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Recently, a local true (completely gauge fixed) Hamiltonian for spherically symmetric collapse was

derived in terms of Ashtekar variables. We show that such a local Hamiltonian follows directly from the

geometrodynamics of gravity theories that obey a Birkhoff theorem and possess a mass function that is

constant on the constraint surface in vacuum. In addition to clarifying the geometrical content, our

approach has the advantage that it can be directly applied to a large class of spherically symmetric and

two-dimensional gravity theories, including pth order Lovelock gravity in D dimensions. The resulting

expression for the true local Hamiltonian is universal and remarkably simple in form.
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I. INTRODUCTION

Despite considerable progress in recent years in string
theory [1] and loop quantum gravity [2], relatively little is
known about the quantum dynamics of self-gravitating
systems. General covariance provides the classical theory
with much of its underlying elegance, but it also leads to
deep conceptual problems due to the need to fix a gauge
(i.e. choose a coordinate system) and the associated prob-
lem of time [3]. The situation is further complicated by
predictions, primarily from string theory, of quantum in-
duced, higher order curvature terms in the action and the
possible existence of more than three spatial dimensions.

Since the ground breaking work of Berger et al. [4] and
Unruh [5] in the 1970s, spherically symmetric scalar fields
have provided a fruitful testing ground for the classical and
quantum dynamics of gravitational collapse. For example,
as first shown by Choptuik [6], spherical collapse exhibits
interesting critical behavior. The Birkhoff theorem, which
states in essence that there is no spherically symmetric
gravitational radiation, is a key simplifying feature, since
there are at most only a finite number of gravitational
dynamical modes to consider. At the quantum level, the
Birkhoff theorem guarantees that the vacuum theory can be
quantized exactly, and this has been done via many differ-
ent techniques [7].

Despite the drastic simplification afforded by the
Birkhoff theorem, the dynamics of the matter degrees of
freedom is greatly complicated by gravitational self-
interactions. The study of the quantum dynamics has to
date been rendered intractable by the fact that completely
fixing the gauge appears to invariably lead to a nonlocal
Hamiltonian for the matter field [4,5]. (For a current dis-
cussion, see [8,9].)

A significant step has recently been made by Alvarez
et al. [10], who derived a local gauge fixed Hamiltonian to
describe the spherically symmetric collapse of a massless

scalar field coupled to Einstein gravity in four space-time
dimensions. They described the gravitational field via
Ashtekar’s connection variables as presented most recently
by Bojowald and Swiderski [11].
In the following, we prove that geometrodynamical

arguments can be used to obtain a similar, but algebraically
simpler, local Hamiltonian in a large class of gravity
theories that obey a Birkhoff theorem. The suggestion
that the analysis is greatly simplified in terms of the
standard Arnowitt-Deser-Misner (ADM) variables was
made independently by Husain [12] and Unruh [13] and
verified explicitly by Unruh for four-dimensional Einstein
gravity. We are able to achieve a further simplification by
parametrizing the gravitational variables using the mass
function and its conjugate. In addition to allowing us to
consider simultaneously a large class of theories, our
choice of parametrization and gauge yields a reduced
Hamiltonian that is very simple in form. This in turn
facilitates the discussion of the consistency of the gauge
condition for generic initial data.
The theories to which our analysis applies include ge-

neric two-dimensional (2D) dilaton gravity [14] and pth
order Lovelock gravity [15,16] in D dimensions [17].
Lovelock gravity theories were originally constructed as
the most general manifestly covariant higher dimensional
versions of Einstein gravity for which the equations of
motion are second order in the time coordinate; this en-
sures reasonable causal behavior for the propagation of
gravitational fields [15]. There are string theoretic argu-
ments that point to Lovelock gravity as the low energy
limit of consistency conditions for the propogation of
strings in curved space-times [18]. In particular, these
stringy consistency conditions contain higher order curva-
ture terms in the same specific linear combinations that
occur in Lovelock gravity. If higher dimensional black
holes can be probed via the LHC, then it may be possible
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to rule out certain terms in Lovelock gravity theories [19].
Finally, and most importantly for what follows, Lovelock
theories are known to obey a generalized Birkhoff
theorem [20,21].

The paper is organized as follows: in the next section we
describe the geometrodynamics and Hamiltonian frame-
work of theories of gravity that obey a Birkhoff theorem
and hence possess a mass function [22]. Section III shows
in full generality how to gauge fix in such theories so as to
obtain a true local Hamiltonian. Section IV applies the
general framework to pth order Lovelock gravity in D
dimensions and derives the local Hamiltonian, while the
following section discusses boundary conditions. Finally,
we close with a summary and prospects for future work.

II. GEOMETRODYNAMICS IN GENERAL

We will work with the following ADM decomposition
using Kuchar’s [23] parameters and conventions:

ds2 ¼ �N2dt2 þ�2ðdrþ NrdtÞ2 þ R2d�D�2; (1)

The metric functions N, �, Nr, R are arbitrary functions of
the two spatial coordinates ðr; tÞ, while Rðr; tÞ is the areal
radius of the spherically invariant (D� 2) spheres. The
following analysis also applies directly to gravity in two
space-time dimensions where the role of R is played by a
scalar field (the dilaton) nonminimally coupled to the
curvature. Standard Hamiltonian techniques reveal that
for the spherically symmetric ansatz above any coordinate
invariant gravitational Lagrangian can be written, up to
boundary terms, in the form

LðGÞ ¼ P�
_�þ PR

_R� NHðGÞ � NrH
ðGÞ
r : (2)

where HðGÞ and HðGÞ
r are the gravitational parts of the

Hamiltonian and diffeomorphism constraints, respectively.
The transformation properties of the ADM variables under
changes of spatial coordinates require the gravitational
diffeomorphism constraint to be

HðGÞ
r ¼ �P0

��þ PRR
0: (3)

Adding a minimally coupled scalar field c yields the
Lagrangian:

LTOT ¼ LðGÞ þ LðmÞ

¼
Z

dr

�
P�

_�þ PR
_Rþ�c

_c � N

�
HðGÞ þ �ðmÞ

�

�

� NrðHðGÞ
r þHðm

r Þ
�
; (4)

where

�ðmÞ :¼ 1

2

� �2
c

RD�2
þ RD�2ðc 0Þ2

�
(5)

is the energy density of the scalar field without self-
interactions. This could be generalized to other types of

matter subject to the restriction that it does not contain
derivatives of the metric. The form of the matter part of the
diffeomorphism constraint is again dictated by the trans-
formation properties of the fields. For a minimally coupled
scalar field c ,

HðmÞ
r ¼ �c c

0: (6)

In what follows we show that a local Hamiltonian as in
[10] can be derived using Kuchar’ geometrodynamics [23]
in a large class of theories that satisfy a Birkhoff theorem,
i.e. for which the spherically symmetric vacuum solution is
static and is parametrized by a mass function M that is
constant on the constraint surface. In a fully dynamical
setting any spherically symmetric metric can be written in
Schwarzschild-type coordinates as

d�2 ¼ �FðR;MÞN2
s dT

2 þ F�1ðR;MÞdR2 þ R2d�D�2;

(7)

where M ¼ MðR; TÞ is the (generalized) Misner-Sharp
mass function [22] and Ns ¼ NsðR; TÞ is the lapse
function.
In D-dimensional spherically symmetric Einstein grav-

ity the Misner-Sharp mass can be written [22] as

M ¼ RD�3

2
ð1� jrRj2Þ ¼ RD�3

2
ð1� FÞ; (8)

whereas, in general Lovelock gravity it is of the form [16]

M :¼ X½n=2�
p

~�ðpÞRn�1�2pð1� FÞp: (9)

The mass function M and the areal radius R are invariant
under coordinate transformations preserving the spheri-
cally symmetric form of the metric.
The essence of geometrodynamics [23] is the construc-

tion of the canonical transformation relating the ADM
variables ð�; P�Þ, ðR;PRÞ to the new phase space variables:
ðPM;MÞ, ðR; ~PRÞ. This enables one to extract the physical/
geometrical properties of the theory [24]. The geometro-
dynamics of four-dimensional Gauss-Bonnet was first
described by Louko et al. [25] and has recently been
completed for pth order Lovelock gravity [26,27].
Previous analyses considered only the static, vacuum
case, but it also can be shown to go through for the
dynamical metric (7) above [27].
It is useful to define

y :¼ N�1ð _R� NrR
0Þ; (10)

since _R can only appear in the action in this invariant
combination [23]. Doing the coordinate transformation
from ðR; TÞ to ðr; tÞ in (7) and matching coefficients of
dr2, etc. in (1), one obtains the key relations:

NsT
0 ¼ �y

F
; (11)
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FðR;MÞ ¼ R02

�2
� y2: (12)

As shown originally by Kuchar [23] for vacuum spheri-
cally symmetric gravity,

PM :¼ ��y

F
¼ �NsT

0 (13)

is canonically conjugate to the mass function M. The
analysis is identical in the dynamical case, since Ns

appears only in the relationship between PM and the
Schwarzschild time T.

Kuchar [23] argued, based on the form of the diffeo-
morphism constraints before and after the transformation,
that ~PR will obey

~P R ¼ PR � P0
��=R0 � PMM

0=R0: (14)

After the change of variables from ð�; P�; R; PRÞ to
ðM;PM; R; ~PRÞ, Eq. (2) can be written as

LðGÞ ¼ PM
_Mþ ~PR

_R� NHðGÞ � NrH
ðGÞ
r : (15)

A sufficient condition for Kuchar’ geometrodynamics to

work is that the gravitational action depend linearly on _�.
This is the case for generic 2D dilaton gravity and for
generic Lovelock theory [27]. Following [26], we write
the gravitational Lagrangian as

LðGÞ ¼ B1ðR; y;�Þ _�þ B0ðR; y;�Þ: (16)

Clearly,

P� ¼ B1ðR; y;�Þ (17)

can be inverted to solve for y purely in terms of �, P�, R.
That is

y ¼ yð�; P�; RÞ: (18)

The crucial property of the above is that y does not depend
on PR so that we can use (13) and (12) to solve algebrai-
cally for � and P� in terms of M, PM, and R. The
Hamiltonian derivable from (16) then takes the form

H ðGÞ ¼ P�
_�þ PR

_R� LðGÞ ¼ PR
_R� B0ðR; y;�Þ

¼ NrPRR
0 þ NPRyð�; P�; RÞ � B0ð�; P�; RÞ;

(19)

where we have used the definition of y to get the last line.
Thus the Hamiltonian is linear in PR. The first term will of
course contribute to the diffeomorphism constraint, while
the second will appear in the Hamiltonian constraint. This
will be important in what follows.

We next assume the existence of a Birkhoff theorem, so
that in vacuum the solution can be put in Schwarzschild
form (7) with M ¼ constant. In this case, there must be a
linear combination of the gravitational Hamiltonian and
diffeomorphism constraints such that

AHðGÞ þ BHðGÞ
r ¼ �M0; (20)

so that on the constraint surface M0 ¼ 0. The coefficients
depend on the phase space parameters but must be non-
degenerate almost everywhere on the constraint surface.
By virtue of (12) and (19), respectively, M0 and the coef-
ficients A, B are independent of PR. They do, however,
depend on ð�; P�Þ and hence on ðM;PMÞ.
Using (20), the full Hamiltonian in the presence of

matter can be written as

HTOT ¼ N

A

�
�M0 � BHðGÞ

r þ A
�ðmÞ

�

�
þ Nrð ~PRR

0 þ PMM
0 þ�c c

0Þ

¼ N

A

�
�M0 þ B�c c

0 þ A
�ðmÞ

�

�

þ
�
Nr � NB

A

�
ð ~PRR

0 þ PMM
0 þ�c c

0Þ: (21)

One finally gets the following very general and intuitive
result for the Hamiltonian constraint:

~H ¼ �M0 þ A

�
�ðmÞ þ B�c c

0 � 0: (22)

It is intuitive because it says that on the constraint surface
the gradient of the mass function equals the energy density

of the matter fields (HðmÞ) plus a gravitational self interac-
tion term [9]. The above is a more general version of
the result in [9] for generic 2D dilaton gravity, which
includes Einstein gravity with cosmological constant in
any dimension.

III. GAUGE FIXING AND THE
LOCAL HAMILTONIAN

Without loss of generality, choose the spatial coordinate
to depend only on the areal radius, so that R ¼ RðrÞ. The
consistency condition _R ¼ 0 then determines the shift via
the total Hamiltonian (21):

Nr ¼ N
B

A
: (23)

The partially reduced Lagrangian is then

Lpr ¼
Z

dr

�
PM

_Mþ�c
_c � N

A
~H

�
; (24)

where ~H in (22) depends only on ðc ;�c ;M; PMÞ.
Given the above generic geometrodynamic structure, we

can now complete the gauge fixing by choosing the mass
function as follows:

� ¼ M� fðr; tÞ � 0 (25)

for some suitable function fðr; tÞ. Note that a more general
choice, of the form:

Mðr; tÞ ¼ gðc Þfðr; tÞ; (26)
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for arbitrary gðc Þ, as done in [10], is also possible. (26) can
be implemented by performing the following canonical
transformation in (24):

~M ¼ M=gðc Þ; P ~M ¼ gðc ÞPM;

c ¼ c ; ~�c ¼ �c þ P ~M
~M
g0

g
;

(27)

and then making the gauge choice ~M ¼ fðr; tÞ. The only
change is that ~H in (24) becomes a more complicated func-
tion of P ~M which in turn makes the algebra messier. We
henceforth restrict consideration to the simpler case (25).

It is important to note that (25) does not provide a good
gauge fixing condition in vacuum since M commutes
weakly with the gravitational part of the Hamiltonian con-
straint. However, when the matter fields are not zero, M
does not have zero Poisson bracket with the Hamiltonian
constraint by virtue of the latter’s dependence on PM

through the coefficients A and B. In this case, one can
use the consistency condition _� � 0 to determine the
lapse, and the Hamiltonian constraint ~H � 0 determines
PM in terms of the matter phase space variables c ,�c and

the (gauge fixed) mass function M. The fully reduced
Lagrangian density is therefore

Lred ¼ �c
_c þ PMðc ;�c Þ _M; (28)

with corresponding reduced Hamiltonian density

Hred ¼ �PMðc ;�c Þ _M: (29)

By inspection of ~H, it is clear that the reduced Hamiltonian
will be a local, algebraic, time dependent function of the
matter fields. Here and in the following we use Mðr; tÞ to
denote the gauge fixed mass function, so that it is no longer
a phase space variable.

In order to make the above construction explicit and
verify its broad range of applicability, we now turn to
generic Lovelock gravity in D dimensions.

IV. PTH ORDER LOVELOCK GRAVITY
IN D DIMENSIONS

The action for generic pth order Lovelock gravity in D
dimensions can be written [15] as

I ¼ 1

2�2
n

Z
dnx

ffiffiffiffiffiffiffi�g
p X½n=2�

p¼0

�ðpÞLðpÞ; (30)

L ðpÞ :¼ p!

2p
�
�1...�p�1...�p
�1...�p	1...	p

R�1�1

�1	1 . . .R�p�p

�p	p ; (31)

where �
�1...�p
�1...�p

:¼ �
�1

½p1
. . .�

�p

pp�. Each �ðpÞ is a coupling

constant of dimension ðlengthÞ2ðp�1Þ, with �ð0Þ propor-

tional to the cosmological constant. The p ¼ 1 term gives
the Einstein-Hilbert contribution. The specific combina-
tion of curvature terms in each of the LðpÞ guarantees

that the equations for Lovelock gravity are second order

in the metric components and ghost-free. As mentioned
above, the generic theory obeys a generalized Birkhoff
theorem [20,21]
For Lovelock gravity, it has been shown [27] that (20) is

satisfied with

A ¼ R0

�
; B ¼ �y

�
¼ PMF

�2
; (32)

where

�2 ¼ 1

F
ðR02 � F2P2

MÞ; (33)

as implied by (12) and (13). After setting R ¼ r, the
consistency condition _R ¼ 0 determines the shift to be

Nr ¼ PMF
N

�
: (34)

The partially reduced action is given in terms of geome-
trodynamic variables by

LpðtÞ ¼
Z

dr

�
PM

_Mþ�c
_c

� NR0

�
ð�M0�2 þ �ðmÞ þ PMF�c c

0Þ
�
: (35)

For completeness, we write down the equations of motion
for the scalar field:

_c ¼ �N

�

�
�c

RD�2
þ PMFc

0
�
;

_�c ¼ �
�
N

�
½RD�2c 0 þ PMF�c �

�0
:

(36)

At this stage one can choose a variety of different gauges:
PM ¼ 0 yields Schwarzschild-type coordinates, while
� ¼ 1 yields flat slice or Painleve-Gullstrand coordinates
[28]. In order to obtain a local Hamiltonian we now specify
the mass function as in (25). The consistency condition
_� � 0 for this gauge choice determines the lapse function:

N

�
¼ _M

2M0PMFþ F�c c
0 : (37)

The gauge condition is only valid if f�; ~Hg � 0, which, for
�2 � 0 reads

2M0PMFþ F�c c
0 � 0: (38)

As long as the above inequality holds, one can set the
gauge fixing condition and the Hamiltonian constraint
strongly to zero. The Dirac brackets in this case equal the
original Poisson brackets since both c and �c commute

with the gauge fixing condition in this parametrization.
This yields the true Hamiltonian in (29) where PM is a
local function of ðc ;�c Þ obtained by solving the

Hamiltonian constraint:
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M0

F
ð1� F2P2

MÞ ¼ �ðmÞ þ PMF�c c
0: (39)

The solution to this quadratic equation for PMF is

PMF ¼ ��c c
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�c c

0Þ2 � 4M0
F ð�ðmÞ �M0=FÞ

q
2M0=F

:

(40)

For the classical theory, we consider only the Hamiltonian
density with the positive root of the discriminant. Indeed,
as we will see in the next section this gives the result that in

the case when �ðmÞ �M0=F is small, one can define a
perturbative regime in which, up to an additive constant,

the Hamiltonian density ��ðmÞ.
The consistency condition (38) implies that discriminant

� under the square root in (40) not vanish. Given that we
want the geometrical variables to be real requires that the
discriminant

0<� :¼ ð�c c
0Þ2 � 4M0

F
ð�ðmÞ �M0=FÞ

¼
�
1

4

� �2
c

RD�2
þ RD�2c 02

�
� 2M0

F

�
2

�
�
1

4

� �2
c

RD�2
� RD�2c 02

�
2
�
: (41)

The above is of the form

jA2 þ B2 � 2M0=Fj � jA2 � B2j; (42)

with A2 ¼ �2
c

2RD�2 and B2 ¼ RD�2c 02=2, so that �c c
0 ¼

2AB. Clearly, a sufficient condition for this is that
2M0=F < 0. More generally, for a given set of initial
data, at t ¼ 0, say, it is relatively straightforward to imple-
ment a valid gauge condition by making a judicious choice
of M0=Fjt¼0 ¼ PðrÞ [29]. One possibility, which will be
relevant for what follows, is simply

M0

F

��������t¼0
¼ �ðmÞ þ 
ðrÞ=2 ¼ A2 þ B2 þ 
ðrÞ=2; (43)

where 
ðrÞ is everywhere positive. The consistency condi-
tion then reduces to

jA2 þ B2 þ 
j � jA2 � B2j> 0; (44)

which is identically satisfied. We therefore claim that it is
in principle possible to find a suitable gauge fixing condi-
tion of the form (25) for generic initial data. The term
‘‘suitable’’ refers to the validity of the gauge choice (38)
and the positivity of the square root at time t ¼ 0. This
does not address the issue of boundary conditions nor the
possibility that the gauge may break down after some finite
time t. Boundary conditions will be discussed in the next
section.
The resulting reduced action, given explicitly in terms of

ðc ;�c Þ, is remarkably simple and universal in form:

LðtÞ ¼
Z

dr

�
�c

_c � _M

M0
M0

F
ðPMFÞ

�

¼
Z

dr

0
B@�c

_c � _M

2M0

2
64��c c

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�c c

0Þ2 � 4M0

F
ð�ðmÞ �M0=FÞ

s 3
75
1
CA: (45)

This is the main result of our paper.
We note that knowledge of the scalar field and its con-

jugate on a given slice allows the metric functions N, Nr,
and �2 to be determined using (37), (34), and (33), re-
spectively: Thus the complete space-time can in principle
be reconstructed from the data ðc ;�c Þ on each spatial

slice, as long as none of the expressions diverge or become
imaginary. Since, as argued above, the gauge choice (25) is
invalid in vacuum, i.e. when the matter field and its con-
jugate vanish, we now turn to the important issue of
boundary conditions.

V. BOUNDARY CONDITIONS

For the matter field, the boundary conditions consistent
with asymptotic flatness in D space-time dimensions are
usually chosen to be

c ! Br�½ððD�3Þ=2Þ�ð
=2Þ�; �c ! CrððD�3Þ=2Þ�ð
=2Þ;
(46)

so that

�ðmÞ ��c c
0 ! r�1�
; �c

_c ! C _Br�
: (47)

The only boundary terms that arise in the variation of (45)
come from the variation of c 0. For 
 > 1, these will be
finite as long as � � 0, as required by the consistency
condition on the gauge choice, and _M=M0 is regular at
the boundary.
Since the gauge fixing condition is problematic in vac-

uum, one might expect corresponding subtleties to arise in
asymptotically flat space times. These subtleties are re-
vealed by inspection of the metric functions. In fact (39)

implies that if �ðmÞ ! 0 faster than M0, then FPM must go
to unity. This in turn yields�2 ! 0, which signals a break-
down in the coordinates. In additionM0 ! 0 faster than the
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matter fields is ruled out by (39) since it would required
j1� F2P2

Mj> 1, which would result in �2 < 0. The ques-
tion then arises: For what physically relevant calculations
is the local Hamiltonian useful?

One possibility is to avoid asymptotically flat space-
times and explore more general situations, such as those
containing ingoing/outgoing radiation. Alternatively, one
can note that the perturbative regime (for which the scalar
obeys the usual free field equations) corresponds to

�ðmÞ �M0=F ! 0; (48)

as follows from (45). In this case, for the þ sign in (45),
we find

� _M

M0
M0

F
ðPMFÞ !

_M

F

�m �M0=F
�c c

0 ! 0: (49)

Since PM ! 0 this is consistent with the expression for
N=� above, i.e. in this limit

N

�
! _M

F�c c
0 : (50)

Moreover, in this limit Nr ! 0 and �2 ! 1=F. So if we
can choose

_M

F
! �c c

0; (51)

everything appears consistent.
This suggests the following procedure for fixing initial

data in calculations of spherical self-gravitating collapse:
First, assume that the matter obeys the fall off conditions
(46) at t ¼ 0. Then, choose gauge fixing to be of the form

M ¼ aðrÞ þ bðrÞt: (52)

Finally, determine the functions aðrÞ and bðrÞ so that on the
initial slice,

M0

F

��������t¼0
¼ a0ðrÞ

1� aðrÞ=r ¼ �ðmÞ þOðr��Þ;
_M

F

��������t¼o
¼ bðrÞ

1� aðrÞ=r ¼ �c c
0 þOðr��Þ:

(53)

Note that this choice of Mðr; 0Þ matches (43) in the pre-
vious section. One can then evolve the matter field accord-
ing to the equations of motion (36) until the gauge fixing
condition breaks down or one of the metric functions
diverge. Note that from the equations of motion for the
matter field, the asymptotic time evolution for the matter
field is governed by

_c ! r�3=2�
; _�c ! r�3=2�
: (54)

This suggests that the asymptotic relationship between
matter and gauge fixing will be preserved for a finite time.

VI. CONCLUSION

We have shown that a local Hamiltonian can be obtained
for spherically symmetric massless scalar field dynamics in
any theory of gravity to which the geometrodynamics of
Kuchar can be applied. The class of theories for which this
holds includes the generic Lovelock case as well as generic
2D dilaton gravity. The reduced action (45) is remarkably
simple and universal for all Lovelock theories in any
dimension. The existence of a local Hamiltonian is a direct
consequence of Eq. (19) which shows that the gravitational
Hamiltonian is linear in PR. In fact there are two terms, one

each of HðGÞ and HðGÞ
r . The coefficients A and B that

determine (39) are, up to an overall normalization factor,
precisely those required to cancel the two linear terms:
AR0 þ By ¼ 0. The overall normalization factor should be
the same for all such theories, and is such as to yield
N�=R0 as the coefficient of M0 in (21). This coefficient
plays a role in determining the boundary conditions, since
the boundary term in the Hamiltonian comes from the
variation of M0. We conjecture that the form of the true
Hamiltonian (40) in this type of gauge is the same for all
theories that obey a Birkhoff theorem and possess a mass
function M that is constant on the constraint surface in
vacuum. The gravitational backreaction is determined
completely by the dependence of F on M, as one may
expect from physical grounds. The extension to theories
with cosmological constant is straightforward, since it
merely modifies the relationship between F and M.
We note that our geometrodynamic formulation and

family of gauge choices results in a reduced Hamiltonian
that is much simpler than that of [10]. This makes it easier
to discuss both the advantages and potential disadvantages
of this family of gauges. Specifically, we were able to show
in Sec. IV that the reality condition on the square root is
directly tied to the validity of the gauge choice and more
importantly, we were able to find consistent gauge choices
for generic initial data.
Despite the universality and elegance of the final re-

duced Hamiltonian, there are potential problems in imple-
menting this gauge fixing procedure in asymptotically flat
space-times, related to the fact that the gauge condition is
not valid in vacuum. We have proposed one possible
approach to this problem for the investigation of spherical
collapse, but the viability of this approach requires further
investigation. As mentioned in Sec. III, another possibility
is to consider more complicated gauge fixing conditions
that depend on both c and M, as done in [10].
Finally, we note another potential application for the

local Hamiltonian, namely, the calculation of scattering
amplitudes for spherically symmetric self-gravitating mat-
ter using the phase space path integral. In principle, the
relatively simple algebraic form of the local Hamiltonian
might provide simplifications over the method used in [30],
for example, to calculate the tree level four point interac-
tion. However, it should be noted that, in the case of
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Hamiltonians quadratic in the momenta, it is possible to
perform the integral over the momentum to obtain a
simple covariant path integral with a Lagrangian that is
quadratic in the velocities. In the present case, the inte-
gration over the momentum is not trivial, and given the
nonpolynomial nature of the Hamiltonian, it will yield an
expression that is a nonpolynomial function of the veloc-
ity. It is nonetheless an intriguing question that deserves
further attention.
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