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The possibility that the apparent anomalous acceleration of the Pioneer 10 and 11 spacecrafts may be

due, at least in part, to a chameleon field effect is examined. A small spacecraft, with no thin shell, can

have a more pronounced anomalous acceleration than a large compact body, such as a planet, having a thin

shell. The chameleon effect seems to present a natural way to explain the differences seen in deviations

from pure Newtonian gravity for a spacecraft and for a planet, and it appears to be compatible with the

basic features of the Pioneer anomaly, including the appearance of a jerk term. However, estimates of the

size of the chameleon effect indicate that its contribution to the anomalous acceleration is negligible. We

conclude that any inverse square component in the anomalous acceleration is more likely caused by an

unmodeled reaction force from solar radiation pressure rather than a chameleon field effect.
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I. INTRODUCTION

The Pioneer anomaly refers to an anomalous accelera-
tion of the Pioneer 10 and 11 spacecrafts that has been
inferred for large heliocentric distances of �20–70 AU,
resulting from the presence of an anomalous Doppler shift
[1–3]. This small anomalous acceleration ~aP, which is a
deviation from the prediction of the Newtonian accelera-
tion ~aN , had previously been taken to have been an
essentially constant acceleration with a magnitude of
aP ¼ 8:74� 1:33� 10�10 m=s2. Recently, however, an
analysis of more complete data sets has supported the
conclusion that the anomalous Pioneer acceleration ~aP
actually decreases with time with a temporal decay rate
of magnitude _aP � 1:7� 10�11 m=s2=yr [4]. This anoma-
lous acceleration is seen to act on both the Pioneer 10 and
11 spacecrafts and is directed sunward. In contrast, there
appear to be no such anomalous accelerations exhibited by
planetary motions, disfavoring a gravitational explanation,
unless there is a modified theory of gravity where small
objects such as spacecraft are affected differently than
planets.

There have been many attempts to explain the anomaly,
either due to mundane causes or on the basis of new
physics (see, e.g., Ref. [3] and references therein).
However, it is possible that some combination of both of
these gives rise to the anomaly. Attention here is focused
on the possibility that the previously mentioned features of
the Pioneer anomaly may be explained, in a rather natural
way, by the chameleon effect [5,6]. For an outward-bound
spacecraft trajectory, the chameleonic acceleration

decreases with distance from the Sun and is therefore
expected to give rise to a nonzero jerk term.
The basic aspects of the original Khoury-Weltman cha-

meleon model are briefly reviewed, along with the expres-
sion for the chameleonic acceleration of a thick-shelled
spacecraft, due to the thin-shelled sun. The basic features
of the Pioneer anomaly are presented and compared with
those of the chameleon model. Numerical estimates are
made, including an estimate of the thin-shell factor for the
Sun, allowing a rough determination of the chameleonic
acceleration. It is concluded that for a chameleon-matter
coupling constant of order unity, ��Oð1Þ, the chameleon
acceleration is negligible in comparison to the anomalous
Pioneer acceleration and the chameleonic jerk term is
negligible in comparison to that reported recently in
Ref. [4]. In addition, we simply apply Solar System con-
straints on the parameterized post-Newtonian (PPN) pa-
rameter � obtained from the Cassini mission [7,8],
ignoring assumptions concerning the chameleon coupling
to matter and estimates of the Sun’s thin-shell factor, and
again find that the chameleonic acceleration, along with
the chameleonic jerk term, are negligible in comparison to
those reported for the Pioneer anomaly. We conclude that
an explanation of the Pioneer anomaly must likely lie
elsewhere.

II. AN INVERSE SQUARE COMPONENT
IN RECENT MEASUREMENTS OF

THE PIONEER ANOMALY

In a recent paper, Turyshev et al. [4] analyze archived
radio Doppler data extending back to February 14, 1979 for
Pioneer 10 and January 12, 1980 for Pioneer 11. They
produce a record of unmodeled radial acceleration ar at a
two-year sample interval for both spacecraft. We plot these
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accelerations as a function of radial distance from the Sun
in Fig. 1. The plotted points can be fit with a simple inverse
square curve for each spacecraft, as shown by the two solid
lines. When this inverse square component is removed, the
resulting accelerations are consistent with the constant
value reported previously [2]. In addition, the longer ob-
servation interval reveals a residual linear decrease in the
acceleration of ð�0:024� 0:005Þ � 10�10 m s�2 per as-
tronomical unit (AU), much smaller than what was inferred
by Turyshev et al. from the ar data without the removal of
the inverse square curves. This inverse square component
is most likely a result of a mismodeling of solar radiation
pressure acting on the spacecraft. It is unlikely that it
results from nonisotropic thermal emission from the space-
craft. Based on a model of the spacecraft, including its
power subsystem, Anderson et al. [2] conclude that the
thermal contribution is ð0:55� 0:55Þ � 10�10 m s�2 di-
rected toward the Sun, and they account for it as a mea-
surement bias in their determination of the magnitude of
the anomalous acceleration. It is difficult to argue for any-
thing more than a three-sigma thermal effect, or a maxi-
mum contribution of 2:2� 10�10 m s�2, 25% of the total
anomaly. The model used by Anderson et al. [2] is given
some credence by its successful application to the Cassini
spacecraft, where the observed decrease in orbital energy is
consistent with the model [9]. Even so, based on their own
spacecraft model, Francisco et al. [10] claim that the
anomaly is 100% thermal. In the following, we address
the possibility that the observed inverse square decrease in

the measured acceleration could indeed be a part of the
anomaly. By means of calculations based on the so-called
chameleon effect, we conclude that this is unlikely.

III. CHAMELEON EFFECT

A. Equations of Motion

Basic features of the original chameleon model pro-
posed by Khoury and Weltman in Refs. [5,6] are summa-
rized here, beginning with the Einstein frame (EF) action

S ¼
Z

d4x
ffiffiffi
g

p �
1

2�2
R½g��� þ 1

2
g��@��@��� Vð�Þ

�
þ Sm½A2ð�Þg��; c �; (3.1)

where Sm is the matter portion of the action containing the
chameleon scalar � along with other fields represented
collectively by c . A metric with signature ðþ;�;�;�Þ
is used and Að�Þ ¼ e��� ¼ expð��=M0Þ, with � a di-
mensionless coupling parameter, assumed to be of order

unity, � ¼ ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ 1=M0, where M0 is the reduced
Planck mass. The EF metric g�� is related to the Jordan

frame (JF) metric ~g�� by ~g�� ¼ A2g��. The matter portion

of the action is

Sm ¼
Z

d4x
ffiffiffi
~g

p
~Lmð~g��; c Þ

¼
Z

d4x
ffiffiffi
g

p
Lm½A2ð�Þg��; c �: (3.2)

The action Eq. (3.1) gives rise to the equations of motion
(EoM)

R�� � 1

2
g��R ¼ ��2T �� ¼ ��2½T �

�� þT m
���

h�þ @V

@�
� � ¼ 0;

du�

ds
þ ��

	�u
	u� � 1

m
@�m½g�� � u�u�� ¼ 0; (3.3)

where � � @Lm

@� . For nonrelativistic matter, � ¼
���
EF ¼ ��� �
Að�Þ, where 
EF ¼ T m is the EF mat-
ter energy density and �
 ¼ 
EFA

�1ð�Þ is a� independent,
conserved energy density in the EF. The EoM for � can
therefore be written in the form

h�þ @V

@�
þ �� �
Að�Þ ¼ 0 (3.4)

and there is an effective potential Veffð�Þ ¼ Vð�Þ þ
�
Að�Þ ¼ Vð�Þ þ �
e���. Assuming a positive value of
�, and Vð�Þ to be a runaway potential, say of the form V ¼
M5=� (see, e.g., Ref. [5]), Veff develops a minimum at a
value of �min, which depends on the local energy density
�
. A large �
 results in a large chameleon mass m2

� ¼
V00
effð�minÞ, while a small �
 results in a small mass m�.

Also note that there is an extra term involving
@�ðlnmÞ ¼ @�ðlnAð�ÞÞ in the ‘‘geodesic’’ equation above.
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FIG. 1. Measured values of unmodeled radial acceleration ar
(in units of 10�10 m s�2) according to Turyshev et al. [4], but
plotted as a function of radial distance r in astronomical units
(AUs) rather than time. The two fitting curves are given by the
function k0 þ k1rþ k2=r

2, where k1 is set to zero for Pioneer 11.
The two dashed lines indicate the radii at the beginning of 1987.
No data prior to 1987 were used in obtaining the anomalous
acceleration of ð8:74� 1:33Þ � 10�10 m s�2 reported by
Anderson et al. [2], although after subtraction of the inverse
square component k2=r

2 and with a reported measurement bias
of 0:90� 10�10 m s�2 added in [2], the resulting accelerations
are well within the standard error of the 2002 result.
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This arises from the fact that a test mass having a constant
value m0 in the JF corresponds to a �-dependent mass
m ¼ m0Að�Þ in the EF [11].

We will consider� ¼ �ðrÞ to be a static weak field with
a dependence upon the radial distance from some source
massM, which generates a Schwarzschild metrical gravity
field, with g00 ¼ ð1� rS

r Þ ¼ ð1� 2GM
r Þ. The EoM in the

Newtonian limit (weak field, static limit, with nonrelativ-
istic particle motion) yield

r2h00 ¼ 2�2

�
T 00 � 1

2
T �

�

�

r2�� @V

@�
� �� �
Að�Þ ¼ 0

d2 ~x

dt2
¼ � 1

2
rh00 �rðlnAÞ

(3.5)

Remarks.—
(1) There are two contributions to the acceleration

~a of a test mass: the metric or Newtonian part, ~aN ¼
�rð12h00Þ, and the scalar chameleon part, ~ac ¼
�rðlnAÞ ¼ ���r�. So from the geodesic equa-
tion above, ~a ¼ ~aN þ ~ac.

(2) Assuming a chameleon-type model as described by
Khoury and Weltman [5,6], where Vð�Þ is a de-
creasing function of � and Að�Þ is an increasing
function, the vacuum value �c gets shifted to
smaller values when �
 increases. The chameleon
mass is given by m2

� ¼ V00
effð�Þ ¼ V 00ð�Þ þ

�2�2 �
e���. The mass m� is large where �
 is large

(and therefore the� field is short-ranged), but where
�
 becomes very small, m� is very small, and the �

field becomes nearly massless and long-ranged.
Therefore, Earth-based gravity differs from deep
space–based gravity.

(3) For a Schwarzschild metric, the Newtonian gravita-
tional field is

~aN ¼ � 1

2
rg00 ¼ � 1

2
r
�
1� 2GM

r

�

¼ �GM

r2
r̂ ¼ � rS

2r2
r̂ (3.6)

and the chameleon ‘‘anomaly’’ is

~ac ¼ ���r� ¼ ���ð@r�Þr̂;
� ¼ ffiffiffiffiffiffiffiffiffiffi

8�G
p ¼ 1=M0: (3.7)

(4) For a central mass M located at ~x ¼ 0, the matter

part of T �� is T m
�� ¼ �0

��
0
�M�ð3Þð ~xÞ and the

chameleon field part is T �
�� ¼ @��@���

��½12	�@	�@��� Vð�Þ�, with T ��
� ¼

ðr�Þ2þ4Vð�Þ. Then the� contribution to the right
side of the first equation in Eq. (3.5) is

T �
00 �

1

2
T ��

� ¼ �Vð�Þ for
rS
r
� 1: (3.8)

Inputting the Schwarzschild metric means that the
stress-energy of the chameleon field is assumed to have a
negligible effect on the metric outside of a source, like the
Sun, where r 	 rS ¼ 2GM. This is expected to be the case
for small �
, large �, and small V.

B. The Chameleon Field

We adopt the chameleon model proposed by Khoury and
Weltman in Refs. [5,6] and borrow their results. We con-
sider a compact uniform spherical massMc with radius Rc.
The exterior solution for the chameleon field (see Eq. (26)
in Ref. [5]) is approximately given by

� ¼ �C

r
e�m1ðr�RcÞ þ�1; (3.9)

wherem1 is the chameleon mass outside of the object,�1
is the value of � that minimizes Veff outside of the object,
and the density profile is given by

�
 ¼
(
�
c; r < Rc

�
1; r > Rc

)
: (3.10)

Inside the object, Veff is minimized by �c and the chame-
leon mass is mc. The constant C takes a value

C ¼ ��Mc

4�

8>>><
>>>:
�
3�Rc

Rc

�
; thin shell; �R

R � 1

1; thick shell; �R
R > 1

9>>>=
>>>;: (3.11)

We define �c ¼ �Rc=Rc, which is given by (see
Eq. (16) of Ref. [5])

�c ¼ �Rc

Rc

¼ �1 ��c

6�M0�c

; (3.12)

where�c ¼ Mc=8�M
2
0Rc ¼ GMc=Rc is the Newtonian

potential at the surface of the sphere, and � � �c well
inside the object, near the core, where the chameleon mass
m is large, mc 	 m1. We then have

@r� ¼
�
m1 þ 1

r

�
C

�
e�m1ðr�RcÞ

r

�
: (3.13)

As pointed out in Refs. [5,6], a thin-shelled object (like a
planet or a star) has a value of C, and hence the spatially
varying part of �, suppressed by a factor of �c � 1
compared to that of a thick-shelled object (like a small
satellite).

C. Acceleration

We define the radial component of acceleration by
A ¼ r̂ 
 ~a ¼ ar. From Eqs. (3.6), (3.7), and (3.13), we
have the Newtonian and chameleonic accelerations
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AN ¼ �GMc

r2
(3.14a)

Ac ¼ ���@r� ¼ ���C

�
m1 þ 1

r

��
e�m1ðr�RcÞ

r

�
:

(3.14b)

Both accelerations are directed radially inward (�> 0),
with ar ¼ AN þAc, and the chameleonic acceleration
acts as an anomalous acceleration, i.e., a deviation from the
Newtonian acceleration.

We now consider the case where m1r � 1,
m1ðr� RcÞ � 1, and rS=r � 1; that is, for distances
well outside a compact body of mass Mc and radius Rc.
For a very small mass m1, these can be satisfied for
distances r 	 Rc so that Rc � r � 1=m1. Assuming
this to be the case, the chameleonic acceleration of a
(thick-shelled) test mass is approximately

A c � ���C
1

r2
: (3.15)

Comparing this to the radial part of the Newtonian
acceleration,

Ac

AN

� 2�2

8<
: 3�c; thin shell; �c � 1

1; thick shell; �c > 1

9=
;; (3.16)

where Eq. (3.11) has been used and �c is given by
Eq. (3.12). Therefore, for a large thin-shelled source, like
the Sun, with �c � 1, the chameleonic acceleration of a
small thick-shelled test mass is a very small fraction of the
Newtonian acceleration, with Ac � �6�2�cGMc=r

2,
with Rc � r � 1=m1.

If the test mass is actually a thin-shelled object, there is
an additional factor of 3� for the test mass (see Sec. VII A
of Ref. [5]), so that the chameleonic acceleration of the
thin-shelled test mass due to a thin-shelled source is

Ac

AN

� 2�2ð3�1Þð3�2Þ ¼ 18�2�1�2: (3.17)

This would describe the chameleon acceleration of a
planet due to the Sun, for example, since both objects are
thin-shelled, and this acceleration is suppressed by an
additional � factor compared to that describing the cha-
meleon acceleration of a small thick-shelled object, such as
a small satellite or spacecraft.

To summarize, for the condition Rc � r � 1=m1 there
are three cases:

ðiÞ Ac

AN

� 2�2ð3�SÞ ¼ 6�2�S

ðiiÞ Ac

AN

� 2�2ð3�1Þð3�2Þ ¼ 18�2�1�2

ðiiiÞ Ac

AN

� 2�2; (3.18)

where for the cases (i)–(iii) we have (i) S ¼ source, thin-
shelled, �S � 1; test particle is thick-shelled, 3� ! 1
(ii) both source and test object are thin-shelled;

�1;2 � 1
(iii) both source and test particle are thick-shelled,

ð3�1Þð3�2Þ ! 1.

IV. THE PIONEER ANOMALYAND THE
CHAMELEON EFFECT

The Pioneer anomaly is associated with the observed
deviations from predicted Newtonian accelerations of the
Pioneer 10 and 11 spacecrafts after passing about 20 AU
from the Sun, leaving the Solar System. This anomalous
acceleration is very small and often explained by unmod-
eled mundane causes, but it has some interesting features
that seem compatible with the existence of a chameleon
effect. Some of these features, mentioned in the
Introduction, are listed here.

A. Pioneer Anomaly Features

(1) There is a small apparent acceleration that was
previously assumed constant with a magnitude of
aP ¼ 8:74� 1:33� 10�10 m=s2, for distances of
�20–70 AU from the Sun, with aP=aN � 1.
However, it has recently been argued that the mag-
nitude of aP has a (decreasing) time dependence [4].
Specifically, a linear model with aPðtÞ ¼ aPðt0Þ þ
_aPðt� t0Þ contains a jerk term _aP, with a reported
value of _aP � �1:7� 10�11m=s2=yr [4].

(2) It seems to be directed inward toward the Sun.
(However, the authors of Ref. [4] report that the
direction of the acceleration ~aP remains imprecisely
determined, with no support for an inward direction
toward the Sun over a direction toward the Earth.)

(3) The same anomalous acceleration is seen for both
spacecrafts.

(4) Such anomalies are not observed in planetary mo-
tions, disfavoring a gravitational explanation, unless
a modified theory of gravity operates where small
objects such as spacecraft are affected differently
than planets.

B. Chameleon Effect Features

Let us consider the simple interaction between a small,
thick-shelled spacecraft and the massive, thin-shelled sun.

(1) Case (i) of Eq. (3.18) gives a chameleon acceleration
of

A c � 6�2�SAN ¼ �6�2

�
�RS

RS

�
GMS

r2
; (4.1)

where �S ¼ ð�RS=RSÞ � 1 for a thin-shelled sun
with radius RS. This satisfies Ac=AN � 1 for

JOHN D. ANDERSON AND J. R. MORRIS PHYSICAL REVIEW D 85, 084017 (2012)

084017-4



��Oð1Þ for a large thin-shelled sun and a small
thick-shelled spacecraft. But for r ¼ rðtÞ, Eq. (4.1)
indicates that a time dependence is present, A ¼
AðtÞ. The time rate of change of jAcj, for a radial
trajectory with velocity vr ¼ dr=dt, is

djAcj
dt

¼ vr

djAcj
dr

� � 2

r
vrjAcðrÞj; or

dðlnjAcjÞ
dt

� � 2vr

r
:

(4.2)

This is very small for a nonrelativistic speed vr � 1
and large distances r, so we find Ac=AN � 1,
with jAcðtÞj a slightly decreasing function of time
for an increasing rðtÞ.

(2) The direction of Ac is radially inward, toward the
Sun.

(3) For two thick-shelled spacecraft, the chameleon
accelerationAc is the same for a given r, as seen in
(4.1). For very mildly varying AðrÞ, the two
Pioneer spacecrafts should have chameleon accel-
erations nearly the same, Ac;10 � Ac;11.

(4) The chameleon acceleration of a large thin-shelled
planet due to its interaction with the thin-shelled sun
is suppressed by the planet’s factor of 3�planet ¼
3�Rplanet=Rplanet, so that from case (ii) of Eq. (3.18),

we have

Ac;planet

AN

�18�2�S�planet¼ 3�planet

Ac;P

AN

�Ac;P

AN

;

(4.3)

where Ac;P is the chameleon acceleration of a

Pioneer spacecraft. The deviation from Newtonian
acceleration is greatly suppressed for a planet, and
as pointed out in Refs. [5,6] allows the chameleon
mechanism to easily pass all Solar System tests of
gravity.

C. Numerical Estimates

Here we make some approximate estimates based upon
the original chameleon model of Khoury and Weltman. [5]
The mass of the Sun is MS ¼ 1:99� 1033 g and the
distance of the Earth from the Sun is taken to be rE ¼
1 AU ¼ 1:5� 1013 cm, which would give a Newtonian
acceleration of the Earth toward the Sun of AN;E ¼
�GMS=r

2
E ¼ �5:9� 10�3 m=s2. Therefore the

Newtonian acceleration of an object at a distance r from
the Sun is

A N ¼ AN;E

�
rE
r

�
2
: (4.4)

The Newtonian accelerations at distances of 20 AU and
70 AU are, respectively,

A20
N ¼ AN;E

�
1

20

�
2 ¼ �1:5� 10�5 m=s2;

A70
N ¼ AN;E

�
1

70

�
2 ¼ �1:2� 10�6 m=s2:

(4.5)

The change in the magnitude of ~aN between 20 AU and
70 AU is

�j ~aNj ¼ �jANj ¼ jA70
N j � jA20

N j
¼ �1:4� 10�5 m=s2: (4.6)

These results will be useful in estimates of space and
time rates of change of Ac.
Chameleon parameters.— From Eq. (4.1) we have a

chameleonic acceleration given by

Ac

AN

� 6�2�S; (4.7)

provided that the Pioneer is thick-shelled, i.e., �P ¼
�RP=RP > 1. We will assume this to be the case, so that
an upper bound on Ac is established with Eq. (4.7). If the
Pioneer were actually thin-shelled, with �P � 1, there
would be an additional suppression factor of 3�P leading
to a chameleon acceleration much smaller than that of
6�2�S. We will also take �� 1.
The upper bound on the thin-shell factor �E for the

Earth, proposed by Khoury and Weltman in Ref. [6] [see
Eq. (15) in that article] is given as

�E < 10�7 (4.8)

We can use this in our estimate for the shell factor �S for
the Sun that appears in Eq. (4.7). The shell factor�S for the
Sun and the shell factor �E for the Earth are taken to be

�S ¼ �RS

RS

¼ �G ��S

6�M0�S

; �E ¼ �RE

RE

¼ �G ��E

6�M0�E

;

(4.9)

where�SðEÞ is the value of�c inside the Sun (Earth),�G is

the value of �1 in our galaxy, and �SðEÞ is the Newtonian
potential at the surface of the Sun (Earth), � ¼ GM=R.
Now, take 
E � 5:7 g=cm3, 
S � 1:4 g=cm3 � 1

4
E; we

take these to be roughly equal for simplicity, 
S � 
E,
and since �c is determined by the density �
, we therefore
take �S � �E. (For a high-density contrast, �
c 	 �
1, we
have �c � �1, so that �G ��SðEÞ � �G, and conse-

quently �S=�E � �E=�S.) For the Newtonian potentials,

�S

�E

¼ MS

ME

RE

RS

� 3� 103; �S � 3� 103�E:

(4.10)

From Eq. (4.9),

�S

�E

��E

�S

�3�10�4�10�4; �S�10�4�E: (4.11)
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Using �E � 104�S, Eqs. (4.11) and (4.8) give

�S < 10�11: (4.12)

Chameleon acceleration.— From Eqs. (4.7) and (4.12),

Ac

AN

� 6�2�S & 6�2 � 10�11: (4.13)

The average contribution to the Pioneer anomalous
acceleration would be roughly

hjAcji
aP

� 6�2�S

hjANji
aP

: (4.14)

We can estimate a spatial average of the Newtonian
acceleration,

hjANji ¼ haNi ¼ 1

�r

Z r2

r1

GMS

r2
dr ¼ GMS

�r

�r

r1r2
¼ GMS

r1r2
;

(4.15)

and taking r1 ¼ 20rE ¼ 20 AU and r2 ¼ 70rE ¼
70 AU, we get

hjANji ¼ haNi � 4:2� 10�6 m=s2: (4.16)

Eqs (4.12) and (4.14) then give

hjAcji
aP

� 6�2�S

�
4:2� 10�6 m=s2

9� 10�10 m=s2

�
¼ �2�Sð2:8� 104Þ< ð2:8� 10�7Þ�2: (4.17)

Taking aP � 10�9 m=s2 and � � 1, from Eq. (4.17) it
appears that a chameleon acceleration, if it existed, would
be undetectably small, with an average value estimated as

hjAcji & 10�16 m=s2: (4.18)

If the Pioneer spacecraft were actually thin-shelled,
there would be an additional suppression factor of
3�P � 1, according to case (ii) of Eq. (3.18), reducing
the chameleonic acceleration even further, so that
Eq. (4.18) serves as an upper bound on hjAcji.

Spatial and temporal variation.— We can use a linear
model to estimate an average space rate of change
�jAcj=�r, for a change in distance of 50 AU from r1 ¼
20 AU to r2 ¼ 70 AU and using Eq. (4.6):

�jAcj
�r

� 6�2�S

�jANj
�r

� 6�2�S

�jA70
N j � jA20

N j
50 AU

�
� 6�2�Sð�2:7� 10�7 m=s2=AUÞ: (4.19)

Therefore, Eq. (4.13) gives���������jAcj
�r

��������< ð6�2 � 10�11Þð2:7� 10�7 m=s2=AUÞ
� 10�17 m=s2=AU: (4.20)

So the estimate of���������jAcj
�r

��������<10�17 m=s2=AU (4.21)

is negligible in size in comparison to an estimate of���������aP�r

��������� j _aPj �t�r
� ð:17� 10�10 m=s2=yrÞ 30 yr

50 AU

� 10�11 m=s2=AU (4.22)

obtained using the jerk term _aP in Ref. [4].

A chameleonic jerk term _ac can be estimated using _ac ¼
� _A � �jAj=�t, with �jAj � jA70j � jA20j and
�t� 30 yr; this will be a negative number since r de-
creases with time for an outward-bound trajectory and
jAj / aN / 1=r2. We have

j _acj�6�2�S

���������jaNj�t

��������& ð6�2�10�11Þð1:4�10�5 m=s2Þ
30 yr

�2:7�10�17m=s2=yr: (4.23)

The value of the Pioneer jerk term (using the linear
model) reported in Ref. [4] is j _aPj¼ :17�10�10 m=s2=yr,
so that _ac= _aP & 10�6. From Eqs. (4.17), (4.18), (4.21),
(4.22), and (4.23), we conclude that within the context of
the original Khoury-Weltman model, the chameleon effect,
if it exists, is too small to account for the anomalous
Pioneer acceleration or its spatial or temporal rate of
change reported in Ref. [4].

V. SOLAR SYSTEM CONSTRAINTS

In the previous section we assumed, as in the original
chameleon model of Khoury andWeltman, that� � 1, and
we used their results to obtain the estimate for the thin-
shell factor for the Sun �S < 10�11. We see [e.g., from
Eq. (4.17)] that the chameleonic contribution to the Pioneer
anomaly is controlled by the factor �2�S. We now use this
result, but relax our assumption that �� 1 and abandon
our estimate of �S, and instead, we obtain a fix on the
factor �2�S by using the results obtained in the recent
analysis by Hees and Füzfa [7], wherein an upper limit of
this factor can be obtained from the PPN parameter �
obtained from Solar System constraints of the Cassini
mission [8]:

�� 1 ¼ ð2:1� 2:3Þ � 10�5: (5.1)

Hees and Füzfa (HF) use slightly different notations for
the scalar field and chameleon parameters, but we can
readily build a simple translation dictionary by noting
that HF write the action in a form (using our metric
signature)

S ¼
Z

d4x
ffiffiffi
g

p �
m2

P

16�
R½g��� þ 1

2
m2

Pg
��@��̂@��̂� V̂ð�̂Þ

�
þ Sm½Â2ð�̂Þg��; c �; (5.2)
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where the hat notation denotes the fields and functions used

by HF, mP ¼ 1=
ffiffiffiffi
G

p
, Âð�̂Þ ¼ ek�̂, and the JF metric ~g��

and EF metric g�� are related by ~g�� ¼ Âð�̂Þg��.

Comparison with Eq. (3.1) then shows that

�̂ ¼ �=mP; Âð�̂Þ ¼ ek�̂ ¼ Að�Þ ¼ e���;

k ¼ ffiffiffiffiffiffiffi
8�

p
�; V̂ð�̂Þ ¼ Vð�Þ: (5.3)

It should be noted, however, that the authors of Ref. [7]
use a different form of the effective potential, as they
choose to use the Jordan frame energy density ~
 as a
constant rather than the conventionally chosen density �
 ¼

EFA

�1ð�Þ, which is a � independent quantity in the
Einstein frame representation of the theory [5,6]. Thus,
the HF effective potential is written as

V̂ effð�̂Þ ¼ V̂ð�̂Þ þ 1

4
~
e4k�̂ (5.4)

instead of our conventionally chosen effective potential
[see Eq. (3.4)]

Veffð�̂Þ ¼ V̂ð�̂Þ þ �
ek�̂ ¼ Vð�Þ þ �
e���: (5.5)

This difference can be largely ignored, however, as it does
not qualitatively change the results obtained [7]. More

specifically, we borrow the result from Ref. [7] that k�̂1 &

2� 10�12 � 1, where �̂1 minimizes the effective
potential at r ¼ 1, so that for ~
 � �
 and fields of interest

where �̂ � �̂1, we have the ratio
1
4 ~
Â

4

�
 Â
¼ 1

4

~


�

e3k�̂ � Oð1Þ; (5.6)

showing that we have reasonable confidence in using our
effective potential along with an application of the results
obtained in Ref. [7].

A. Cassini Bounds

Hees and Füzfa [7] obtain the result relating the effective
coupling constant keff , the thin-shell factor � ¼ �S for the
Sun, and the PPN parameter �

ð�� 1Þ ¼ � 2kkeff
4�þ kkeff

� �6
�k2

4�þ 3�k2
: (5.7)

In order for the chameleon mechanism to account for a
nonzero value of (�� 1), we see that (�� 1) must be
negative, so that from Eq. (5.1),

j�� 1j � j�� 1jmax ¼ 2� 10�6: (5.8)

Inverting Eq. (5.7) to obtain �k2, we have

ð�k2Þmax � 4�

3

� j�� 1jmax

2� j�� 1jmax

�
� 4:2� 10�6: (5.9)

In terms of our original Khoury andWeltman parameters
� and �S, this translates into

�2�S & 3:3� 10�7: (5.10)

We note that this is in accord with our previous estimates
based upon � � 1 and �S < 10�11.

B. Estimates Based Upon the Cassini Bounds

Chameleonic acceleration.— We can now simply use
Eq. (5.10) without any assumptions for the values of � and
�S to obtain estimates of the maximum chameleonic con-
tribution to the Pioneer anomaly. For example, using
Eq. (5.10) in Eq. (4.17) yields

hjAcji
aP

& 5:5� 10�2; (5.11)

indicating that a chameleonic acceleration could account
for no more than 5.5% of the Pioneer acceleration.
Spatial and temporal variation.— In a similar manner,

referring to Eqs. (4.19), (4.20), (4.21), (4.22), and (4.23),
the application of Eq. (5.10) gives a spatial variation���������jAcj

�r

��������& 5:4� 10�13 m=s2=AU (5.12)

and ��������j�Acj=�r
j�aPj=�r

��������& 5:4� 10�2 (5.13)

and a time variation (jerk term)

j _acj & 9� 10�13 m=s2=yr (5.14)

with

_ac
_aP

& 5:3� 10�2: (5.15)

Again, apparently the chameleonic jerk term is no more
than about 5.3% of the reported Pioneer jerk term.

VI. SUMMARY

The chameleon model proposed in Refs. [5,6] has basic
features that seem to be compatible, in a natural way, with
the prominent features exhibited by the Pioneer anomaly.
A small, thick-shelled spacecraft can have a much more
pronounced deviation from a Newtonian acceleration than
can a large, massive, thin-shelled planet. Therefore, the
anomaly seen by the Pioneer 10 and 11 spacecrafts does
not become manifest in any anomalous planetary motions.
Furthermore, the chameleon effect produces an accel-

eration which is small in comparison to the Newtonian
acceleration if the spacecraft is thick-shelled, and
this acceleration is directed sunward, i.e., toward the
gravitational source. The chameleonic acceleration is
found to have a 1=r2 dependence, so that for an outward-
bound journey the chameleon ‘‘anomaly’’ decreases in
magnitude.

CHAMELEON EFFECT AND THE PIONEER ANOMALY PHYSICAL REVIEW D 85, 084017 (2012)

084017-7



We have estimated the chameleonic acceleration and its
spatial and temporal rates of change, and we conclude that
the chameleon effect cannot account for the Pioneer
anomalous acceleration or jerk term recently reported by
Ref. [4]. Specifically, using the original Khoury-Weltman
chameleon model and results [5,6], we find that

hjAcji=aP & 10�7, �jAcj=�r
�aP=�r

& 10�6, and _ac= _aP & 10�6.

However, more general considerations simply based
upon Solar System constraints (specifically the con-
straints from the Cassini bounds on the PPN parameter
�), lead to maximum contributions hjAcji=aP &

5:5� 10�2, �jAcj=�r
�aP=�r

& 5:4� 10�2, and _ac= _aP &

5:3� 10�2. We conclude that Solar System constraints
allow possible chameleonic effects to account for no
more than a few percent of those that are observed.

We suspect that an inverse square component seen in
the anomalous acceleration is more likely due to an
unmodeled reaction force from solar radiation pressure
rather than a chameleon field effect.
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