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We consider a class of Lorentz gauge gravity theories within Riemann-Cartan geometry that admits a

topological phase in the gravitational sector. The dynamic content of such theories is determined only by

the contortion part of the Lorentz gauge connection. We demonstrate that there is a unique Lagrangian that

admits propagating spin-one mode in correspondence with gauge theories of other fundamental inter-

actions. Remarkably, despite the R2 type of the Lagrangian and noncompact structure of the Lorentz

gauge group, the model possesses rather a positive-definite Hamiltonian. This has been proved in the

lowest order of perturbation theory. This implies further consistent quantization and leads to renormaliz-

able quantum theory. It is assumed that the proposed model describes possible mechanism of emergent

Einstein gravity at very early stages of the Universe due to quantum dynamics of contortion.
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I. INTRODUCTION

The idea that a Lorentz gauge approach can lead to a
consistent quantum theory of gravity has been developed
for the last 50 years since the seminal paper by Utiyama
[1]. The exhausting list of references can be found in
reviews on this topic (see, for instance, [2,3]). Among early
works devoted to Lorentz gauge theory with Yang-Mills-
type Lagrangian, one should mention the papers [4–9]
where main features of classical and quantum theory
were studied. Extension of the Lorentz gauge approach
to the case of general Lorentz connection including con-
tortion was widely explored as well [2,3,10,11]. The most
general Lagrangian quadratic in Riemann-Cartan curvature
and with the Einstein-Hilbert term was considered in [12].
Recently, a Lorentz gauge gravity model with the contor-
tion part in the Lorentz gauge connection that admits a
topological phase for gravitation has been proposed [13].
We assume that such a topological phase can be possibly
realized at very early stages of our Universe close to or
before the big bang. The standard gravity is supposed to be
an effective theory that is induced during phase transition
due to quantum dynamics of contortion. The idea that
Einstein gravity is an effective theory and can be deduced
from some more fundamental theory is not new; it was
sounded by Zel’dovich and Sakharov in the 1970s [14,15].
Possible mechanisms of inducing the Einstein theory via

quantum corrections were proposed in the past by many
physicists in various approaches: conformal invariance
breaking schemes [16,17], nonlinear realizations of the
Lorentz group [18,19], models with spontaneous symme-
try breaking [20–24], superstring models, loop quantum
gravity [25,26], and others [27,28]. In order to capture
the nature of gravity, thermodynamic approaches have
been also developed [29–31]. Recently, it was conjec-
tured that the gravity could be regarded as the entropic
force through the holographic principle [32]. In most of
these approaches, the Einstein-Hilbert term is induced by
quantum corrections due to interaction with the matter
field.
Our approach is based on the gauge principle that was

successfully realized in formulating the theories of elec-
troweak and strong interactions. We consider the local
Lorentz symmetry as an appropriate gauge symmetry for
constructing a generalized theory of gravity in geometric
framework since it reflects the equivalence principle,
which is a cornerstone of general relativity. This introduces
naturally the contortion as a part of general Lorentz gauge
connection. Whether or not the contortion (torsion) is
relevant to our real world is discussed in detail in [33].
We consider theories with a Lagrangian containing

only Riemann-Cartan curvature-squared terms. We do
not introduce terms quadratic in torsion since we treat
the contortion as a part of Lorentz gauge connection, not
as a tensor. By this way, we keep the gauge structure of
the considered Lorentz gauge gravity models close to
standard gauge approach. It has been shown [13] that
there is a model with a special R2-type Lagrangian that
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admits a topological phase for the gravitation whereas
contortion still possesses dynamical degrees of freedom.
An interesting feature of the model is that the number of
dynamical degrees of freedom of torsion is the same as the
number of physical degrees of the metric tensor. This gives
a hint that torsion may play a role of quantum counterpart
to the classical metric of Einstein gravity, which is sup-
posed to be an effective theory generated by the quantum
dynamics of torsion [34]. The analysis of dynamic content
of the model in [13] has been performed at the lowest
linearized level in the contortion part and in the presence
of constant Riemann curvature space-time background.
Because of these limitations, several important issues in
this model remain unclear, especially whether the dynami-
cal properties of torsion are intrinsic properties or they
depend on the presence of the background metric.

As it is known, theories with R2-type Lagrangian suffer
from a serious problem related to nondefiniteness of the
Hamiltonian due to noncompact structure of the Lorentz
gauge group. This has been the main obstacle toward con-
sistent quantization and defining a physical unitary Smatrix.
One possible way to overcome this problem is based on
Euclidean gravity formalism [35–37]. One should notice
that presence of higher-derivative terms in the Lagrangian
still may cause problems with unitarity and ghosts in the
graviton propagator in Euclidean gravity [36,38].

In the present paper, we study dynamical properties of the
topological gravity model with torsion in the limit of flat
space-time metric. We have found that Lorentz gauge con-
nection has dynamic degrees of freedom with a Lagrangian
specified by the same set of parameters in the initial
Lagrangian as in the case of the presence of background
constant Riemannian curvature space-time. This proves that
contortion possesses genuine dynamical properties inde-
pendently on the metric. It is unexpected, we have demon-
strated in the lowest order of perturbation theory, that the
model has a positive-definite Hamiltonian. This allows to
define stable quantum vacuum and perform consistent
quantization preserving unitarity in the theory.

In Sec. II, we present the principal ideas lying in the
basis of the model of quantum gravity with contortion. In
Sec. III, we study the dynamic content of the theory by
solving equations of motion in Lagrange formalism. All
equations of motion are solved in linearized approximation
by using decomposition of the Lorentz connection around
fixed classical solution corresponding to constant torsion
background. In Sec. IV, we prove the positive definiteness
of the Hamiltonian in the linearized approximation. The
last section contains discussion of possible physical
implications.

II. LORENTZ GAUGE THEORY WITH
TOPOLOGICAL GRAVITY

Lorentz gauge theory on curved space-time can be de-
scribed naturally within Riemann-Cartan geometrical

formalism. Let us start first with the main outlines of
Riemann-Cartan geometry. The basic geometric objects
are the vielbein ema and the general Lorentz affine connec-
tion Amcd, which can be identified with the Lorentz gauge
potential. The infinitesimal Lorentz transformation of the
vielbein ema is given by

�ema ¼ �a
bemb ; (1)

where �abð¼ ��baÞ is the Lorentz gauge parameter. We
use m; n; . . . to denote world indices, and a; b; . . . for
Lorentz frame indices. We assume that the vielbein is
invertible and the metric �abð¼ ema embÞ has Lorentz sig-
nature �ab ¼ diagð�;þ;þ;þÞ.
The covariant derivative with respect to the Lorentz

group transformation is defined in a standard manner

Da ¼ ema ð@m þ gAmÞ; (2)

where Am � Amcd�
cd is the affine connection taking val-

ues in the Lorentz Lie algebra whose generator is given by
�cd, and g is a new gravitational gauge coupling constant.
For brevity of notation, we will use a redefined connection
that absorbs the coupling constant. The original Lorentz
gauge transformation of the connection Am has the form

�Am ¼ �@m�� ½Am;��; (3)

where � ¼ �cd�
cd. The Lorentz gauge connection Ab

ma

can be rewritten as the sum

Amab ¼ ’mabðeÞ þ Kmab; (4)

where Kmab is a contortion and ’mabðeÞ is a Levi-Civita
spin connection given in terms of the vielbein

’mabðeÞ ¼ �1
2ðenb@mena � enae

c
m@benc

þ @aemb � ða $ bÞÞ: (5)

The torsion and curvature tensors are defined in a standard
way

½Da;Db� ¼ Tab
cDc þ Rabcd�

cd; (6)

where the torsion components in the unholonomic basis
can be expressed in terms of contortion, and conversely

Tab
c ¼ Kab

c � Kba
c; Kabc ¼ 1

2ðTabc � Tbca þ TcabÞ:
(7)

The most general quadratic in Riemann-Cartan curva-
ture Lagrangian reads

L ¼ c1RabcdR
abcd þ c2RabcdR

cdab þ c3RabR
ab

þ c4RabR
ba þ c5R

2 þ c6A
2
abcd; (8)

where the last term is an additional invariant that appears in
Riemann-Cartan space-time. The tensor Aabcd is defined as
follows [12],

Aabcd� 1
6ðRabcdþRacdbþRadbcþRbcadþRbdcaþRcdabÞ:

(9)
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In Riemannian space-time, the tensor Aabcd vanishes due to
the Jacobi cyclic identity

Rabcd þ Racdb þ Radbc ¼ 0: (10)

A careful analysis of gravity models including the Einstein
term in the Lagrangian was done in [12]. We do not
consider the Einstein term since we treat the Einstein
gravity as an effective theory that should not be quantized
and that is induced from a more general theory, in our case
from Riemann-Cartan gravity. So, only contortion repre-
sents quantum dynamical degree of freedom in a special
Riemann-Cartan gravity model. In general, the Lagrangian
(8) contains propagating modes for both fields, metric and
contortion. So, formally the metric can still be considered
as a quantum field as well as the contortion. This is not
merely satisfactory because metric and contortion repre-
sent different geometric objects. The metric plays a role of
kinematic variable in description of the space-time geome-
try, whereas the contortion, as a part of gauge connection,
plays a role of gauge potential that represents dynamic
object in gauge theories of electroweak and strong inter-
actions. To keep only the contortion as a quantum variable,
we conjecture that a generalized Riemann-Cartan gravity
may admit a phase where the metric describes a pure
topological structure of the space-time. So, the metric
does not satisfy any equations of motion and it cannot be
quantized in principle. This is our main idea. We are
looking for such a Lagrangian in Riemann-Cartan space-
time that reduces to topological Gauss-Bonnet density in
the limit of Riemannian geometry.

In Riemann-Cartan geometry, the proper generalization
of the topological Gauss-Bonnet invariant (Euler charac-
teristic) is given by the Bach-Lanczos (BL) density [39,40]

IBL ¼ RabcdR
cdab � 4RabR

ba þ R2: (11)

The properties of the Bach-Lanczos invariant are described
in a detail in [41]. A proper Lagrangian can be derived
from the general expression (8) by fitting the parameters ci
as follows,

L ¼ � 1

32
f�R2

abcd þ ð1� �ÞRabcdR
cdab � 4�R2

bd

� 4ð1� �ÞRbdR
db þ R2 þ 6�A2

abcdg; (12)

where the parameters �, �, � remain arbitrary. One can
check that the Lagrangian reduces to the Gauss-Bonnet
density in the limit of Riemannian space-time, i.e., when
contortion is set to be zero. One can rewrite the Lagrangian
in a more simple form

L ¼ � 1
32fð�þ �ÞR2

abcd � ð�� �ÞRabcdR
cdab

þ 4�RabcdR
acdb � 4�ðR2

bd � RbdR
dbÞ þ IBLg:

(13)

It has been shown that the model described by the
Lagrangian (13) admits dynamical degrees of freedom

for the contortion only for the special values of the pa-
rameters, � ¼ 0, � ¼ �3� with overall normalization
factor � [13]. The result has been obtained from the
analysis of linearized equations of motion for contortion
in the presence of constant Riemann curvature space-time
background. Therefore, the principal question arises
whether contortion will keep its properties in the flat
Riemannian space-time. In other words, whether the dy-
namics of torsion represents its intrinsic properties inde-
pendent of the metric. If the contortion still possesses
dynamical properties in flat space-time, then another im-
portant question arises, at which values of the parameters
�, �, � it will happen.
In the present paper, we will mainly concentrate on flat

metric limit, i.e., a pure Lorentz gauge theory with the
Lagrangian of type (13). The field strength (curvature
tensor) in flat space-time takes a simple form

Rmncd ¼ @mAncd þ AmceAned � ðm $ nÞ: (14)

Since the background vielbein is flat, there is no difference
between the world and Lorentzian indices. Our study will
be constrained by a special choice of the parameter,� ¼ 0,
which is a necessary condition of existence of propagating
vector mode in the presence of constant curvature space-
time [13].
The theory described by the Lagrangian (13) is highly

nonlinear and belongs to degenerate theories [42].
Application of canonical formalism to such theories is
quite complicated due to the presence of constraints of
higher orders. Therefore, to study the dynamical structure
of the theory we will use Lagrange formalism and apply
linearized approximation method, which is effective in the
analysis of nonlinear equations of motion. We will split the
Lorentz gauge connection into classical background field
Bacd (which plays a role of the mean field) and fluctuating
part qacd as follows,

Aacd ¼ Bacd þ qacd: (15)

Under the decomposition (15), the general field strength is
split into two parts as follows,

Rabcd ¼ RabcdðBÞ þ ~RabcdðqÞ;
RabcdðBÞ ¼ @aBbcd þ BaceBbed � ða $ bÞ;
~RabcdðqÞ ¼ Daqbc d þ qaceqbed � ða $ bÞ;

(16)

where Da is a background covariant derivative containing
the classical field Bacd, and the underlined indices stand for
indices over which the covariantization is performed.
There are two gauge nonequivalent representations for

gauge potentials leading to the same constant field strength
in SUð2ÞYang-Mills theory: Abelian type and non-Abelian
type [43–45]. In the case of constant curvature space-time,
the Abelian type of gravitational field has been used for
spin connection [13]. The calculations are crucially
simplified using normal coordinate decomposition of the

LORENTZ GAUGE THEORYAS A MODEL OF EMERGENT . . . PHYSICAL REVIEW D 85, 084006 (2012)

084006-3



metric. In the present case of flat space-time, it is more
convenient to choose a constant background field of non-
Abelian type defined by the following Lorentz gauge po-
tential, Bacd,

B0cd ¼ 0; B��� ¼ ����H; B�0� ¼ ���G; (17)

where Greek indices run through the space components
and �123 ¼ þ1. The constant field is determined by two
number parameters G, H which correspond to rank two of
the Lorentz group. The corresponding field strength reads

R0�cd ¼ 0;

R��0� ¼ �2����HG;

R���� ¼ ðH2 �G2Þð������ � ������Þ:
(18)

We will analyze the equations of motion in detail for the
case of constant background G ¼ 0, H � 0, which is one
of the background solutions.

III. EQUATIONS OF MOTION IN LAGRANGE
FORMALISM

The classical theory with the Lagrangian (13) is degen-
erate. This implies that the number of equations of motion
in free theory is less than the number of field degrees of
freedom. So, one has to consider nonlinear equations of
motion to determine the dynamic content of all fields. The
degeneracy of the quadratic Lagrangian (13) manifests in
appearance of additional local symmetries. One symmetry
is similar to Uð1Þ gauge symmetry

�Uð1Þqacd ¼ 1
3ð�ac@d�� �ad@c�Þ; �Uð1Þqaad ¼ @d�;

(19)

and it implies that only transverse degrees of freedom of
the vector field qaad can be propagating. Another symme-

try with a constrained parameter �bc has the following
form,

��qacd ¼ @c�da � @d�ca; (20)

where �bc ¼ �cb, �c
c ¼ 0, and @c�cd ¼ 0. These

symmetries reduce essentially the number of dynamical
component fields in the contortion.

Let us consider linearized equations of motion corre-
sponding to the Lagrangian (13)

�L
�qncd

� ð�þ �ÞDmðDmqncd �DnqmcdÞ
� ð�� �ÞDmðDcqdmn �DdqcmnÞ
þ �DmðDmqcdn �Dcqmdn �Dnqcdm

þDcqndm � ðc $ dÞÞ
¼ 0; (21)

where covariant derivatives inside the brackets act on the
last two indices of qncd, and for the second covariant
derivatives, Dm, the covariantization is performed over
underlined indices. One has 24 equations of motion; six
equations among them represent Noether identities due to
local Lorentz symmetry. One has to impose six gauge-
fixing conditions that will be chosen in consistence with
equations of motion.
It is convenient to make the following decomposition of

the Lorentz gauge connection qacd into irreducible parts
ðq00	; q0	
; q	��; q	0�Þ where

q	�� ¼ ���� S
>>

	�

�
þ 1

2

�
�	� �

@	@�
�

�
S
>

þ ð@	S� þ @�S	Þ þ �	��A�Þ;

q	0� ¼ R
>>

	� þ 1

2

�
�	� �

@	@�
�

�
R
> þ ð@	R� þ @�R	Þ

þ �	��Q�: (22)

We define � ¼ @�@�, and the superscript ‘‘>’’ stands for
traceless components and ‘‘>>’’ denotes traceless and
transverse irreducible part. The decomposition is similar
to that used for the metric tensor in canonical formalism of

Einstein gravity [46]. Note that the fields S
>
, R
>
and longi-

tudinal components Al
� ¼ @�@�

� A�, Q
l
� ¼ @�@�

� Q� do not

transform under Lorentz gauge transformations.
We will solve all equations of motion in component

form. Let us start with the equation

�L
�q00�

� �q00� � @	@�q00	 þ @	@0ðq�0	 � q	0�Þ
þ 4H�	��@	q00� þ 2H�	�’@0q	’0 � 4H2q00�

¼ 0: (23)

The equation represents a constraint that can be solved
exactly

H2@�q00� ¼ H@0@�Q�; (24)

qtr00� ¼ 1

�þ 4H2
@0ð�2��	
@	Q

tr

 þ 4HQtr

�Þ: (25)

The constraint allows to express the field q00� in terms of
Q�. Notice that we cannot impose a gauge-fixing condition
to eliminate the field Ql

� since it is gauge invariant under
the Lorentz gauge transformation. In Eq. (24), we keep
H-terms explicitly to show that this constraint vanishes
identically in the limitH ! 0. Further, we will assume that
H is a small parameter to justify our perturbative analysis
of equations of motion.
The equation �L=�q0�� contains a part with time de-

rivatives of first order. It is convenient to use the Lorentz
gauge freedom and impose a gauge-fixing condition that
makes these terms vanished,
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ð�þ �Þ@	q	�� � �@	ðq�	� � q�	�Þ � �Hð��	’q	’� � ��	’q	’�Þ ¼ 0: (26)

The gauge-fixing condition can be written in terms of
component fields as follows,

2ð�þ �Þ@�S� þ �S
> � 2�

�
H@�A� ¼ 0; (27)

�Str� � ����@�A
tr
� � 2HAtr

� ¼ 0: (28)

The last equation allows to express the pseudovector field
Str� in terms of the physical vector fieldAtr

�. Since one has six
gauge degrees of freedom due to the Lorentz gauge sym-
metry, one can impose another three gauge-fixing condi-
tions. Wewill impose them later; for the present moment, it
is difficult to determine which conditions should be im-
posed in a consistent manner with all equations of motion.
With this, the equation �L=�q0�� results in a constraint

�L
�q0��

� ð�þ �Þ�q0�� þ �@	ð@�q0�	 � @�q0�	Þ þ �@	ð@�q�0	 � @�q�0	Þ � 2������Q� þ 2���	�@�@	Q�

� 2���	�@�@	Q� þHf2�@�Q� þ 2ð�þ 2�Þ��	�@	q0�� þ �����@	ðq0�	 � q	�0Þ þ ���	�@�q0�	

þ 2ð��þ �Þ��	�@	q��0 � ð� $ �Þg �H2f2�q0�� þ �ðq�0� � q�0�Þg
¼ 0: (29)

For our purpose to determine the dynamic content of the theory, we will need the solution to this equation up to order H2,

q0�� ¼ �
�
1þ 2H2

�

�
@�R

tr
� �

4�� 2�

�þ �
H����R

l
� � �� �

�þ �
H����

@�
�

R
> þ 1

2
����Q

tr
� þ 2H

�
@�Q

tr
�

þ �

�þ �
����Q� þ �ð�þ 3�Þ

ð�þ �Þ2
H2

�
����Q

l
� � ð� $ �Þ þOðHn�3Þ: (30)

The next equation of motion, �L=�q
0
, represents a constraint that allows to express the component field R
>
in terms of

other fields

�L
�q
0


� ��R
> � 2�@0@	A	 þH

�
2ð3�� �Þ@0T þ

�
6ð�þ 2�Þ þ 4�ð2�� 3�Þ

�þ �

�
@	Q	

�

� 4H2

�
2�� 3�

�þ �
ð2ð2�� �Þ@	R	 � ð�� �ÞR>Þ þ 2�R

> þ 4�@	R	

�
þOðHn�3Þ

¼ 0; (31)

where we introduce a useful notation T for the irreducible totally antisymmetric part of q���,

qð���Þ � q��� þ q��� þ q��� ¼ ����T; T � 1
2�	�’q	�’ ¼ S

> þ 2@�S�: (32)

Let us consider the following equation of motion,

�L
�q

�

� �ðhq

� � @�@	q

	 � @	@
q	
� þ @0ð@
q0
� þ @�q

0 þ @
q�0
Þ � 2H2q

�Þ
þHf�����@	q	�� � 3�����@	q��	 � 4���	�@	q

� þ 3ð�þ 2�Þ�	��@	q��� � ð2�� 3�Þ��	�@	q���

þ ���
�@0q
�0 þ ð�� 3�Þ��	�@�q�	� � �����@0q0��g
¼ 0; (33)

where h � �@0@0 þ @�@�. The transverse part of the equation leads to a propagation equation for the transverse part of
the vector field A� ¼ �q

�=2,

hq

� �
@�@	
�

q

	 þOðHn�1Þ ¼ 0: (34)

The longitudinal part of the equation at the lowest order H0 coincides with the lowest-order part of the Eq. (31), so that a
nontrivial part of the equation appears at the next order in H:
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H

�
ð�þ �Þ�T � ð�� 3�Þ@0@0T þ �

�
ð�þ 5�Þ@0W

�

þOðHn�2Þ ¼ 0; (35)

where the field W corresponds to a scalar irreducible part
of q0��,

W � 1

2
����@�q0�� ¼ 2�

�þ �
@�Q� þOðHÞ:

As we will see below, the fields T and W represent prop-
agating scalar modes corresponding to the longitudinal
field components Sl�, Q

l
�. Notice that one has arbitrariness

in choosing a set of independent field variables in the
theory. The Eq. (35) contains fields S

>
, Sl� which satisfy

the gauge-fixing condition (27) including the field Al
�. So,

it is appropriate (and consistent with all other equations of
motion) to treat the constraint (35) as a nonlinear equation
for Al

�.
Let us now consider the equation �L=�q�0�,

�L
�q�0�

� ��q�0� þ ��ðq�0� � q�0�Þ � �@	@�q	0� � �@0@0ðq�0� � q�0�Þ � ��q0�� þ �@0@�q00� � �@0@�q00�

� �@0@	q�	� þ �@0@	qð	��Þ þ �@	ð�@�q	0� þ @�q	0� þ @�q�0	 � @�q�0	Þ þ �@	@�q0	�

� �@	@�q0	� þ �@	@�q0	� þHf2�����@0q00� � ����	@0q�	� þ ����	@0qð�	�Þ
þ 2ð�þ 2�Þ��	�@	q��	 þ 2���	�@	q�0� � ð�þ 2�Þ��	
@�q	
0 þ ð�þ 2�Þ����@	q	�0

þ ð�� 2�Þ����@	q0�	 þ 2���	�@	q�0� þ 2ð�� 2�Þ��	�@	q0�� þ 2���	�@	q0�� � ���
	@�q0
	g
þH2f�ð3�þ 2�Þq�0� þ ð�� 2�Þ���q
0
 � �q0��g

¼ 0: (36)

To solve this equation for all its irreducible parts, one has to
take into account terms up to order H2 because some
irreducible components of this equation vanish at the
lower-order expansion in H. Let us start with the equation
obtained by contraction with the antisymmetric tensor
����. This equation produces two constraints. The first
one corresponds to the longitudinal projection of the con-
tracted equation, and it can be simplified to the following
constraint,

� 2�@�W � �@0@�S
> þ 2�@0@�T þ 2ð�þ 2�Þ�Ql

�

� 4�@0@0Q
l
� þOðHn�1Þ ¼ 0: (37)

This equation provides a propagation equation forQl
�. The

transverse part of the antisymmetrized Eq. (36) vanishes at
the lowest order H0 and leads to a nonlinear relationship
between fields Rtr

� and Atr
�,

H@0A
tr
�þH2����@�R

tr
��

�
2þ�

�

�
H2Qtr

�þOðHn�3Þ¼0:

(38)

Let us now consider the Eq. (36) symmetrized over its
indices. The divergence of the symmetrized part
@��L=�qf�0�g implies two equations. First, one does not

vanish only at order H1, and it produces the same con-
straint as (37). The second equation is

ð2�þ 3�ÞH�Qtr
� � 2ð3�þ �ÞH2ð����@�Qtr

� þ�Rtr
�Þ

þOðHn�3Þ ¼ 0: (39)

Because of the relationship (38) between the fields Rtr
� and

Atr
�, the last constraint implies, in general, a vanishing

condition for both fields Rtr
�, A

tr
� and absence of any prop-

agating modes in the model. There is only one special case
where our model admits dynamical vector field, namely,
we choose a condition on the parameters

� ¼ �3� (40)

that excludes the field Rtr
� from the equation. With this, the

field Atr
� remains dynamical. Our careful analysis shows

that this condition is consistent with all other equations of
motion and with Noether identities. Notice the constraint
on the parameters is exactly the same as in the case of the
model of the gravity with contortion in the presence of
constant curvature space-time background [13]. This is an
unexpected result because we have different equations of
motion in the models with flat and nonflat metric.
At this moment, we can choose the remaining three

gauge-fixing conditions in a suitable manner. From the
last constraint and previous solutions to the equations of
motion, one can verify that the fields Qtr

� and Rl
� do not

affect the solution structure in principle. It is convenient to
choose vanishing conditions for Qtr

� and Rl
� that are con-

sistent with equations of motion and simplify further cal-
culations. So, from now on we impose the gauge-fixing
conditions

Qtr
� ¼ 0; Rl

� ¼ 0: (41)

With the previously imposed gauge conditions (26), the
Lorentz gauge symmetry has been fixed completely.
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The remaining equation corresponding to the traceless and transverse part of the equation �L=�qf�0�g gives a

relationship for spin two modes

� R
>>

�� ¼ 1
2@0ð����@� S

>>
�� þ ����@� S

>>
��Þ þOðHÞ: (42)

The last equation of motion is given by �L
�q���

. It is convenient to rewrite this equation in a dual form

��� � ����
�L

�q���

¼ �hq
�
�� þ ����q

�


 þ ð�� �Þ@�@	q�	� � �ð�q��� � @�@�q

�
�� þ ���@	@
q

�
	
 þ @�@�q

�


Þ

� ð�� �Þ����@�@	q�	� þ �����@0@�q�0� � 2�@0ð���@iQi � @�Q�Þ � 2�@0@�Q�

þ 1

2
ð�þ �Þ����@0@�q0�� þ �����@0@�q0�� þHf2�@	q	�� � ð�þ 2�Þ@	q��	 � �@�q

�

þ 2ð�� �Þ@�q

� � �@	q�	� � �@0q0�� þ ð�� 2�Þ���@0q

0 � �@0q��0 � ð�� 2�Þ���@	q

	

þ 2�@	ð�	��q
�


 � �	��q

�
��Þg þH2f4�ðq��� � q

�
��Þ � ð4�þ �Þ����q

�g; (43)

where q
�
�� � 1

2 ����q���. The trace part of the equation,
���, yields an equation that can be simplified using the
condition � ¼ �3�,

� 4h@�S� þ 2�@�S� � 3@0@�Q� þOðHÞ ¼ 0: (44)

The Eqs. (44) and (37) imply that the longitudinal compo-
nents of the vector fields S�, Q� become propagating.
Defining a scalar field corresponding to the longitudinal
component of S�,

c ¼ �2
3@�S�; (45)

one can rewrite the equations of motion as follows,

h@�Q� þ �ð@�Q� þ @0c Þ þOðHÞ ¼ 0;

hc � @0ð@�Q� þ @0c Þ þOðHÞ ¼ 0:
(46)

Explicit expressions for propagating solutions to these
equations will be given in the next section.

The remaining equations of motion corresponding to the
vector irreducible parts of ��� do not produce new inde-

pendent equations. The irreducible part of the equation
������� coincides with (33). The divergence of the

Eq. (43), @����, reproduces the same propagating equa-

tion for Atr
	 as in (34) and the constraint (37). The diver-

gence of the Eq. (43) with respect to the second index,
@����, reflects the Noether identity structure. One can

verify that the transverse part of this equation leads to a
nontrivial equation at order Hn�1,

�Hf�Atr
� �H����@0@�R

tr
�g þOðHn�3Þ ¼ 0; (47)

which is consistent with the constraint (38). The longitu-
dinal part of the equation @���� can be simplified by

using the constraint (31),

H
@0@0
�

@�A� þOðH�2Þ ¼ 0: (48)

The component field Al
� has been already defined by the

Eq. (35). The Eq. (48) does not represent a new indepen-
dent equation but reflects the structure of the solution of
(35). Namely, the equation contains a second-order time
derivative that indicates the possibility of the existence of
wavelike (soliton) solutions for Al

� in the full nonlinear
theory beyond the linearized approximation given by de-
composition (15).
The last irreducible component of the equation ��� is

given by its symmetric traceless part. Substituting the

irreducible field R
>>

�� from (42) and using a useful identity

S
>>

�� þ ������
�
@�@

�

S
>>

�� ¼ 0; (49)

one results in the following equation at order H2,

H2

�
ð�þ �Þ@0@0

�
S
>>

��

�
þOðHn�3Þ ¼ 0: (50)

The equation contains second-order time derivative, which
means there might be a spin-two propagating-solution-like
soliton due to nonlinearity of the initial equations of mo-

tion. The difference of the equations of motion for S
>>

�� in

the case of constant torsion background and in the case of
the gravitational space-time background [13] is that Eq.
(50) does not represent a standard D’Alembert equation

due to the absence of a term proportional to H2 S
>>

�� that

would produce the D’Alembert equation.
Finally, we have demonstrated that the Lorentz gauge

theory with Lagrangian (13) with parameters � ¼ �3�,
� ¼ 0 admits two transverse propagating modes for the
vector field Atr

� and two scalar propagating modes Ql
�, S

l
�.

The spin-one mode Al
� and spin-two mode S

>>
�� might

have propagating modes only due to nonlinear structure of
full equations of motion. Our result that the Lagrangian has
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exactly the same structure, � ¼ �3�, � ¼ 0, as the
Lagrangian for the gravity with torsion in the presence of
the background metric [13] confirms that the propagating
spin-one mode exists independently on the background
metric at hand and it is a feature of the Lorentz gauge
model itself.

IV. POSITIVE DEFINITENESS OF
THE HAMILTONIAN

Lorentz gauge theories with quadratic R2-type
Lagrangian suffer from the nonpositiveness problem of
the Hamiltonian, which has its origin in the noncompact
structure of the Lorentz group. This leads to the problem of
defining a stable vacuum in quantum theory. Let us con-
sider this problem starting with the free Lagrangian (13).
Using solutions from the previous section, one can express
all components of contortion qacd in terms of three inde-
pendent fields Atr

�, S
l
�, and Ql

�,

Lð2Þ ¼ 1
2½Atr

�hAtr
� þ ð@�Ql

� þ @0c Þ2
þ chc �Ql

�hQl
��: (51)

Since the vector fields Atr
� and Str� are related by the

Eq. (28), one can treat the scalar field c ¼ � 2
3@�S� as a

longitudinal component of S�, or as a dual longitudinal
component of the field Atr

�. The fieldQ
l
� originates from the

contortion part q�0�, which corresponds to boost genera-
tors of the Lorentz group. The terms with Ql

� in the
Lagrangian are potentially dangerous since they may
give negative energy contribution destabilizing the vac-
uum. We concentrate on a part of the total Hamiltonian
that includes the scalar modes c andQl

�. The Hamiltonian
is defined in a standard manner

H ðQl
�; c Þ ¼ 1

4ð�� @�Q
l
�Þ2 � 1

2�
2
� þ 1

2ð@�c Þ2
� ð@�Ql

�Þ2; (52)

where canonical momentums � and �� are defined by

� ¼ @L
@@0c

¼ 2@0c þ @�Q
l
�;

�� ¼ @L
@@0Q

l
�

¼ �@0Q
l
�:

(53)

Notice that the fields c and Ql
� have correct canonical

dimension and they are treated as initial independent field
variables. We will solve the Euler-Lagrange equations of
motion for the fields c , Ql

�, (46), in lowest-order approxi-
mation. For convenience, let us rewrite the equations (46)
in the following form,

2@20c � �c þ @0@�Q
l
� ¼ 0;

@20Q
l
� � 2�Ql

� � @0@�c ¼ 0:
(54)

The system of equations (54) cannot be factorized into
decoupled equations. Let us consider possible solutions
in the form of plane waves

c ðkÞ ¼ bðkÞeið� ~k ~xþk0tÞ; Ql
�ðkÞ ¼ c�ðkÞeið� ~k ~xþk0tÞ;

(55)

where ~k ~x ¼ k�x�. Substitution of the plane waves into
(54) gives a system of homogeneous equations that has a
nontrivial solution if the following characteristic equation
is satisfied,

ðk20 � ~k2Þ2 ¼ 0: (56)

The equation is degenerated and it implies the dispersion
relationship

k0 ¼ �!; with ! �
ffiffiffiffiffi
~k2

q
: (57)

The coefficient functions b, c� are related by the following
equation,

c�ðkÞ ¼ k0k�
!2

bðkÞ: (58)

The corresponding solution for c , Ql
� can be written as a

sum of positive and negative frequency modes

c ð ~x; tÞ ¼
Z d3 ~k

ð2�Þ4 b
þð ~kÞeið� ~k ~xþ!tÞ

þ
Z d3 ~k

ð2�Þ4 b
�ð ~kÞe�ið ~k ~xþ!tÞ;

~Qlð ~x; tÞ ¼
Z d3 ~k

ð2�Þ4
bþð ~kÞ ~k

!
eið� ~k ~xþ!tÞ

�
Z d3 ~k

ð2�Þ4
b�ð ~kÞ ~k

!
e�ið ~k ~xþ!tÞ: (59)

Using the solutions and calculating the canonical momen-
tums � and ��, one can easily check the identities

1
4ð�� @�Q

l
�Þ2 � ð@�Ql

�Þ2 ¼ 0;

�1
2�

2
� þ 1

2ð@�c Þ2 ¼ 0; (60)

which imply immediately that the Hamiltonian (52) van-
ishes identically.
Since the Eq. (56) is degenerated, the general solution to

the equations of motion (54) includes another couple of
wavelike solutions. Fourier modes of the solutions can be
found in the form that is suitable in further making
Lorentz-invariant decomposition into positive and negative
frequency parts

c ðkÞ ¼ ð ~k ~xþk0tÞaðkÞeið� ~k ~xþk0tÞ;

~QlðkÞ ¼ ðð ~k ~xþk0tÞ ~aðkÞ þ i ~dðkÞÞeið� ~k ~xþk0tÞ:
(61)

Substituting this ansatz into equations of motion produces
the same dispersion relation (56) and the following rela-
tions for the coefficient functions,

~a ¼ k0 ~k

!2
a; ~d ¼ �6 ~a ¼ � 6k0 ~k

!2
a: (62)

The general solution for c and ~Ql
can be represented as

Fourier integral over all momentum ~k, k0. Performing
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integration over k0 using the dispersion relation (57) leads
to the final expressions

c ð ~x; tÞ ¼
Z d3 ~k

ð2�Þ4 ð
~k ~xþ!tÞaþð ~kÞeið� ~k ~xþ!tÞ

þ
Z d3 ~k

ð2�Þ4 ð
~k ~x�!tÞa�ð ~kÞe�ið ~k ~xþ!tÞ;

~Qlð ~x; tÞ ¼
Z d3 ~k

ð2�Þ4 ðð
~k ~xþ!tÞ � 6iÞ

~k

!
aþð ~kÞeið� ~k ~xþ!tÞ

�
Z d3 ~k

ð2�Þ4 ðð
~k ~x�!tÞ � 6iÞ

~k

!
a�ð ~kÞe�ið ~k ~xþ!tÞ:

(63)

As usual, the Fourier functions a�ð ~kÞ, b�ð ~kÞ turn into
creation and annihilation operators during quantization
procedure. It is convenient to split the Hamiltonian
H ðQl

�; c Þ into two parts

H ¼ H 1 þH 2;

H 1 � 1
4ð�� @�Q

l
�Þ2 � ð@�Ql

�Þ2;
H 2 � �1

2�
2
� þ 1

2ð@�c Þ2:
(64)

This allows to separate contributions P01, P02 of the fields
Ql

�, c to the total energy functional

P0 ¼
Z

d3xH ¼ P01 þ P02: (65)

Substituting the solution (63) into the last equation and
performing integration over configuration space ~x and one

of two momentum ~k, ~k0 corresponding to Fourier compo-

nents of c , ~Ql
, one can verify that the contributions from

the fieldsQl
� and c are mutually canceled due to following

relations,

Pþ�
01 ¼

Z d3 ~k

ð2�Þ4 48!
2aþð ~kÞa�ð� ~kÞ;

Pþ�
02 ¼ �Pþ�

01 ;

Pþþ
01 ¼ �

Z d3 ~k

ð2�Þ4 ð8!
2ð3þ i!tÞÞaþð ~kÞaþð� ~kÞe2i!t;

Pþþ
02 ¼ �Pþþ

01 ;

P��
01 ¼ �P��

02 : (66)

So, the total contribution of the scalar modes to the energy
functional vanishes identically.

It is worth stressing that the mutual exact cancellation of
all contributions of scalar modes in the energy functional is
not occasional. This indicates the presence of an additional
symmetry in the defining equations (54). It is easy to see
such a symmetry in a simple case of 1þ 1-dimensional
space-time. After changing variable @xQ

l
x ! @0�, the sys-

tem of equations (54) can be rewritten in the form

2@20c � @2xc þ @0@0� ¼ 0;

@20�� 2@2x�� @2xc ¼ 0:
(67)

It is clear that the system is invariant under the following
symmetry transformations,

x $ �t; c $ ��: (68)

Because of this, energy contributions of scalar modes in
(51) are mutually canceled. We expect that in 3þ 1 di-
mensions there should be a similar symmetry that provides
the positive-definite energy on mass shell.

V. DISCUSSION

We have studied the dynamic content of the class of
Lorentz gauge theories admitting topological phase in the
gravitational sector. It has been shown that in the special
choice of the parameters � ¼ 1, � ¼ 0, � ¼ �3 the cor-
responding model possesses dynamical contortion.
Surprisingly, the existence of propagating modes for
spin-one and zero-contortion component fields is provided
by the same Lagrangian in both cases, in presence of
constant gravitational background and in presence of con-
stant contortion background field. Additional spin-one and
spin-two propagating modes may appear only due to full
nonlinear structure of the equation of motion. At the lowest
order of perturbation theory, we have proved that the
Hamiltonian is positively defined. This implies that pertur-
bative quantization can be performed straightforward. In
practical calculation, it is much more convenient to use the
covariant quantization formalism based on functional in-
tegral. The quantization can be performed straightforward
in a similar manner as in [13]. It has been proved that
quantum gravity model with a general R2-type Lagrangian
is renormalizable [47–50]. Since the initial Lagrangian
(13) is expressed in terms of gauge-invariant tensors and
there is no dimensional coupling constants, the proposed
model of Lorentz gauge gravity belongs to renormalizable
type.
The important question is whether our model leads to a

quantum vacuum condensate of torsion that can provide
generation of the Einstein term in the effective action of
gravity. This mechanism is similar to dynamical symmetry
breaking in quantum chromodynamics where one has a
gluon condensate while the gluon itself is not observable at
classical level. The possibility that torsion may not be
observable as a classical object was pointed out in [51].
Generation of the vacuum torsion condensate due to ap-
pearance of a nontrivial minimum in the quantum effective
potential would lead to an effective Einstein gravity.
Suppose the vacuum condensate has a Lorentz-invariant
form hRabcdi ¼ M2ð�ac�bd � �ad�bcÞ. Substituting it
into the initial classical Lagrangian (13), one can obtain
the lowest-order terms in the effective Lagrangian of
gravity
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L eff ¼ �3
4M

4 þ 3
8M

2R̂� 1
32ðR̂2

abcd � 4R̂2
ab þ R̂2Þ

þOðR̂n�3Þ; (69)

where the terms quadratic in Riemann curvature represent
the integral density for the Euler characteristic

� ¼ 1

8�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR̂2

abcd � 4R̂2
ab þ R̂2Þ: (70)

To provide the correct sign of the Einstein term, the con-
densate parameter M2 should be negative. This is opposite
to the case of the gravity model with Yang-Mills-type
Lagrangian [34] where the Einstein-Hilbert term and cos-
mological constant are induced when the torsion conden-
sate corresponds to a positive constant Riemann-Cartan
curvature, i.e., M2 > 0. Notice that the cosmological
term proportional to M4 is reproduced with a correct
sign. Another feature of our model is that the Euler char-
acteristic enters the effective Lagrangian with a negative
sign. The corresponding vacuum-to-vacuum transition am-
plitude is proportional to (in Euclidean space-time)

h0j0i ’ e�SE ¼ eþð�2=4Þ�: (71)

It is reasonable to consider summation over all topologies
of the four-dimensional manifolds described by fiber
bundles with a compact two-dimensional base space. In

that case, the Euler characteristic is determined by the
genus g of the base space, � ¼ 2� 2g, and the total
vacuum-vacuum amplitude remains finite after summation
over all topologies.
The possibility that the Lorentz gauge gravity may have

a positive-definite classical Hamiltonian bounded from
below implies that torsion can be observable not only in
the form of quantum vacuum condensate but also in the
form of a classical configuration. This implies an attractive
possibility that torsion can be responsible for the cold dark
matter since it does not interact to photon in a minimal
interaction scheme. The quantum properties and possible
physical implications of our model will be considered in a
separate paper.
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