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Solving Einstein’s constraint equations for the construction of black hole initial data requires handling

the black hole singularity. Typically, this is done either with the excision method, in which the black hole

interior is excised from the numerical grid, or with the puncture method, in which the singular part of the

conformal factor is expressed in terms of an analytical background solution, and the Hamiltonian

constraint is then solved for a correction to the background solution that, usually, is assumed to be

regular everywhere. We discuss an alternative approach in which the Hamiltonian constraint is solved for

an inverse power of the conformal factor. This new function remains finite everywhere, so that this

approach requires neither excision nor a split into background and correction. In particular, this method

can be used without modification even when the correction to the conformal factor is singular itself. We

demonstrate this feature for rotating black holes in the trumpet topology.
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I. INTRODUCTION

Constructing initial data in general relativity requires
solving the constraint equations of Einstein’s field equa-
tions (see, e.g. [1,2]). Under the assumption of conformal
flatness and maximal slicing, solutions to the momentum
constraint describing boosted or spinning back holes can
be expressed analytically in terms of Bowen-York solu-
tions [3]. These solutions can then be inserted into the
Hamiltonian constraint which, in general, has to be solved
numerically for the conformal factor.

Any numerical method employed to solve the
Hamiltonian constraint for black hole data has to accom-
modate the presence of black hole singularities. One ap-
proach is the excision method, in which the black hole
interior is excised from the numerical grid, and suitable
boundary conditions are imposed on the black hole horizon
(see, e.g. [4–6]). An alternative is the puncture method, in
which the singular parts of the solution are expressed in
terms of an analytical background solution, and the
Hamiltonian constraint is solved for a regular correction
to the background solution [7,8].

Here we discuss an alternative approach that requires
neither excision nor a decomposition into background and
correction (even though the latter is probably desirable in
terms of numerical accuracy). Specifically, we consider
solving the Hamiltonian constraint for an inverse power
of the conformal factor. This approach, which is similar to
an approach that has become extremely successful in solv-
ing Einstein’s evolution equations (e.g. [9]), appears to be
promising in the context of Einstein’s constraint equations
as well. The new function representing the conformal
factor remains finite everywhere and can be solved for
directly. We present numerical examples and compare

with both analytical and independent numerical results.
An important advantage of this approach over the puncture
method is that it can be used without modification even
when, in the puncture method, the correction diverges as
fast as the background solution itself. We demonstrate this
feature for rotating black holes in the trumpet topology
[10,11]. We expect that this property may be important for
applications that relax the assumption of conformal flat-
ness, since a nonvanishing deviation from conformal flat-
ness may lead, in the context of the puncture method, to
singular corrections to the analytic background terms.

II. BASIC EQUATIONS

In vacuum, and under the assumption of maximal
slicing and conformal flatness, the Hamiltonian constraint
reduces to

�D 2c ¼ � 1

8
c�7 �Aij

�Aij; (1)

where c is the conformal factor and �Aij ¼ c 10Aij is the
conformally rescaled, trace-free part of the extrinsic cur-
vature. Also, �Di is the covariant derivative operator with
respect to the conformally related metric ��ij ¼ c 4�ij,

where �ij is the physical spatial metric. Under the assump-

tion of conformal flatness, ��ij ¼ �ij, where �ij is the flat

metric any coordinate system, the operator �D2 � ��ij �Di
�Dj

reduces to the flat Laplace operator.
Now consider a new function

� � c�n; (2)

where n is a constant that we will later choose to be a
positive integer. Since the conformal factor c typically
diverges at the black hole singularity, this choice makes �
go to zero and remain finite there. The Laplace operator
acting on � then satisfies
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�D 2�¼
�
1þ1

n

�
��1 ��ij �Di� �Dj��n�1þ1=n �D2c : (3)

Inserting (1) we can now express the Hamiltonian con-
straint in terms of �,

�D 2� ¼
�
1þ 1

n

� �Di� �Di�

�
þ n

8
�1þ8=n �Aij

�Aij: (4)

Evidently we recover the Hamiltonian constraint in its
original form (1) for n ¼ �1.

Different choices for the power n can be considered.
One possibility would be to choose n in such a way that the
first term on the right-hand side of (4) remains finite at the
black hole singularity, where� vanishes. Assuming that c
diverges with r�m at the singularity, where r is the isotropic
radius, � scales with rnm, and the first term on the right-
hand side of (4) with rnm�2. This term remains finite as
r ! 0 if n � 2=m. For the minimum value, n ¼ 2=m, we
always have � / r2 close to the singularity.

The scaling of c close to the singularity depends on the
slicing of the black hole. For so-called wormhole data, for
example, c diverges with r�1, so thatm ¼ 1. Here we will

focus on trumpet data, for which c / r�1=2 close to the
singularity (see [12–15] and Eq. (8) below). The above
argument would then suggests that we should choose
n � 4. Despite these considerations, n ¼ 4 may not be
the best choice. As we will discuss in more detail below,
we found better results for n ¼ 2, even though some terms
in (4) diverge with 1=r for this choice.

Before proceeding we linearize the Hamiltonian con-
straint (4) as follows. Denoting the approximate solution
after l iteration steps with �l, we search for a correction
�� � �l so that �lþ1 ¼ �l þ �� solves the equation.
Denoting the residual of Eq. (4) for �l with Rl,

R l � �D2�l�
�
1þ 1

n

� �Di�l �Di�
l

�l
�n

8
ð�lÞ1þ8=n �A2; (5)

where we have abbreviated �A2 ¼ �Aij
�Aij, the linearized

Hamiltonian constraint (4) becomes

�D2ð��Þ�
�
1þ1

n

�
2

�l
��ij �Di�

l �Dj��

þ
��
1þ1

n

� �Di�l �Di�
l

ð�lÞ2 �
�
n

8
þ1

�
ð�lÞ8=n �A2

�
��¼�Rl:

(6)

Equation (6) is a linear equation that can be solved iter-
atively for �� until the norm of the residual Rl has
dropped below a desired tolerance.

III. NUMERICAL EXAMPLES

A. Schwarzschild

As a first test of this scheme we solve the Hamiltonian
constraint (4) in spherical symmetry to construct the
Schwarzschild solution.
We adopt a finite-difference method and use a uniform

vertex-centered grid so that the first grid point is at
r ¼ 0. We set � ¼ 0 at r ¼ 0, and set � to its analytical
value c�n

0 at the outer boundary Rout of the grid. Finite-

differencing the operator on the left-hand side of Eq. (6)
results in a tridiagonal matrix that can be solved with
elementary methods.
In order to construct maximally sliced trumpet data, we

adopt

�A ij
0 ¼ 3

ffiffiffi
3

p
M2

4r3
ð ��ij � 3ninjÞ; (7)

where ni ¼ xi=r is the spatial normal vector pointing away
from the center of the black hole at r ¼ 0, and M is the
total mass-energy of the black hole.1 The analytical solu-
tion for c 0 can also be given analytically, albeit only in
parametric form (see [14]). In the neighborhood of the
singularity, c 0 is given by

c 0 ¼ 3M

2r

� �
1=2

(8)

to leading order in r. Throughout this paper,M denotes the
mass of the background Schwarzschild solution.
In Fig. 1 we show numerical results as a function of the

radius r for two choices n ¼ 2 and n ¼ 4. The upper panel
shows the solutions � for different grid resolutions; as the
resolution increases, the numerical solutions approach the
analytical solution�0 ¼ c�n

0 . As expected,� scales with

rn=2 close to the center. The lower panel shows the errors
�� � ���0, rescaled with the square of the grid-
spacing. These results demonstrate that the scheme is
second-order accurate even in the vicinity of the black
hole singularity. They also demonstrate that this method
can be adopted without decomposing the solution into a
background and a correction term, even though we will use
such a decomposition in the next sections.
The choice n ¼ 4 has the appealing features that the first

term on the right-hand side of (4) remains finite, as we
discussed above, and that � is smooth at the center.
However, Fig. 1 shows that for n ¼ 2 the numerical errors
are smaller. We have also found that for n ¼ 4 our iterative
scheme failed to converge for rapidly spinning black holes
(see Sec. III C below). Wewill therefore focus on n ¼ 2 for
the remainder of this paper.

1Without splitting � into a background and a correction term,
the mass of the resulting black hole is specified by the extrinsic
curvature. Wormhole data, for which the extrinsic curvature
vanishes, therefore do require a split of � into background
and correction, since otherwise the mass remains undetermined.
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B. Boosted black holes

We construct boosted trumpet black holes by adding to
the Schwarzschild extrinsic curvature (7) a Bowen-York
solution representing a black hole with momentum Pi,

�A ij
P ¼ 3

2r2
ðPinj þ Pjni � ð ��ij � ninjÞnkPkÞ (9)

(since the momentum constraint is linear, the sum of two
solutions is still a solution). In the interest of numerical
accuracy, we decompose � as

� ¼ �0 þ w; (10)

where�0 is the analytical Schwarzschild solution, and w a
correction. This way the largest terms in the Hamiltonian
constraint can be computed from the analytical solution,
and only the correction w needs to be treated with finite-
differencing. The iteration for w still works in the same
way as before if we replace �l in (6) with �0 þ wl, and
�� with �w.

We now solve (4), using the iteration (6), on a three-
dimensional, uniform cartesian grid of N3 gridpoints, with
the help of both Cactus and PETSc software. We again
adopt a vertex-centered grid, fix w ¼ 0 at the center, and
impose a 1=r falloff condition at the outer boundaries on a
square xout ¼ yout ¼ zout ¼ �Xout.

Boosted trumpet black holes have previously been
constructed with the puncture method by solving the
Hamiltonian constraint in its original form (1) (see
[10,11]; see also [16] for a calculation using the excision

method). In that approach, the conformal factor c is
decomposed as c ¼ c 0 þ u. Given a solution u, we can
compute the corresponding w from (10),

w ¼ ���0 ¼ ðc 0 þ uÞ�n � c�n
0 : (11)

For boosted black holes, we can therefore compare the
results from the new method discussed here with indepen-
dent numerical results. Moreover, as shown in [10], regular
solutions for u for boosted trumpet black holes in the
neighborhood of the puncture are given, to leading order
in r, by

uP ¼ � 1

3
ffiffiffi
2

p P

M

r

M

� �
1=2

cos�; (12)

where cos� ¼ niP̂
i. Inserting this, together with (8), into

(11) we find

wP ¼ n
2n=2

3ðnþ3Þ=2
P

M

r

M

� �
n=2þ1

cos� (13)

to lowest order in r.
In Fig. 2 we show numerical results for a black hole

boosted with a momentum Pz=M ¼ 1:0. The graph shows
that, as both the resolution and the distance to the outer
boundaries are increased, the results for w approach
those computed with the puncture method from u. Note

FIG. 2 (color online). Numerical solutions w for boosted black
holes with momentum Pz=M ¼ 1:0. The lines in the large plot
show results for w, obtained for n ¼ 2, on three different
numerical grids with increasing grid resolution and more distant
outer boundaries. For N ¼ 65, the outer boundaries were im-
posed at Xout ¼ 16M, for N ¼ 129 at Xout ¼ 24M, and for
N ¼ 257 at Xout ¼ 32M. Also included, as crosses, are the
results as computed from the Hamiltonian constraint in its
original from (1) with N ¼ 257. The insert shows higher-
resolution results (obtained with N ¼ 257 and Xout ¼ 2M) of
the region around the black hole center. This graph also includes
the leading-order analytical result (13) as a solid line.

FIG. 1 (color online). Numerical solutions � for a
Schwarzschild black hole, for n ¼ 2 and n ¼ 4. Here we im-
posed the outer boundary at Rout ¼ 16M and used 100N þ 1
grid points. The upper panels shows the solution for different
values of N. As expected, � scales with rn=2 at the center. The
lower panel shows the rescaled errors N2��, demonstrating
second-order convergence to the analytical solution, even in the
neighborhood of the singularity.
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that w and u feature different asymptotic behavior as
r ! 1. By imposing a 1=r falloff on both functions at a
finite Xout, we suppress different higher-order terms.
Therefore, the results from the two approaches only
approach each other as both the numerical resolution and
the location of the outer boundaries are increased. The
inset in Fig. 2 shows higher-resolution results for the region
around the singularity, and demonstrates that the numerical
results, for both w and u, approach the analytical result
(13) as r ! 0.2

C. Spinning black holes

Spinning black holes can be constructed by adding to
the Schwarzschild extrinsic curvature (7) a Bowen-York
solution representing a black hole with spin angular
momentum Ji,

�A ij
S ¼ 6

r3
nði ��jÞklJknl: (14)

As a consequence of �Aij
S diverging with r�3 [rather than

r�2 for the boosted solutions (9)], corrections u to c 0 now

diverge with r�1=2, i.e. they diverge with the same power of
r as the background c 0 itself. In the neighborhood of the
singularity, corrections u, to leading order in both r=M and
J=M2, are given by

uS ¼ 1

12

J

M2

� �
2 2M

3r

� �
1=2ð3� cos2�Þ; (15)

where cos� ¼ niĴ
i (see [10]).

Given that the corrections u are not regular, the puncture
method in its original form breaks down. The equations can
still be solved if the singular behavior of u is scaled out, but
this leads to rather complicated expressions (see [11]). The
method proposed here, however, can still be used without

any modification (other than using �Aij
S instead of �Aij

P ).

Inserting (15) and (8) into (11) we now have

wS ¼ �n
2n=2�1

3n=2þ2

J

M2

� �
2 r

M

� �
n=2ð3� cos2�Þ: (16)

to leading order in both r=M and J=M2. Not surprisingly,

this solution scales with rn=2, just like the background
term �0.

In Fig. 3 we show high-resolution results, for n ¼ 2, in
the vicinity of the center for a black hole with angular
momentum Jz=M2 ¼ 0:1. For this sufficiently small value
of J, the numerical results (crosses and circles) approach
the center as predicted by the analytical result [solid lines,
see Eq. (16)]. Note that w remains finite everywhere, even
if, for n ¼ 2, derivatives are discontinuous at r ¼ 0.

However, since we can set the solution to zero there, and
never need to evaluate any derivatives at the center, this
does not affect the numerical scheme. In Fig. 4 we also
show a surface graph of w for a larger value of the angular
momentum (Jz=M2 ¼ 1:0).

IV. DISCUSSION

We discuss an approach to solving the Hamiltonian
constraint that requires neither excision nor a decomposi-
tion into background and correction terms for the construc-
tion of black hole initial data. Specifically, we solve the
Hamiltonian constraint for an inverse power of the confor-
mal factor. The resulting function then remains regular
everywhere, and vanishes at the location of the black
hole singularities. We present numerical examples and
compare with both analytical and independent numerical

FIG. 3 (color online). Solutions w for a black hole spinning
with angular momentum Jz=M2 ¼ 0:1, using n ¼ 2. We show
numerical results (dots) in the vicinity of the singularity, together
with the leading-order analytical result (16) (solid lines), both
along the direction of the spin ( cos� ¼ 1) and a direction
orthogonal to the spin ( cos� ¼ 0). The numerical results were
obtained with N ¼ 257 and Xout ¼ 2M.

FIG. 4 (color online). Numerical results for w for a black hole
spinning with angular momentum Jz=M2 ¼ 1:0 in the x-z plane,
obtained with N ¼ 129, Xout ¼ 4M and n ¼ 2.

2The analytical solution in the neighborhood for r ¼ 0 arises
from the particular solution of the Hamiltonian constraint (see
[10]), which is independent of the outer boundaries. A compari-
son of the solutions in the immediate neighborhood of r ¼ 0 is
therefore not affected by the location of the outer boundaries.
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results. An important advantage of this method is that it can
handle cases for which, in the puncture method, correc-
tions diverge at the singularity as fast as the background
term itself. We demonstrate this feature for spinning trum-
pet black holes, and expect that this property may be
important for applications in which the assumption of
conformal flatness is relaxed.3

We also experiment with different powers n in the
rescaling � ¼ c�n. As we discuss in Sec. II, the choice
n ¼ 4 leads to some appealing properties of the equation
and the solutions; we nevertheless found n ¼ 2 more suit-
able for our iteration scheme.

In the puncture method, corrections u that diverge at the
singularity, if they exist, are suppressed by the assumption

of regularity there.4 In the approach discussed here, such
solutions would not be suppressed automatically, since
they also satisfy w ¼ 0 at the center. We therefore suspect
that a second branch of solutions, corresponding to singu-
lar corrections u, might exist. Analyzing the uniqueness of
solutions, and the properties of any other branches of
solutions, might make an interesting subject for future
investigations.
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J. A. González, and U. Sperhake, J. Phys. Conf. Ser. 66,
012047 (2007).

[14] T.W. Baumgarte and S.G. Naculich, Phys. Rev. D 75,
067502 (2007).

[15] M. Hannam, S. Husa, F. Ohme, B. Brügmann, and N. Ó.
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