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Rastall’s theory isbasedon thenonconservationof the energy-momentum tensor.Weshow that, in this theory,

if we introduce a two-fluid model, one component representing vacuum energy whereas the other pressureless

matter (e.g. baryons plus cold darkmatter), the cosmological scenario is the same as for the�CDMmodel, both

at background and linear perturbation levels, except for one aspect: now dark energymay cluster.We speculate

that this can lead to a possibility of distinguishing the models at the nonlinear perturbation level.
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I. INTRODUCTION

Since the formulation of general relativity, about 100
years ago, many alternative geometric theories have been
proposed in order to explain gravitation phenomena (e.g.
[1–8]). Some of these touch one important aspect of gen-
eral relativity: the conservation law. To our knowledge, the
first nonconservative theory of gravity was the steady-state
model [9,10], following some ideas already presented in
the end of the forties by Jordan [11]. In the beginning of the
seventies, Rastall proposed one new version of a noncon-
servative theory of gravity, following the remark that the
conservation law T��

;� ¼ 0 may not hold true in a curved

space-time [5,6]. Hence, he argued that new gravitational
equations can be obtained considering a modification of
the conservation law such that

T��
;� ¼ �R;�; (1)

where T�� is the energy-momentum tensor, � is a coupling
constant and R is the Ricci scalar curvature. Hence, in the
weak field limit, the usual expressions are preserved.
Since, generally, the Ricci scalar curvature is connected
with the trace of the energy-momentum tensor, Eq. (1) can
be rewritten as

T��
;� ¼ ��T;�; (2)

where �� is a new constant and T is the trace of the energy-
momentum tensor. It is curious to remark that the phe-
nomenon of particle creation in cosmology [12–14] also
leads to a violation of the classical conservation laws and,
in this sense, Rastall’s idea may be viewed as a kind of
classical formulation of that quantum phenomenon, since
the violation of the energy-momentum conservation is
connected with the curvature.

More in detail, Rastall’s modification to Einstein equa-
tions take the following form (c ¼ 1 units):

R�� � 1

2
g��R ¼ 8�G

�
T�� � �� 1

2
g��T

�
; (3)

T��
;� ¼ �� 1

2
T;�; (4)

where � is a parameter (the choice � ¼ 1 restores general
relativity). Note that it seems possible to have a Lagrangian
formulation from which the above equations are deduced
[15]. Since for a radiative fluid T ¼ 0, implying R ¼ 0, we
can expect that the cosmological evolution during the
radiative phase is the same as in the standard cosmological
scenario. At same time, a single fluid inflationary model,
described by a cosmological constant, is the same as it
would be in the general relativity case. Hence, Rastall
cosmologies may have an important departure from the
standard cosmological model from the beginning of the
matter dominated phase on [16–19].

II. THE MODEL

In order to construct a Rastall cosmology which ac-
counts for the matter dominated era and the present phase
of acceleration of the universe, let us consider a two-fluid
model. The first component is a pressureless matter (i.e.
cold dark matter plus baryons) with density �m, while the
second one obeys the vacuum equation of state px ¼ ��x.
A subscript (or superscript) m shall denote quantities re-
lated to the matter component whereas a subscript (or
superscript) x shall refer to dark energy quantities.
Eqs. (3) and (4) then become

R���1

2
g��R¼8�G

�
Tm
��þTx

�����1

2
g��ðTmþTxÞ

�
;

(5)
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ðT��
m þ T��

x Þ;� ¼ �� 1

2
ðTm þ TxÞ;�: (6)

The latter equation fix the divergence of the total energy-
momentum tensor, while extra assumptions are necessary
in order to fix ðT��

m Þ;� and ðT��
x Þ;� (similarly to general

relativity, where the Bianchi identities only constrain the
total energy-momentum tensor). In general, for arbitrary
linear combinations of Tm and Tx such that Eq. (6) is
preserved, we introduce the arbitrary real parameters �x

and �m as follows:

T
��
m;� ¼ �� 1

2
ð�mTm þ �xTxÞ;�;

T
��
x;� ¼ �� 1

2
½ð1� �mÞTm þ ð1� �xÞTx�;�:

(7)

Note that, for � ¼ 1, we recover the standard (general
relativity) case.

Together with the flat Robertson-Walker metric,

ds2 ¼ dt2 � a2ðtÞ�ijdx
idxj; (8)

the Einstein and conservation Eqs. (5) and (7), take the
form

H2 ¼ 8�G

3

�
ð3� 2�Þ�x þ 3� �

2
�m

�
; (9)

_�m þ 3H�m ¼ �� 1

2
ð�m _�m þ 4�x _�xÞ; (10)

_� x ¼ �� 1

2
½ð1� �mÞ _�m þ 4ð1� �xÞ _�x�: (11)

Combining the second equation with the third, one obtains

_�m þ 3H�m ¼ �� 1

2

�
�m þ 2ð�� 1Þð�x � �mÞ
1þ 2ð�� 1Þð�x � 1Þ

�
_�m;

_�x ¼ �� 1

2

1� �m

1þ 2ð�� 1Þð�x � 1Þ _�m: (12)

Thus, we have the following solutions for the densities:

�m ¼ �m0a
�3ð1þ!eÞ; !e � �� 1

2

�m þ 2ð�� 1Þð�x � �mÞ
1þ 2ð�� 1Þð�x � 1Þ � ��1

2 ½�m þ 2ð�� 1Þð�x � �mÞ�
; (13)

�x ¼ ��

3� 2�
þ �� 1

2

1� �m

1þ 2ð�� 1Þð�x � 1Þ�m; (14)

where �� is an integration constant and we have introduced !e as an effective equation of state. Inserting Eq. (14) in the
modified Friedman Eq. (9), we obtain

H2 ¼ 8�G

3

�
��þ

�
1þ ð�� 1Þ½ð3� 2�Þð1� �mÞ � 1� 2ð�� 1Þð�x � 1Þ�

2½1þ 2ð�� 1Þð�x � 1Þ�
�
�m

�
; (15)

which would describe the same background evolution as in
the �CDM model, with now �� playing the role of an
effective cosmological constant, if matter had not now a
different evolution, depending on �, �m and �x.

Equation (13) predicts a deviation, given by the parame-
ter!e, from the usual dependence of the matter component
with respect to the scale factor. Indeed, in the �CDM
model:!e ¼ 0. In order to constrain!e, we use supernova
type Ia data, Union2 sample [20], HðzÞ data [21,22], first
CMB acoustic peak data given in terms of the R factor [23],
and BAO data [23,24]. We perform a bayesian statistical
analysis (as done in [17]) for the model defined by the
cosmological term plus a fluid with pm ¼ !e�m. Three
free parameters are consider: the matter density, the
Hubble constant, and !e. Marginalizing over the matter
density and the Hubble constant, we find, at 2	: !e ¼
0:039þ0:014

�0:080. The PDF for !e is displayed in Fig. 1.

Another estimation can be obtained by using structure
formation. Following [25], we see that the modification of
the equation of state induced by Rastall’s theory at the
background level, from the point of view of the general

relativity framework, i.e. pm ¼ !e�m, is maintained for
linear perturbations, i.e. �pm � !e��m (we use the ap-
proximate sign since in [25] the model considered is a
single-fluid one). The cold dark matter scenario implies
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FIG. 1 (color online). Probability density function (PDF) of!e.
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!e ¼ 0, while the warm dark matter scenario could lead to
!e � 0 (we admit that the hot dark matter scenario is
excluded by observation). Suggested by these remarks,
we fix !e ¼ 0 from now on.

It is remarkable that even if � is significantly different
from one, the cosmological background of Rastall’s theory
may lead to the same results of the �CDM model. To
this end, we set !e ¼ 0, whose single �-independent
solution is

�x ¼ �m ¼ 0: (16)

The above values for �x and �m lead to a particular but
interesting case of Rastall’s theory. The above setting
guarantees that the matter energy-momentum tensor is
conserved in the usual sense, i.e. T

��
m;� ¼ 0.

In fact, with the above hypothesis, Eq. (15) reduces to
the corresponding one in the �CDM model, without any
explicit dependence on �.

III. SMALL PERTURBATIONS

We turn now to the fate of linear perturbations. We will
work initially with the synchronous coordinate condition,
since it leads directly to an expression for the density
contrast of matter perturbations [26,27]. It is more conve-
nient, in this case, to use the field equations under the form,

R�� ¼ 8�G

�
T�� � 2� �

2
g��T

�
;

T��
;� ¼ �� 1

2
T;�: (17)

The synchronous coordinate condition implies that

~g �� ¼ g�� þ h��; h�0 ¼ 0; (18)

where ~g�� is the total (perturbed) metric, g�� is the back-

ground metric and h�� are fluctuations over the latter.

The fluids are represented by the following energy-
momentum tensors:

T
��
x ¼ ð�x þ pxÞu�x u�x � pxg

��;

T
��
m ¼ ð�m þ pmÞu�mu�m � pmg

��:
(19)

Later, we shall impose pm ¼ 0 and px ¼ ��x. The choice
of the synchronous coordinate condition implies �u0 ¼ 0,
but �ui is a dynamical variable. There are in fact two four-
velocities, one associated to the x component, the other to
the matter one. Using this formalism, one obtains the
following set of equations for perturbations:

€hþ 2
_a

a
_h ¼ 8�G�x½�þ 3ð2� �Þ!x��x þ 8�G�m��m;

(20)

_�m ¼
_h

2
; (21)

� _�x þ ð1þ!xÞ�x

�
��

_h

2

�
þ 3

_a

a
ð1þ!xÞ��x

¼ �� 1

2
½ð1� 3!xÞ� _�x þ � _�m�; (22)

ð1þ!xÞ _�x�u
i
x þ ð1þ!xÞ�x� _uix þ 5

_a

a
ð1þ!xÞ�x�u

i
x

þ!x

a2
@i��x ¼ ��� 1

2a2
½ð1� 3!xÞ@i��x þ @i��m�:

(23)

In these expressions we have used the definitions

h � hkk
a2

; !x � px

�x

; �x � ��x

�x

;

�m � ��m

�m

; � � @i�u
i
x; (24)

where @i denotes derivative with respect to the comoving
spatial coordinates. Now, let us impose !x ¼ �1. We
obtain, from Eqs. (22) and (23) that

� _�x ¼ �� 1

2
ð4� _�x þ � _�mÞ;

�@i��x

a2
¼ 1� �

2a2
ð4@i��x þ @i��mÞ;

(25)

and both these equations lead to the relation

��x ¼ �� 1

2ð3� 2�Þ��m: (26)

Using now Eq. (21) one can rewrite Eq. (20) as

€�m þ 2
_a

a
�m � 4�G�m�m ¼ 0: (27)

But this is the same equation for matter perturbation as in
the �CDM model! Actually, there is a difference: now
there are perturbations in the dark energy term �x. In fact,
using Eqs. (13) and (14) with �m ¼ �x ¼ 0 together with
(26), we find

�x ¼ �� 1

2

�m
��

�m0
a3 þ ��1

2

: (28)

In the remote future (i.e. for a ! 1), �x must become
negligible, and a complete equivalence between the Rastall
and the �CDMmodel is expected both for the background
expansion and the linear perturbations evolution. On the
other hand, in the remote past (i.e. for a ! 0), we have
�x � �m and therefore dark energy may in principle clus-
ter. This may have consequences for the structure forma-
tion process because we should expect an amount of
clustered dark energy to be present in virialized systems,
like halos of galaxies and clusters of galaxies. However, as
we have shown, such consequences seem not to appear for
linear perturbations.
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Newtonian gauge

A possibility to discriminate between the two models
could be a different integrated Sachs-Wolfe effect signal
[28]. To see if this is the case, we adopt now the conformal-
Newtonian one. Consider the following perturbations to
the Robertson-Walker metric expressed in the conformal
time �:

ds2 ¼ a2ð�Þð1þ 2�Þd�2 � a2ð�Þð1� 2�Þ�ijdx
idxj;

(29)

where�ð�; xiÞ is the gravitational potential. For each fluid
component we calculate the perturbations to the continuity
equation and to the Euler one. Following [29], for the case
of matter we have

��0
m þ 3

a0

a
��m þ a�m@i�u

i
m � 3�m�

0 ¼ 0;

1

a4
ða5�m�u

i
mÞ0 þ �m@

i� ¼ 0;

(30)

where the prime denotes derivation with respect to the
conformal time. For the x component, we have the correc-
tion proportional to T;� and the equations are

��0
xþ3

a0

a
ð�pxþ��xÞ�3�xð1þwxÞ�0þa�xð1þwxÞ@i�uix

¼��1

2
½��0

mþ��0
x�3�p0

x�; (31)

1

a4
½a5�xð1þ wxÞ�uix�0 þ @i�px þ �xð1þ wxÞ@i�

¼ ��� 1

2
@i½��m þ ��x � 3�px�: (32)

For the Einstein equations, we have

��� 3
a0

a

�
a0

a
�þ�0

�

¼ 4�Ga2
�
��mþ��x��� 1

2
ð��mþ��x� 3�pxÞ

�
;

(33)

�00 þ 3
a0

a
�0 þ

�
2

�
a0

a

�0 þ
�
a0

a

�
2
�
�

¼ 4�Ga2
�
�px þ �� 1

2
ð��m þ ��x � 3�pxÞ

�
: (34)

For px ¼ ��x, Eqs. (31) and (32) become

��0
x ¼ �� 1

2
ð��0

m þ 4��0
xÞ;

@i��x ¼ �� 1

2
@ið��m þ 4��xÞ;

(35)

and therefore we have

��x ¼ �� 1

2ð3� 2�Þ��m; (36)

i.e. the perturbation in the x fluid is proportional to the one
for matter, the same relation (26) we found using the
synchronous coordinate condition. Combining Eqs. (33)
and (34) with Eq. (36) we obtain

��� 3
a0

a

�
a0

a
�þ�0

�
¼ 4�Ga2��m; (37)

�00 þ 3
a0

a
�0 þ

�
2

�
a0

a

�0 þ
�
a0

a

�
2
�
� ¼ 0: (38)

These equations are identical to the corresponding ones for
the �CDM model (note that the background is also the
same). In particular, the first one confirms that matter
perturbations are not affected by the x fluid (with !x ¼
�1), even if the latter also agglomerates.

IV. NONLINEAR REGIME

We follow [30] for the treatment of the second-order
regime of cosmological scalar perturbations. In particular,
consider Eqs. (4.15)–(4.17) of [30] for the x component of
our model in the Newtonian gauge (i.e. zero metric coef-
ficient B), with zero anisotropic pressure and px ¼ ��x,
�px ¼ ���x (we assume this relation at all orders):

ð2ÞT0
x0 ¼ ��ð2Þ

x ; ð2ÞT0
xi ¼ 0;

ð2ÞTi
x0 ¼ 0; ð2ÞTi

xj ¼ ��pð2Þ
x �i

j; (39)

where the subscript ð�Þ refers to the perturbation order.
Moreover, the second-order trace has the following form:

ð2ÞTx ¼ ð2ÞT0
x0 þð2Þ Tk

xk ¼ ��ð2Þ
x � 3�pð2Þ

x ¼ 4��ð2Þ
x :

(40)

On the other hand, for the matter component we have
pm ¼ 0. Hence Eqs. (4.15), (4.17) of [30] become

ð2ÞT0
m0 ¼ ��ð2Þ

x þ 2�mv
ð1Þ
k vð1Þk; ð2ÞTi

mj ¼�2�mv
ð1Þ
k vð1Þk;

(41)

where the vð1Þ
k represents the velocity perturbation at first

order. Hence, for the second-order trace we get

ð2ÞTm ¼ ð2ÞT0
m0 þ ð2ÞTk

mk ¼ ��ð2Þ
m : (42)

Now consider the equation

T
�
x�;� ¼ �� 1

2
ðTx þ TmÞ;�; (43)

at second order:

CARLOS E.M. BATISTA PHYSICAL REVIEW D 85, 084008 (2012)

084008-4



@�
ð2ÞT�

x� þ ð0Þ��
��

ð2ÞT�
x� þ ð1Þ��

��
ð1ÞT�

x� þ ð2Þ��
��

ð0ÞT�
x�

� ð0Þ��
��

ð2ÞT�
x� � ð1Þ��

��
ð1ÞT�

x� � ð2Þ��
��

ð0ÞT�
x�

¼ �� 1

2
½ð2ÞTm þ ð2ÞTx�;�: (44)

Making � ¼ 0, and taking into account the nonvanishing
values of the perturbations, we obtain:

@0
ð2ÞT0

x0 þ ð0Þ��
�0

ð2ÞT0
x0 þ ð1Þ��

�0
ð1ÞT0

x0 þ ð2Þ��
�0

ð0ÞT0
x0

� ð0Þ��
�0

ð2ÞT�
x� � ð1Þ��

�0
ð1ÞT�

x� � ð2Þ��
�0

ð0ÞT�
x�

¼ �� 1

2
½ð2ÞTm þ ð2ÞTx�;0: (45)

On the other hand:

ð0Þ��
�0

ð2ÞT�
x� ¼ ð0Þ�0

00
ð2ÞT0

x0 þ ð0Þ�i
j0
ð2ÞTj

xi

¼ a0

a
½ð2ÞT0

x0 þ ð2ÞTk
xk� ¼ 4

a0

a
��ð2Þ

x ; (46)

and

ð0Þ��
�0

ð2ÞT0
x0 ¼ 4

a0

a
��ð2Þ

x : (47)

Hence, the second term in the first line of Eq. (45), cancels
with the first term of the second line. In the same way, the
third term and fourth term of the first line cancel with the
second and third of the second line. We end up with

��ð2Þ0
x ¼ �� 1

2
½4��ð2Þ0

x þ ��ð2Þ0
m �; )

��ð2Þ
x ¼ �� 1

2ð3� 2�Þ��
ð2Þ
m ;

(48)

and we recover, up to an integration constant, Eq. (36), now
at the second order. Therefore, it seems that in the Rastall
cosmological models here investigated, the evolution of
perturbations in the x fluid mimic those in the matter up to
the second-order perturbation regime.

The left-hand side of Eq. (3) is the same as in Einstein’s
theory, for the background and for the perturbations evo-
lution. As for the right hand side, using Eq. (4.16) of [30]
for matter (pm ¼ 0), i.e.

ð2ÞT0
mj ¼ ��mv

ð2Þ
j þ 4c ð1Þvð1Þ

j þ 2
ð1Þvð1Þ
j ; (49)

we find

ð2ÞT0
0 �

ð�� 1Þ
2

ð2ÞT ¼ ��ð2Þ
m þ 2�mv

ð1Þ
k vð1Þk: (50)

This is the same relation that one can find in the usual
�CDM model. Following the same steps, we have

ð2ÞT0
i ¼ ð2ÞT0

mi

¼ ��m½vð2Þ
i � 4c ð1Þvð1Þ

i � 2
ð1Þvð1Þ
i � � 2��ð1Þ

m vð1Þ
i ;

(51)

ð2ÞTi
j �

ð�� 1Þ
2

�i
j
ð2ÞT ¼ �2�mv

ð1Þivð1Þ
j : (52)

All the relations are the same as in the �CDM model.
Therefore, even at the second order, considering scalar
perturbations only, the evolution of matter perturbations
is not affected by the agglomeration of the x component.
However, in the full nonlinear regime one should expect

some differences between Rastall’s model and the �CDM
one. This because we have now two components agglom-
erating and they would gravitationally interact affecting in
some manner, hopefully detectable, the growth of struc-
ture. Such analysis is beyond the scope of the present
paper, nevertheless we can argue some hints by consider-
ing the simple case of a spherical top-hat collapse. Let us
follow the growth of an inhomogeneity in the past, when
the universe behaved as an Einstein-de Sitter one since the
effects of a cosmological constant were safely negligible.
Following [31], the growth of a spherical homogeneous
region is described by the equation

�
_a

ai

�
2 ¼ H2

i

�
�pðtiÞaia þ 1��pðtiÞ

�
; (53)

where ai is the scale factor computed at some time ti at
which the collapse begins and �p ¼ 1þ � is the density

parameter of the collapsing region, determined by the
density contrast of the fluid there contained. Here comes
the relevant difference. For the �CDM model, the only
collapsing component is matter and, therefore, �p ¼
1þ �m. On the other hand, in the Rastall models we
presented, an unknown fluid x with a vacuum equation of
state also can agglomerate. For this reason, the density
parameter of the collapsing region assumes now the form

�p ¼ 1þ ��m

�m þ �x

þ ��x

�m þ �x

: (54)

Considering now Eq. (14) with �m ¼ �x ¼ 0, and neglect-
ing the contribution of the constant ��, we can write

�p ¼ 1þ 2ð3� 2�Þ
5� 3�

�m þ �� 1

5� 3�
�x: (55)

Equation (53) is assumed to hold true for both the models
and it is easy to solve, giving the size of the perturbation,
once we know �pðtiÞ. For the �CDM we have that

�pðtiÞ ¼ 1þ �mðtiÞ, whereas in the Rastall-type cosmo-

logical model we have one degree of freedommore than the
�CDM one, because of the initial condition �xðtiÞ. So, in
principle, one can construct the same collapsing history as
in the �CDM one but with a different amount of matter,
depending on the value of �.
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V. DISCUSSION AND CONCLUSIONS

We have shown that there is a subset of cosmological
scenarios based on Rastall’s energy-momentum tensor
nonconservation that are equivalent to the �CDM cosmol-
ogy, except for one aspect: vacuum energy may agglom-
erate. Two effects could allow to discriminate between the
two models: nonlinear effects in the matter power spectrum
and the transfer function for cosmological perturbations.
Vacuum energy is negligible in the past, hence the impact
of its fluctuation in the evolution of the perturbations in the
primordial periods of the evolution of the universe may not
be relevant. However, according to the scenario described
above, dark energy must be present in virialized systems,

like galaxies and cluster of galaxies, and the effect of
agglomeration of dark energy must be relevant at this level.
Therefore, Rastall’s cosmology and the �CDM model
seem to be distinguishable only at the nonlinear regime
of the evolution of cosmic perturbations. Though we have
given some hints of the latter possibility addressing the
simple case of a spherical top-hat collapse, a deeper analy-
sis shall be the subject of future investigation.
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[2] É. Cartan, Annales Scientifiques de l’École Normale
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