj; (A21)

�ij � �ij þ zj�i þ zk�ikj þ Zjk�ik; (A22)

�ijkl � �ijkl � 2z½k�l�ij � 2z½i�j�kl
� 2zjz½k�l�i þ 2ziz½k�l�j; (A23)

�0
i � �0

i � zi�þ 3�A
ijzj ��S

ijzj � 2Zij�j

� Zjk�jki � zjZik�jk; (A24)

�0
ijk � �0

ijk þ 2z½k�j�i þ 2zi�
A
jk þ zl�lijk þ 2ziz½k�j�

þ 2zlz½k�j�li þ Zil�ljk þ 2Zilz½k�j�l; (A25)

�0
ij � �0

ij � 2zðj�0
iÞ þ 2zk�

0
ðijkjjÞ þ 2Zðijk�kjjÞ þ zizj�

� 4zkzði�A
jÞk þ zkzl�kilj þ 2zðiZjÞk�k

þ 2zlZðijk�kljjÞ þ ZikZjl�kl: (A26)
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