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We give a detailed treatment of the backreaction effects on the Hawking spectrum in the late-time

expansion within the semiclassical approach to the Hawking radiation. We find that the boundary value

problem defining the action of the modes which are regular at the horizon admits in general the presence

of caustics. We show that for radii less that a certain critical value rc no caustic occurs for all values of the

wave number and time and we give a rigorous lower bound on such a critical value. We solve the exact

system of nonlinear equations defining the motion, by a rigorously convergent iterative procedure. The

first two terms of such an expansion give the Oð!=MÞ correction to the Hawking spectrum.
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I. INTRODUCTION

The semiclassical treatment of the Hawking radiation
was introduced by Kraus and Wilczek in [1,2] after which
several developments followed. The main interest of the
treatment is to provide a method to compute the back-
reaction effect of the radiation on the black hole, or in
different words a method which keeps into account the
conservation of energy, an effect which is completely
ignored in the external field treatment of the phenomenon
[3–5]. The main idea is to replace the free field modes of
the radiation by the semiclassical wave function of a shell
of matter or radiation which consistently propagates in the
gravitational field generated by the back hole and by the
shell itself. The shell dynamics was studied in detail in
many papers (see [1,2,6–10] where also a more complete
list of references is found). In the original semiclassical
treatment [1,2,11] the spectrum of the Hawking radiation is
extracted through the standard Fourier analysis of the
regular modes. Later such a treatment was related to the
tunneling picture; such an approach gave also rise to
several proposals and to controversy [12–23] for a vast
list of references.

We think that the mode analysis is still the clearest and
safest way to extract the results in the semiclassical
approach.

The present paper is devoted to a detailed analysis of the
construction of the semiclassical modes and their time
Fourier transform. The action related to the modes which
are regular on the horizon is defined through mixed bound-
ary conditions, i.e. a condition on the value of the con-
jugate momentum at t ¼ 0 and a condition at time t on the
coordinate r. While it is easy to prove that the variational
problem in which coordinates are given both at time 0 and t
does not present caustics, i.e. at most one motion satisfies
the variational problem, we prove that for the above
mentioned mixed boundary condition problem in general

caustics arise, i.e. in general more that one trajectory in
phase space satisfies the mixed boundary conditions.
Qualitatively this phenomenon is due to the fact that the

time t to reach the final value r1 of the radius is an
increasing function of the mass of the black hole given
an initial value r0, but such initial value r0 through the
condition on the initial momentum is also an increasing
function of the mass of the black hole. An increase of the
initial value r0 however causes t to diminish, thus giving
rise to two counteracting effects. Caustics start arising
when these two effects balance.
On the other hand we prove that if the end point r1, is

less that a critical value rc, caustics to not occur. We give
also a rigorous lower bound on such critical value.
In the original paper [1] it was argued that the semiclas-

sical approximation is expected to be valid, for not too
large values of r1. If we stay below the critical value rc we
are in the favorable situation of absence of caustics where
the semiclassical wave function is well defined. It is well
known on the other hand that the time Fourier analysis
gives results independent of r1 [1].
We come now to the computation of the action as a

function of t. Such a problem corresponds to the solution of
a system of two highly nonlinear equations where the two
unknowns are the value H of the Hamiltonian, which even
if a constant of motion depends on the time t of the
boundary condition, and the shell position at time t ¼ 0,
r0 which also depends on the mixed boundary conditions.
In [1] a truncated system of equations obtained by keep-

ing only the most singular terms in the exact equations was
considered. Through a long chain of approximations the
authors reached for the effective temperature, due to the
backreaction effects, the value 1=½8�Mð1�!=MÞ�. Later
Kraus and Keski-Vakkuri [11] using a completely different
method obtained for such effective temperature the value
1=½8�Mð1�!=2MÞ�.
Here we reconsider the problem along the lines of [1]

treating the full exact system of equations. By introducing
an implicit time variable we show that for r1 < rc such a
system of equations is equivalent to another nonlinear*menotti@df.unipi.it
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equation which can be solved by a convergent iterative
procedure. We show that the first two terms of the con-
vergent iterative procedure are sufficient to provide the
leading spectrum of the radiation and its backreaction
correction terms of order !=M confirming the result of
[11]. From the treatment it emerges directly how at late-
times, higher and higher momenta of the modes regular on
the horizon contribute.

This feature was particularly enlightened in the treat-
ment of [5], where the Hawking radiation is extracted by
the Fourier analysis of the modes on a bounded space-time
region fixed in space but translated at asymptotically large
times.

The paper is organized as follows: Secs. to II, III, and IV
are devoted to the gauge choice, to the description of the
reduced action for the shell dynamics and the ensuing
equations of motion. In Sec. V we prove the existence of
caustics and give a rigorous bound on the value of the
critical radius rc below which no caustic develops.
Section VI is devoted to the nonlinear system of equations
related to the regular modes and to its solution through a
convergent iterative procedure. Section VII deals with the
saddle-point calculation of the Bogoliubov coefficients and
discusses the region of validity for such a procedure. In
Sec. VIII we give the concluding remarks. In the Appendix
we collect the most important formulas relative to the shell
dynamics. As it is usual in this field, we work with c ¼ 1
andG ¼ 1; it means that time, momenta, mass, and energy
are all measured in units of length.

II. CHOICE OF GAUGE AND THE
CONJUGATE MOMENTUM

In the general expression of the metric

ds2 ¼ �N2dt2 þ L2ðdrþ NrdtÞ2 þ R2d�2 (1)

all quantities N, L, Nr, R are supposed functions only of
the radial variable r and t thus realizing spherical
symmetry.

The semiclassical approach is best developed in the
Painlevé-Gullstrand metric characterized by setting
L ¼ 1 in (1). Such a metric has the advantage of being
nonsingular at the horizon. After fixing L ¼ 1 one has still
a gauge choice on R. In presence of a shell of matter one
cannot choose R ¼ r. One has several choices; for a dis-
cussion see [8–10]. In the present paper we will use the
‘‘outer gauge’’ which is defined by R ¼ r for r � r̂, where
r̂ denotes the shell position. At r ¼ r̂, R is continuous as all
the other functions appearing in (1), but its derivative is
discontinuous. For the reader’s convenience we report in
the Appendix the main results on the shell dynamics which
are necessary in the following developments.

The first step is to go over from the standard Hilbert-
Einstein action added to the action of the matter shell, to
the action expressed in Hamiltonian form.

As usual in gravity it is better to work on a bounded
region of space-time. The radial coordinate will range from
ri to re while time ranges from ti to tf.

After solving the constraints one can rigorously express
the action in reduced form i.e. a form in which only the
coordinate r̂ of the shell and a conjugate momentum
appears, in addition to the boundary terms. As always these
are essential in gravity, where the boundary terms play the
role of the Hamiltonian. The reduced action in the outer
gauge is given by [1,8,9] (see also the Appendix)

S ¼
Z tf

ti

�
pc

_̂r� _MðtÞ
Z r̂ðtÞ

ri

@F

@M
dr�HNðreÞ þMNðriÞ

�
dt;

(2)

where F is the generating function

F ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0Þ2 � 1þ 2M

R

s

þ RR0

0
B@log

0
B@R0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0Þ2 � 1þ 2M

R

s 1
CA

� log

0
B@1�

ffiffiffiffiffiffiffiffiffi
2M
R

s 1
CA�

ffiffiffiffiffiffiffiffiffi
2M
R

s 1
CA: (3)

As a consequence of the constraints the quantityM which
appears in (3) is constant in r except at the position of the
shell where it is subject to a discontinuity.M and H are the
value of the quantityM below and above the shell position
and thus at ri and re. One can consider either M or H as a
given datum of the problem. In the outer gauge for which
the action has the form (2) it is simpler to consider M as a
datum of the problem which to be consistent with the
gravitational equations has to be constant in time [8]; so
the term proportional to _M disappears and we reach

S ¼
Z tf

ti

ðpc
_̂r�HNðreÞ þMNðriÞÞdt: (4)

As in the variation, the components of the metric have to be
kept constant at the boundaries, action (4) with the nor-
malization NðreÞ ¼ 1 is equivalent to

S ¼
Z tf

ti

ðpc
_̂r�HÞdt: (5)

The conjugate momentum pc appearing in the reduced
action is a gauge invariant quantity [9]. It can be computed
both for a massive or massless shell [1,7–9]; as we shall in
this paper be interested in the massless case we report
below its expression only for the massless case

pc ¼
ffiffiffiffiffiffiffiffiffiffi
2Mr̂

p � ffiffiffiffiffiffiffiffiffi
2Hr̂

p � r̂ log

ffiffiffî
r

p � ffiffiffiffiffiffiffi
2H

p
ffiffiffî
r

p � ffiffiffiffiffiffiffiffi
2M

p : (6)
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One has to keep in mind that pc is not the kinetic momen-
tum of the shell but the conjugate momentum with respect
to r̂ of the whole system.

III. THE ACTION FOR THE MODES REGULAR
AT THE HORIZON

Because in the remainder of the paper only r̂ appears, we
will for notational simplicity denote r̂ (the shell position)
simply by r without any possibility of confusion.

At the semiclassical level the modes which are invariant
under the Killing vector @

@t are simply given by

eiS=l
2
P (7)

with l2P ¼ Gℏ the square of the Planck length and

S ¼
Z r1

pcdr�Htþ const: (8)

As is well known such modes have the feature of being
singular at the horizon; this is immediately seen from the
expression of pc Eq. (6) which diverges at r ¼ 2H. The
vacuum given by a!j0i ¼ 0, being a! the destruction
operator relative to the described modes gives rise to a
singular description at the horizon, while a free-falling
observer should not experience any singularity [4].

Instead the true vacuum should be described in term of
modes which are regular at the horizon [1,4]. Thus the
main object which intervenes in the semiclassical treat-
ment is the semiclassical expression of the modes regular
at the horizon i.e. the action of the system which describes
an outgoing shell of matter and has the following boundary
conditions [1]: (i) at time 0 the conjugate momentum is a
given value k; (ii) at time t the shell position r is a given
value r1. The expression for such an action was already
given by Kraus andWilczek in [1]. With the two conditions
pcð0Þ ¼ k and rðtÞ ¼ r1 the action is

Sðr1; t; kÞ ¼ kr0ðr1; t; kÞ þ
Z t

0
ðpc _r�Hðrðt0Þ; pcðt0ÞÞÞdt0

¼ kr0ðr1; t; kÞ þ
Z t

0
pc _rdt

0 �H½r1; t; k�t: (9)

The last equality is due to the fact that H along the motion
is a constant despiteH depends on the boundary conditions
as explicitly written. r0 denotes the value of r at time 0;
also such a quantity depends on the imposed boundary
conditions. Taking into account that r and pc depend
both on the final time t and on the running time t0, and
denoting with a dot the derivative with respect to t0 one has

@S

@r1
¼ k

@r0
@r1

þ
Z t

0

�
pc

@ _r

@r1
þ _pc

@r

@r1

�
dt0 ¼ pc: (10)

Similarly

@S

@t
¼ k

@r0
@t

þðpc _r�HÞjtþ
Z t

0

�
pc

@ _r

@t
þ _pc

@r

@t

�
dt0 ¼�H:

(11)

The action (9) has to be computed on the solution of the
equation of motion, satisfying the described boundary
conditions.

IV. THE EQUATIONS OF MOTION

In the outer gauge [8,9], that we adopt here, the equation
of motion for r has the form

dr

dt
¼ 1�

ffiffiffiffiffiffiffi
2H

r

s
(12)

while dpc=dt can be obtained substituting _rðtÞ in Eq. (6).
Equation (12) can be integrated in the form

t ¼ 4H log

ffiffiffiffiffi
r1

p � ffiffiffiffiffiffiffi
2H

p
ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffi
2H

p þ r1 � r0 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
2Hr1

p � 2
ffiffiffiffiffiffiffiffiffiffiffi
2Hr0

p
:

(13)

The boundary condition at t ¼ 0 gives

0< k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Mr0

p � ffiffiffiffiffiffiffiffiffiffiffi
2Hr0

p � r0 log

ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffi
2H

p
ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffiffi
2M

p

¼
Z H

M

dH0

1�
ffiffiffiffiffiffi
2H0
r0

q ; (14)

where 2M< 2H < r0 < r1. Equation (14) together with
Eq. (13) should determine completely the motion.
However as we mentioned in the introduction we shall
find that for sufficiently large r1 caustics arise, i.e. there
exist values of t, r1, and k for which the boundary con-
ditions are satisfied by more than one motion.
At t ¼ 0 we have Sðr1; 0; kÞ ¼ kr1 which is regular at

the horizon and in virtue of the equations of motion S
remains regular in the time development.

V. THE OCCURRENCE OF CAUSTICS

It is very easy to show that the standard variational
problem in which r is fixed to r0 at time 0 and to r1 at
time t presents no caustics. In fact from

t ¼
Z r1

r0

dr

1�
ffiffiffiffiffi
2H
r

q (15)

we see that t is an increasing function ofH. Thus there is at
most one H which satisfies the boundary conditions. But
the value of r at t and H determine completely the motion
for an outgoing shell. On the other hand the problem (9)
which has mixed boundary conditions is more compli-
cated. First we note that being, from Eq. (14)

LATE-TIME EXPANSION IN THE SEMICLASSICAL . . . PHYSICAL REVIEW D 85, 084005 (2012)

084005-3



�
@k

@H

�
r0

¼ 1

1�
ffiffiffiffiffi
2H
r0

q > 0 (16)

we have that at fixed k, H is a single-valued function of r0
and vice versa, from Eq. (17) below, r0 is a single-valued
function of H. Moreover we have

�
@k

@r0

�
H
¼ �

Z H

M

dH0

2r0ð1�
ffiffiffiffiffiffi
2H0
r0

q
Þ2

ffiffiffiffiffiffiffiffi
2H0

r0

s

¼ � 1

2

Z ffiffi
a

p
ffiffiffiffiffiffiffiffiffiffi
2M=r0

p y2dy

ð1� yÞ2 < 0 (17)

with

a ¼ 2H

r0
: (18)

Combined with Eq. (16) it gives

�
@H

@r0

�
k
¼ 1

2ð1�
ffiffiffi
a

p Þ
Z ffiffi

a
p
ffiffiffiffiffiffiffiffiffiffi
2M=r0

p y2dy

ð1� yÞ2 > 0: (19)

To investigate the occurrence of caustics we shall compute
the derivative of t with respect to r0 under the constraint of
constant k. First we note that from Eq. (15)

�
@t

@H

�
r0

¼
Z r1

r0

dr0

ð1�
ffiffiffiffiffi
2H
r0

q
Þ2

ffiffiffiffi
2

r0

s
1

2

1ffiffiffiffiffi
H

p

¼ 2
Z ffiffiffiffiffiffiffiffiffiffi

2H=r0
p
ffiffiffiffiffiffiffiffiffiffi
2H=r1

p dz

z2ð1� zÞ2 > 0 (20)

and

�
@t

@r0

�
H
¼ � 1

1� ffiffiffi
a

p : (21)

Thus

�
@t

@r0

�
k
¼

�
@t

@r0

�
H
þ

�
@t

@H

�
r0

�
@H

@r0

�
k

¼ � 1

1� ffiffiffi
a

p ½1� I1I2� (22)

with

I1 ¼ ð1� ffiffiffi
a

p Þ
Z ffiffi

a
p
ffiffiffiffiffiffiffiffiffiffi
2M=r0

p y2dy

ð1� yÞ2 (23)

I2 ¼ ð1� ffiffiffi
a

p Þ
Z ffiffi

a
p
ffiffiffiffiffiffiffiffiffiffi
2H=r1

p dz

z2ð1� zÞ2 : (24)

It is easily seen that

0< I1 � 1; 0< I2: (25)

The value of Eq. (22) for r0 ¼ r1, due to the vanishing of
I2, is the finite negative value

�
@t

@r0

�
k
ðr1Þ ¼ � 1

1�
ffiffiffiffiffiffi
2H1

r1

q < 0; (26)

where

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Mr1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H1r1

p � r1 log

ffiffiffiffiffi
r1

p � ffiffiffiffiffiffiffiffiffi
2H1

p
ffiffiffiffiffi
r1

p � ffiffiffiffiffiffiffiffi
2M

p : (27)

On the other hand given a value of k and of r0 [which
through Eq. (14) gives a value of H with 2M< 2H < r0],
there will always be r1 large enough as to make the product
I1I2 larger that 1; this because I2 diverges when the lower
integration limit goes to zero. Thus at that point Eq. (22)
becomes positive while (26) still has to hold. Summarizing
we found that for a given k, for large enough r1 the
derivative (22), when r0 moves from r1 to 2M changes
sign at least once, thus vanishing at at least one intermedi-
ate point. This implies the occurrence of caustics [24]. In
fact the vanishing of the derivative (22) at the value r�0
implies that there will be points r00 and r000 on the right and

on the left of r�0 which give rise to the same value of t. Thus
we shall have pairs of distinct motions with the same k
which reach r1 at the same time t. (One can also give
numerical examples of such pairs of motions). In con-
structing caustics we took r1 large enough. We will show
now that for r1 < rc where rc is a critical value, no caustic
arises, for any k.
Below we give a simple procedure to give a rigorous

lower bound on rc. It is very simple to show that forffiffiffi
a

p ¼ 1 both I1 and I2 are equal to 1. Setting

I1 ¼ 1þ�1; I2 ¼ 1þ �2 (28)

we will prove that

�1 þ �2 < 0 (29)

for r1 less than a value rb independently of the value of k.
Then being I1 > 0 and I2 > 0 we have I1I2 < 1 and thus
ð @t@r0

Þk always negative.
Thus for r1 < rb there will be no caustic i.e. rb will

constitute a lower bound on rc. With regard to the proof
of (29) explicit computation of the integrals gives
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�1 þ �2

1� ffiffiffi
a

p ¼ ffiffiffi
a

p � 1

1�
ffiffiffiffiffi
2M
r0

q �
ffiffiffiffiffiffiffiffi
2M

r0

s
� 2 log

0
@1�

ffiffiffiffiffiffiffiffi
2M

r0

s 1
A� 1ffiffiffi

a
p � 2 log

ffiffiffiffiffi
r0
r1

s
� 1

1�
ffiffiffiffi
r0
r1

q ffiffiffi
a

p þ 1ffiffiffiffi
r0
r1

q ffiffiffi
a

p þ 2 log

0
@1�

ffiffiffiffiffi
r0
r1

s ffiffiffi
a

p
1
A

� �1� 2 log

ffiffiffiffiffi
r0
r1

s
� 1

1�
ffiffiffiffi
r0
r1

q ffiffiffi
a

p þ 1ffiffiffiffi
r0
r1

q ffiffiffi
a

p þ 2 log

0
@1�

ffiffiffiffiffi
r0
r1

s ffiffiffi
a

p
1
A

� �1� 2 log

ffiffiffiffiffiffiffiffi
2M

r1

s
� 1

1�
ffiffiffiffiffi
2M
r1

q þ 1ffiffiffiffiffi
2M
r1

q þ 2 log

0
@1�

ffiffiffiffiffiffiffiffi
2M

r1

s 1
A; (30)

where in writing the two inequalities we used repeatedly
2M � 2H � r0. The last term in Eq. (30) is a decreasing
function of 2M=r1 and it is less that zero for 2M=r1 ¼
2=10. Thus we do not have caustics for r1 < 10M and as a
consequence we have rigorously rc > 10M for the critical
value rc. A numerical search of Eq. (22) gives the wider
bound rc > 24M. In [1,9] the approximate system of equa-
tion obtained by retaining in Eqs. (13) and (14) only the
singular terms i.e. only the logarithms was considered.
Also for this approximate system of equations, caustics
occur for r1 sufficiently large. The occurrence of caustics
for r1 > rc hints at a failure of the semiclassical approxi-
mation when we move too far from the horizon as the
modes would show a discontinuity in r1 at the point where
more than one trajectory in phase space starts contributing.
On the other hand we will show in Sec. VI, that for any
given pair ðr1; kÞ even for r1 > rc for t sufficiently large no
caustic occurs.

In [1] it was proposed to perform the time Fourier
analysis at a point r1 not too far from the horizon, the
reason being that there one should expect the semiclassical
approximation to be reliable. We showed above that for
r1 < rc there are no ambiguities in the definition of the
action and in addition it is well known that the time Fourier
transform gives results independent of r1; thus we shall
work with r1 < rc.

VI. THE LATE-TIME EXPANSION

In this section we shall give the solution of the equations
for HðtÞ and r0ðtÞ in the form of a convergent series. We
recall that 2M< 2H < r0 < r1. Then from Eq. (13) for r1
fixed, t ! þ1 implies

ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffi
2H

p ! 0: (31)

Looking now at Eq. (14) we must have in the same limit

ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffiffi
2M

p ! 0 (32)

and as 2M< 2H < r0 we have alsoH ! M. We introduce
now the implicit time variable T ¼ expð� t

4HÞwhich due to
the bounds on H, for t ! þ1 tends to 0. Equation (13)
becomes

T � e�ðt=4HÞ

¼
ffiffiffiffiffi
r0

p � ffiffiffiffiffiffiffi
2H

p
ffiffiffiffiffi
r1

p � ffiffiffiffiffiffiffi
2H

p exp

�
� r1 � r0

4H
�

ffiffiffiffiffiffiffi
r1
2H

r
þ

ffiffiffiffiffiffiffi
r0
2H

r �
: (33)

It will be useful for the following developments to use the
notation

h ¼ ffiffiffiffiffiffiffi
2H

p
; m ¼ ffiffiffiffiffiffiffiffi

2M
p

; v0 ¼ ffiffiffiffiffi
r0

p
;

A ¼ ffiffiffiffiffi
r1

p �m> 0
(34)

and set

h�m ¼ TcH; v0 �m ¼ TcR (35)

with cH and cR functions of T to be determined.
Equation (33) becomes F1 ¼ 1 with

F1¼ cR�cH
A�TcH

exp

�
�ðA�cRTÞðAþ4mþð2cHþcRÞTÞ

2ðmþcHTÞ2
�

(36)

and Eq. (14) becomes F2 ¼ k with

F2 ¼ �cHTðmþ cRTÞ � ðmþ TcRÞ2 logcR � cH
cR

: (37)

We want to express h as a function of the implicit
variable T.
First we note that for T ¼ 0 the system of the two

equations F1 ¼ 1, F2 ¼ k has the unique solution

c0H ¼ ðek=m2 � 1ÞA
E
; c0R ¼ ek=m

2 A

E
; (38)

where

E ¼ exp

�
�AðAþ 4mÞ

2m2

�
(39)

and that F1 and F2 in a polydisk around T ¼ 0, cH ¼ c0H,
cR ¼ c0R are analytic functions of T, cH, cR. We have

@F2

@cR

��������0;c0H;c
0
R

¼ �m2 1

c0R � c0H

c0H
c0R

� 0 (40)

and thus according to the implicit function theorem [25], in
a neighborhood of c0R, cR will be an analytic function of T
and cH. Substituting in F1 we obtain the equation
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1 ¼ F1½T; cH; cRðT; cHÞ�: (41)

At T ¼ 0, cH ¼ c0H we have

@F1

@cH

��������0;c0H

¼ @F1

@cH
þ @F1

@cR

@cR
@cH

¼ E

A

�
�1þ c0R

c0H

�

¼ E

A

1

ek=m
2 � 1

� 0 (42)

and thus cH will be an analytic function fðTÞ of T in a
neighborhood of T ¼ 0. Recalling now the definition of cH
we have

h ¼ mþ TfðTÞ � mþ gðTÞ: (43)

Summing up we found that in a neighborhood of T ¼ 0
from the equations F1 ¼ 1, F2 ¼ k Eq. (43) follows.
Equation (43) due to the definition of T ¼ expð�t=ð2h2ÞÞ
is still an implicit equation. The above argument is com-
pletely general and allows to compute the coefficients c0H
and c0R. On the other hand if we work at r1 < rc as we
shall do, we can reach Eq. (43) for all 0< t <1. In fact
for r1 < rc we have �

@t

@r0

�
k
< 0 (44)

which combined with Eq. (20) gives ð@H@t Þk < 0 which

using again Eq. (20) gives

g0ðTÞ> 0; gð0Þ ¼ 0; gð1Þ ¼ ffiffiffiffiffiffiffiffiffi
2H1

p �m (45)

with H1 given by Eq. (27). We can now solve Eq. (43) by
iteration stating with h0 ¼ m. We have due to Eq. (45)

h1 ¼ mþ gðe�ðt=2m2ÞÞ>m ¼ h0 (46)

and by induction we reach

hnþ1 ¼ mþ gðe�ðt=2h2nÞÞ>mþ gðe�ðt=2h2
n�1

ÞÞ ¼ hn:

(47)

Thus the sequence h0; h1 . . . is increasing and being
bounded by

ffiffiffiffiffiffiffiffiffi
2H1

p
given by Eq. (27), it converges for

all 0< t <þ1. We give in Fig. 1 a qualitative graph of
the behavior in time of 2HðtÞ and r0ðtÞ.

Wework out now explicitly the first two terms of such an
iteration procedure; they will be sufficient to give the
Oð!=MÞ corrections to the Hawking distribution. With

h0 ¼ m and � � e�t=ð4MÞ ¼ e�t=ð2m2Þ we have

h1 ¼ mþ c0H�; h2 ¼ mþ c0H�þ
t

m3
ðc0H�Þ2 þOð�2Þ

(48)

and thus for HðtÞ

HðtÞ ¼ Mþm�1 þ t

m2
�21 þ s�21 þ . . . (49)

with �1 � c0H� and s real, being H real. Because of
Eq. (11) the time dependence of the mode which is
regular at the horizon, for fixed r1 is

�
Z t

Hðt0Þdt0 ¼ const:�Mtþ 4M
ffiffiffiffiffiffiffiffi
2M

p
�1 þ t�21 þOð�21Þ

(50)

i.e. for the semiclassical mode we have

eiS=l
2
P ¼ ei½qðr1Þ�Mtþ4M

ffiffiffiffiffi
2M

p
�1þt�2

1
þOð�2

1
Þ�=l2P ; (51)

where l2P ¼ Gℏ is the square of the Planck length. Thus
S at large times behaves as �Mt independently of k.

On the other hand the Fourier time analysis of eiS=l
2
P

contains frequencies which are above and below the
value M and this is the well-known fact that the
mode of the system which is regular at the horizon
does not represent an eigenvalue of the energy as
measured by a stationary observer at space infinity.
The deviations from the value M represent the positive
and negative frequency content of the radiation mode.
One has to keep in mind that the action which appears
in (51) refers to the whole system, which includes both
the shell and the core. If we want to analyze the modes
of the radiation we have to subtract from the exponent
the background term �Mt.

VII. THE SADDLE-POINTAPPROXIMATION

As well known and discussed in [1,9] the Bogoliubov
coefficients �!k and �!k are given by

�!k ¼ cðr1Þ
Z

dteiðSþMtþ!tÞ=l2P

�!k ¼ cðr1Þ
Z

dteiðSþMt�!tÞ=l2P :
(52)

As discussed in Sec. V we will work with r1 < rc. The
above integrals will be computed using the saddle-point
method where l2P plays the role of asymptotic parameter
[26]. From what we derived in the previous section, the
exponent appearing in the integrands, multiplied by �il2P
apart from qðr1Þ which is constant in time and common to
both coefficients, are, respectively,

2m3�1 þ t�21 þm2ðsþ 1Þ�21 �!t with �1 ¼ c0H�;

(53)

r

2 M

t0

1

2 H(t)

r (t)
0

oo

FIG. 1. Time development of 2HðtÞ and r0ðtÞ.
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where we used the notation of Eq. (34). For the �!k case
(i.e. upper sign) the saddle point is given by the value of
time t which satisfies

0 ¼ �HðtÞ þMþ! ¼ �m�1 � t

m2
�21 � s�21 þ!

(54)

which being !> 0 has solution for real t and thus at a real
value of the exponent in Eq. (52). On the contrary for the
�!k case (lower sign), the saddle-point equation

0 ¼ �HðtÞ þM�! ¼ �m�1 � t

m2
�21 � s�21 �!

(55)

has solution for complex t. At such a value of time the
exponent (53) (lower sign) equals

B ¼ �2m2!� tð�21 þ!Þ � ðs� 1Þm2�21: (56)

The solution of Eq. (55) to second order in !, which is the
order we are interested in, is given by

�1 ¼ �!

m

�
1� 2!

m2
log

�
� !

c0Hm

�
þ s!

m2

�
: (57)

From Eq. (56) we see that to find the imaginary part of such
exponent to order!2 we simply need the imaginary part of
t to first order in !. Using (57) we have

Im t ¼ �2�m2

�
1� 2!

m2

�
: (58)

Substituting into Eq. (56) we find

Im B ¼ 2�m2!

�
1� !

m2

�
¼ 4�M!

�
1� !

2M

�
(59)

which according to (52) has to be divided by l2P. Thus we
have

j�!kj2
j�!kj2

¼ e�8�ðM!=l2PÞ½1�ð!=2MÞ� (60)

which is independent of k. We see from Eq. (49) that for
t ! þ1, HðtÞ tends to M and thus the time Fourier trans-
form of the exponential of the action (51) which refers to
the whole system has a singularity at the frequency M.
Recalling that H (outer mass) represents the energy of the
whole system, we identify the parameter M with the mass
of the black hole before the decay.

Using the property of the Bogoliubov coefficients

X
k

ð�!k�
�
!0k � �!k�

�
!0kÞ ¼ �!;!0 (61)

one reaches for the flux of the Hawking radiation [11]

Fð!Þd! ¼ d!

2�

1

e8�ðM!=l2PÞð1�ð!=2MÞÞ � 1
: (62)

This completes the explicit derivation of the !2 correction
to the Hawking formula from the time Fourier transform of
the semiclassical modes.
An alternative way to derive (60) was given by Keski-

Vakkuri and Kraus [11] where it is proven that for the �!k

coefficient the imaginary part of the action at the saddle
point (55) is given by

Im
Z r1

r0

pcdr ¼ Im
Z 2M

2H
pcdr ¼ �1

2

�
ð2MÞ2 � ð2HÞ2

�

¼ 4�M!

�
1� !

2M

�
(63)

which is equivalent to Eq. (59). The importance of Eq. (63)
is to show directly how the ‘‘tunneling’’ is due only to the
imaginary part of the ‘‘space part’’ of the action.
With regard to the validity of the expansion we see from

the saddle-point value (54) and (55)

Aðek=2M � 1Þffiffiffiffiffiffiffiffi
2M

p
E

e�ðt=4MÞ � !

2M
(64)

that the series if effectively an expansion in !=M and thus
expected to hold for !=M 	 1. From Eq. (64) we see that
for a given!, large values of the wave number k contribute
at times t which grow like 2k. The typical ! for the
radiation emitted by a black hole of mass M is according
to Eq. (60) (Wien’s law)

! � l2P
8�M

(65)

and thus the approximation expected to be reliable at the
typical frequency (65) or below for l2P=8�M

2 	 1 i.e.
for black holes of mass of a few Planck masses or of
higher mass.

VIII. CONCLUSIONS

In this paper we gave a detailed treatment of the late-
time expansion which occurs in the semiclassical approach
to the Hawking radiation. We find that the variational
problem defining the action related to the modes which
are regular at the horizon allows in general more than one
solution, due to the presence of caustics. We prove however
that for radii below a critical value rc the variational
problem has only one solution and we give a rigorous
lower bound on rc. Thus for r1 less that rc where the
semiclassical approximation is expected to be accurate
there are no ambiguities in computing the action and the
time Fourier transform can be applied to extract the
Bogoliubov coefficients. The Hamiltonian depends on the
boundary condition through a system of two highly non-
linear equations. We show that for r1 < rc such a system of
equation is rigorously equivalent to another nonlinear
equation which can be solved through a convergent iter-
ative procedure. We work out explicitly the first two steps
of such iteration which are sufficient to compute the !=M
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correction to the Hawking spectrum. The treatment shows
directly the relation between late-times and high wave
numbers of the modes regular at the horizon. The first
two terms in the iterative process are sufficient to give
accurate results for the backreaction effects for frequencies
at or below the typical frequency of the spectrum and black
holes of a few Planck masses or higher mass.
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APPENDIX

We summarize here the essential formulas of the shell
dynamics. For more details see [1,7–9]. One starts from the
usual Hilbert-Einstein action to which the shell action is
added

S ¼ 1

16�G

Z
R

ffiffiffiffiffiffiffi�g
p

d4xþ Sshell: (66)

We shall in the following use c ¼ G ¼ 1 which simply
means that masses acquire the dimension of length i.e. they
are measured by the related Schwarzschild radius divided
by 2. As usual in gravity it is better to work on a bounded
region of space-time. Employing the general spherically
symmetric metric (1) the action can be rewritten in
Hamiltonian form as [1,6]

S ¼
Z tf

ti

dt
Z re

ri

drð�L
_Lþ �R

_R� NH t � NrH rÞ

þ
Z tf

ti

dt

�
�Nr�LLþ NRR0

L

���������
re

ri

þ
Z tf

ti

dtp̂ _̂r;

(A1)

where r̂ denotes the radial coordinate of the shell. The
constraints are given by

H r ¼ �RR
0 � �0

LL� p̂�ðr� r̂Þ; (A2)

H t ¼ RR00

L
þ R02

2L
þ L�2

L

2R2
� RR0L0

L2
� �L�R

R
� L

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2L�2 þm2

q
�ðr� r̂Þ: (A3)

The Painlevé-Gullstrand gauge is defined by L � 1. There
is still one gauge freedom in the choice of RðrÞ. In virtue of
the constraints R0ðrÞ has to be discontinuous at r ¼ r̂. Here
we will adopt the ‘‘outer gauge’’ [8] defined by RðrÞ ¼ r
for r � r̂ i.e. in the massless case

RðrÞ ¼ rþ p̂

r̂
gðr� r̂Þ (A4)

with g smooth function of support ½�l; 0�, gð0Þ ¼ 0 and
g0ð0�Þ ¼ 1. Other gauges could well be used [8,9]. The
constraints can be solved and the action in the outer gauge
takes the form

S ¼
Z tf

ti

�
pc

_̂r� _MðtÞ
Z r̂ðtÞ

ri

@F

@M
dr�HNðreÞ þMNðriÞ

�
dt;

(A5)

where F is the generating function

F ¼ RW þ RR0ðL�BÞ (A6)

with

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 � 1þ 2M

R

s
; L ¼ logðR0 �WÞ;

B ¼
ffiffiffiffiffiffiffiffiffi
2M
R

s
þ log

�
1�

ffiffiffiffiffiffiffiffiffi
2M
R

s �
:

(A7)

The general expression of the conjugate momentum pc

is [8]

pc ¼ Rð�L� �BÞ; (A8)

where � represents the discontinuity of the related
quantities across the shell position r̂. Contrary to p̂,
pc is a gauge invariant quantity within the Painlevé
class of gauges [9]. Its expression for the case of a
massless shell is given by Eq. (6). Normalizing the
lapse function N, which is constant for r > r̂, as
NðreÞ ¼ 1 we have from the expression (6) of pc and
action (5) the equation of motion

@H

@pc

¼ 1�
ffiffiffiffiffiffiffi
2H

r̂

s
¼ _̂r (A9)
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