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In an open Friedmann-Robertson-Walker (FRW) space background, we study the classical and quantum

cosmological models in the framework of the recently proposed nonlinear massive gravity theory.

Although the constraints which are present in this theory prevent it from admitting the flat and closed

FRW models as its cosmological solutions, for the open FRW universe it is not the case. We have shown

that, either in the absence of matter or in the presence of a perfect fluid, the classical field equations of

such a theory adopt physical solutions for the open FRW model, in which the mass term shows itself as a

cosmological constant. These classical solutions consist of two distinguishable branches: One is a

contacting universe which tends to a future singularity with zero size, while another is an expanding

universe having a past singularity from which it begins its evolution. A classically forbidden region

separates these two branches from each other. We then employ the familiar canonical quantization

procedure in the given cosmological setting to find the cosmological wave functions. We use the resulting

wave function to investigate the possibility of the avoidance of classical singularities due to quantum

effects. It is shown that the quantum expectation values of the scale factor, although they have either

contracting or expanding phases like their classical counterparts, are not disconnected from each other.

Indeed, the classically forbidden region may be replaced by a bouncing period in which the scale factor

bounces from the contraction to its expansion eras. Using the Bohmian approach of quantum mechanics,

we also compute the Bohmian trajectory and the quantum potential related to the system, which their

analysis shows are the direct effects of the mass term on the dynamics of the universe.
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I. INTRODUCTION

General Relativity (GR) introduced by Einstein began a
renaissance in scientific thought, which changed our view-
point on the concept of space-time geometry and gravity.
The interpretation of gravitational force as a modification
of geometrical structure of space-time made and makes
this force distinguishable from other fundamental interac-
tions, although there are arguments which support the idea
that the other interactions may also have geometrical ori-
gin. Because of the unknown behavior of gravitational
interaction at short distances, this distinction may have
some roots in the heart of problems with quantum gravity.
Therefore, any hope of dealing with such concepts would
be in vain unless a reliable quantum theory of gravity can
be constructed. In the absence of a full theory of quantum
gravity, it would be then useful to describe its quantum
aspects within the context of modified theories of gravity.
From a field theory point of view, the gravitational force in
GR can be represented as a field theory in which the space-
time metric plays the role of the fields and the particle that
is responsible to propagate gravity is named graviton.
Then, naturally in comparison to the other field theories,
one may ask about the different properties of such a
particle. The answer to this question is deduced by the

linearized form of GR and expansion of the space-time
metric g��, around a fixed background geometry ���, as

g�� ¼ ��� þ h��, where h�� is the field representation of

the graviton. Eventually, it is possible to show that the
graviton is a massless spin-2 particle.
Then, since our knowledge about the behavior of gravity

at very long distances is also incomplete, a question arises:
Is it possible to consider a small nonvanishing mass for the
graviton, i.e., amassive spin-2 particle? In the first attempts
to deal with this question, it seemed that adding a mass
term to the action may be sufficient. This was done by
Fierz and Pauli [1]. However, it was shown that by con-
sidering the number of degrees of freedom, this model
suffers from the existence of a ghost field, the so-called
Boulware-Deser ghost [2], after studying the nonlinear
terms. This fact made massive gravity an abandoned theory
for a while. Recently, de Rahm and Gabadadze proposed a
new scenario in which they have shown that it is possible to
have a ghost-free massive gravity even at the nonlinear
level [3]. That was a positive signal in this area, and the
early results in this subject have been followed by a num-
ber of works that address different aspects of massive
gravity [4]. As in the case of the other modified theories
of gravity, it is important to seek cosmological solutions in
the newly proposed massive theory of gravity. This is done
by the authors of Ref. [5], who show that the existence of
some constraints prevent the theory from having the non-
trivial homogeneous and isotropic cosmological solutions.
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Indeed, what is shown in Ref. [5] is that, beginning with
the flat FRW ansatz in the context of massive gravity, the
corresponding field equations result in nothing but the
Minkowski metric. However, by reexamination of the con-
ditions, the authors of Refs. [6,7] have shown that, for the
open FRW model, this is not the case, and the nonlinear
massive gravity admits the open FRW as a compatible
solution for its field equations. Another progresses to find
the massive cosmologies lie in the field of the bi-metric
theories of gravity; see, for instance, Ref. [8], based on the
works of Hassan and Rosen [9], in which they show that a
bi-metric representation for massive gravity exists.

Our purpose in the present paper is to continue the works
of the authors of Ref. [6,7] in greater detail, based on the
Hamiltonian formalism of the open FRW cosmology in the
framework of massive gravity. We obtain the solutions to
the vacuum and perfect fluid classical field equations and
investigate their different aspects, such as the roll of the
graviton’s mass as a cosmological constant, the appearance
of singularities, and the late time expansion. We then
consider the problem at hand in the context of canonical
quantum cosmology to see how the classical picture will be
modified. Our final results show that the singular behavior
of the classical cosmology will be replaced by a bouncing
one when quantum mechanical considerations are taken
into account. This means that the quantization of the model
suggests the existence of a minimal size for the corre-
sponding universe. We shall also study the quantum model
by the Bohmian approach of quantum mechanics to show
how the mass term exhibits its direct effects on the evolu-
tion of the system.

The structure of the paper is as follows. In Sec. II, we
briefly present the basic elements of the issue of massive
gravity and its canonical Hamiltonian for a given open
FRWuniverse. In Sec. III, classical cosmological dynamics
is introduced for the vacuum and perfect fluid.
Quantization of the model is the subject of Sec. IV, and
in Sec. V, the Bohmian approach of quantum mechanics is
applied to the model. Finally, the conclusions are summa-
rized in Sec. VI.

II. PRELIMINARY SETUP

In this section, we start by briefly studying the nonlinear
massive gravity action presented in Refs. [6,7] for the open
FRW model, where the metric is given by

ds2 ¼ g��dx
�dx�

¼ �N2ðtÞdt2 þ a2ðtÞ
�
dx2 þ dy2 þ dz2

� jKjðxdxþ ydyþ zdzÞ2
1þ jKjðx2 þ y2 þ z2Þ

�
; (1)

with NðtÞ and aðtÞ being the lapse function and the scale
factor, respectively, and K ¼ �1 denoting the curvature
index. Here we work in units where c ¼ ℏ ¼ 16�G ¼ 1.

In the massive gravity scenario, one considers a metric
perturbation as Refs. [5,10]

g�� ¼ ��� þ h�� ¼ �ab@��
aðxÞ@��bðxÞ þH��; (2)

where �ab ¼ diagð�1; 1; 1; 1Þ and �aðxÞ are four scalar
fields known as Stückelberg scalars and are introduced to
keep the principle of general covariance also in massive
general relativity [11]. It is clear that the first term in
Eq. (2) is a representation of the Minkowski space-time
in terms of the coordinate system ð�0; �iÞ and thus the
tensorH�� is responsible for describing the propagation of

gravity in this space. The action of the model consists of
the gravitational part Sg and the matter action Sm as

S ¼ Sg þ Sm: (3)

The matter part of the action is independent of the massive
corrections to the gravity part. Also, the gravity part can be
expressed in terms of the usual Einstein-Hilbert, with an
additional correction term coming from the massive gravi-
ton; that is [5]

Sg ¼
Z ffiffiffiffiffiffiffi�g

p �
R�m2

4
Uðg;HÞ

�
d4x; (4)

in which all of the modifications due to the mass and also
the interactions between the tensor fields H�� and g�� are

summarized in the potential Uðg;HÞ. By using ghost-free
conditions for the theory in Ref. [11], we propose the
following form for the potential term: [10]

U ðg;HÞ ¼ �4ðL2 þ �3L3 þ �4L4Þ; (5)

where

L2¼1

2
ðhKi2�hK2iÞ;

L3¼1

6
ðhKi3�3hKihK2iþ2hK3iÞ;

L4¼ 1

24
ðhKi4�6hKi2hK2iþ3hK2i2

þ8hKihK3i�6hK4iÞ;

(6)

in which the tensor K�� is defined as

K �
� ðg;HÞ ¼ �

�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ab@

��a@��
b

q
; (7)

and the notations hKi ¼ g��K��, hK2i ¼
g��g��K��K��; . . . are used for the corresponding

traces. Now, Eqs. (4)–(7) describe the gravitational part
of the action for a massive gravity theory. Since its explicit
form directly depends on the choice of scalar fields �aðxÞ,
it is appropriate to concentrate on this point first.
Interesting forms for such fields should involve terms
which would describe a suitable coordinate transformation
on the Minkowski space-time. In a flat FRW background,
for instance, one may select �0 ¼ fðtÞ and �i ¼ xi, as is
used in Ref. [5]. Here, for the open FRW metric in Eq.(1),
we use the following ansatz proposed in Ref. [6]:
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�0 ¼ fðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jKjxixi

q
; �i ¼

ffiffiffiffiffiffiffi
jKj

p
fðtÞxi: (8)

Upon substitution of these scalar fields and also the defi-
nition of the Ricci scalar into the relations in Eqs. (4)–(7),
we are led to a pointlike form for the gravitational
Lagrangian in the mini-superspace fN; a; fg as

Lg ¼ � 3a _a2

N
� 3jKjNaþm2ðL2 þ �3L3 þ �4L4Þ; (9)

where

L2 ¼ 3aða�
ffiffiffiffiffiffiffi
jKj

p
fÞð2Na� a _f� N

ffiffiffiffiffiffiffi
jKj

p
fÞ;

L3 ¼ ða�
ffiffiffiffiffiffiffi
jKj

p
fÞ2ð4Na� 3a _f� N

ffiffiffiffiffiffiffi
jKj

p
fÞ;

L4 ¼ ða�
ffiffiffiffiffiffiffi
jKj

p
fÞ3ðN � _fÞ;

(10)

in which an overdot represents differentiation with respect
to the time parameter t. It is seen that this Lagrangian does
not involve _N, which means that the momentum conjugate
to this variable vanishes. In the usual canonical formalism
of general relativity, we know this issue as the primary
constraint in the sense that the variable N is not a dynami-
cal variable but a Lagrange multiplier in the Hamiltonian
formalism. On the other hand, Lagrangian Eq. (9) seems to
show an additional constraint related to the Stückelberg
scalars whose dynamics are encoded in the function fðtÞ.
We see that in spite of the common Lagrangians in which
the first derivative of the configuration variables are of

second order, _f appears linearly in the Lagrangian
Eq. (9). Therefore, by computing the momentum conjugate

to f; that is, Pf ¼ @Lg

@ _f
, we obtain

Pf ¼ �m2ða�
ffiffiffiffiffiffiffi
jKj

p
fÞ½3a2 þ 3�3aða�

ffiffiffiffiffiffiffi
jKj

p
fÞ

þ �4ða�
ffiffiffiffiffiffiffi
jKj

p
fÞ2�: (11)

Now, it is clear that this relation is not invertible to obtain
_fðf; PfÞ. In such a case, the Lagrangian is said to be

singular and the relations like Eq. (11), which hinder the
inversion, are known as primary constraints. One may use
the method of Lagrange multipliers to analyze the dynam-
ics of the system by adding to the Lagrangian all of the
primary constraints multiplied by arbitrary functions of
time. However, to deal with our constrained system, we
act differently and proceed as follows. We vary the
Lagrangian Eq. (9) with respect to f to obtain

ð _a�
ffiffiffiffiffiffiffi
jKj

p
NÞ½jKjð�3þ�4Þf2ðtÞ

�2
ffiffiffiffiffiffiffi
jKj

p
ð1þ2�3þ�4ÞaðtÞfðtÞþð3þ3�3þ�4Þa2ðtÞ�

¼0: (12)

The solution _a ¼ ffiffiffiffiffiffiffijKjp
N of this equation is nothing but

what we obtain from the variation of the usual Einstein-
Hilbert Lagrangian with respect to N. Since its counterpart
in massive gravity is

_a ¼

3jKjð�3 þ �4Þ2 þm2a2ðtÞ½2ð1þ �3 þ �2

3 � �4Þ3=2 � ð1þ �3Þð2þ �3 þ 2�2
3 � 3�4Þ�

q
ffiffiffi
3

p ð�3 þ �4Þ
N; (13)

we cannot accept the relation _a ¼ ffiffiffiffiffiffiffijKjp
N as a physical

solution. Therefore, the constraint corresponding to the
dynamic of fðtÞ shows itself in the equation

½jKjð�3 þ �4Þf2ðtÞ � 2
ffiffiffiffiffiffiffi
jKj

p
ð1þ 2�3 þ �4ÞaðtÞfðtÞ

þ ð3þ 3�3 þ �4Þa2ðtÞ� ¼ 0; (14)

where using the same notation as in Ref. [6], its solutions
can be written as

fðtÞ ¼ X�ffiffiffiffiffiffiffijKjp aðtÞ ) _f ¼ X�ffiffiffiffiffiffiffijKjp _a;

X� � 1þ 2�3 þ �4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3 þ �2

3 � �4

q
�3 þ �4

:

(15)

As is argued in Ref. [6], in the limit where �3 and �4 are of
the order of a small quantity 	, the expression ofXþ goes to
infinity while X� ! 3=2. Because of this limiting behav-
ior, we use the subscript � in the following for numerical
values of constants with subscript �. Now we may insert
the constraints of Eq. (15) into the relations of Eq. (10) to
reduce the degrees of freedom of the system and obtain a

minimal number of dynamical variables. If we do so, we
obtain

L2 ¼ 3ð1� X�Þ
�
ð2� X�ÞN � X�ffiffiffiffiffiffiffijKjp _a

�
a3;

L3 ¼ ð1� X�Þ2
�
ð4� X�ÞN � 3

X�ffiffiffiffiffiffiffijKjp _a

�
a3;

L4 ¼ ð1� X�Þ3
�
N � X�ffiffiffiffiffiffiffijKjp _a

�
a3;

(16)

in terms of which the Lagrangian Eq. (9) takes its reduced
form with only one physical degree of freedom a. The
momentum conjugate to a is

Pa¼
@Lg

@ _a
¼�6a _a

N
þm2

�
@L2

@ _a
þ�3

@L3

@ _a
þ�4

@L4

@ _a

�
: (17)

Noting that
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@L2

@ _a
¼ 3

X�ffiffiffiffiffiffiffijKjp ðX� � 1Þa3; @L3

@ _a
¼ 3

X�ffiffiffiffiffiffiffijKjp ðX� � 1Þ2a3;

@L4

@ _a
¼ X�ffiffiffiffiffiffiffijKjp ðX� � 1Þ3a3; (18)

one gets

Pa¼�6
a _a

N
�C�m2ffiffiffiffiffiffiffijKjp a3;

C��X�ð1�X�Þ½3þ3�3ð1�X�Þþ�4ð1�X�Þ2�:
(19)

Now, the Hamiltonian of the model can be obtained from
its standard definition H ¼ _aPa �L, with result

Hg¼NH g

¼N

�
� 1

12a

�
PaþC�m2ffiffiffiffiffiffiffijKjp a3

�
2þ3jKjaþc�m2a3

�
; (20)

in which we have defined

c� ¼ ðX� � 1Þ½3ð2� X�Þ þ �3ð1� X�Þð4� X�Þ
þ �4ð1� X�Þ2�: (21)

We see that the lapse function enters in the Hamiltonian as
a Lagrange multiplier, as expected. Thus, when we vary the
Hamiltonian with respect to N, we get H g ¼ 0, which is
called the Hamiltonian constraint. On a classical level this
constraint is equivalent to the Friedmann equation, wherein
our problem at hand can be easily checked by comparing it
with the equation of motion (4.5) in Ref. [6]. On a quantum
level, on the other hand, the operator version of this
constraint annihilates the wave function of the correspond-
ing universe, leading to the so-called Wheeler-DeWitt
equation.

Now, let us deal with the matter field with which the
action of the model is augmented. As we have mentioned,
the matter part of the action is independent of modifica-
tions due to the mass terms. Therefore, the matter may
come into play in a common way and the total Hamiltonian
can be made by adding the matter Hamiltonian to the
gravitational part of Eq. (20). To do this, we consider a
perfect fluid whose pressure p is linked to its energy
density 
 by the equation of state

p ¼ !
; (22)

where�1 � ! � 1 is the equation of the stated parameter.
According to Schutz’s representation for the perfect fluid
[12], its Hamiltonian can be viewed as (see Ref. [13] for
details)

Hm ¼ N
PT

a3!
; (23)

where T is a dynamical variable related to the thermody-
namical parameters of the perfect fluid and PT is its con-
jugate momentum. Finally, we are in a position in which
can write the total Hamiltonian H ¼ Hg þHm as

H ¼ NH ¼ N

�
� 1

12a

�
Pa þ C�m2ffiffiffiffiffiffiffijKjp a3

�
2 þ 3jKja

þ c�m2a3 þ PT

a3!

�
: (24)

The setup for constructing the phase space and writing the
Lagrangian and Hamiltonian of the model is now com-
plete. In the following section, we shall deal with classical
and quantum cosmologies which can be extracted from a
theory with the previously mentioned Hamiltonian.

III. COSMOLOGICAL DYNAMICS:
CLASSICAL POINT OF VIEW

The classical dynamics are governed by the Hamiltonian
equations. To achieve this purpose, we divide this section
into two parts. We first consider the case in which the
matter is absent, i.e., the vacuum, and then include the
matter.

A. Vacuum classical cosmology

In this case, we can construct the equations of motion
by the Hamiltonian equations with use of the Hamiltonian
Eq. (20). Equivalently, one may directly write the
Friedmann equation from the Hamiltonian constraint
H ¼ 0 which, as we mentioned previously, reflects the
fact that the corresponding gravitational theory is a pa-
rameterized theory in the sense that its action is invariant
under time reparameterization. Noting from Eq. (19) that

_a ¼ � N

6a

�
Pa þ C�m2ffiffiffiffiffiffiffijKjp a3

�
; (25)

Eq. (20) gives

3a _a2 � 3jKja ¼ c�m2a3; (26)

in which we have chosen the gauge N ¼ 1, so that the time
parameter t becomes the cosmic time �. As is indicated in
Ref. [6], this equation looks like the Friedmann equation
for the open FRW universe with an effective cosmological
constant �� ¼ c�m2 and admits the following solutions

a�ð�Þ ¼
ffiffiffiffi
3

�

s
sinh

�
�

ffiffiffiffi
�

3

s
ð�� ��Þ

�
; (27)

where �� is an integration constant and we have taken� ¼
c�m2. For a positive ��, the condition að�Þ � 0 implies
that the expressions of aþð�Þ and a�ð�Þ are valid for � �
�� and � � ��� respectively, such that a�ð��Þ ¼ 0. It is
seen that the evolution of the corresponding universe with
the scale factor aþð�Þ begins with a big bang–like singu-
larity at � ¼ �� and then follows an exponential law ex-
pansion at late time of cosmic evolution in which the mass
term shows itself as a cosmological constant. For a uni-
verse with the scale factor a�ð�Þ, on the other hand, the
behavior is opposite. The universe decreases its size from
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large values of scale factor at � ¼ �1 and ends its evolu-
tion at � ¼ ��� with a zero size. In Fig. 1 we have plotted
theses scale factors for typical values of the parameters. As
this figure shows, although the behavior of aþð�Þ (a�ð�Þ)
is like a de Sitter (að�Þ � e

ffiffiffiffiffiffiffi
�=3

p
�) universe at � ! 1

(� ! �1), in spite of the de Sitter, it begins (ends) its
evolution with a singularity. In summary, what we have
shown previously is that in the framework of an open FRW
background geometry, the vacuum solutions of the massive
theory are equivalent to the solutions of the usual GR with
a cosmological constant. Accordingly, the zero-size singu-
larity of both theories has the same nature. In this sense we
would like to emphasize that the metric in Eq. (1) with the
scale factor of Eq. (27) is indeed a section of the de Sitter
hyperboloid

� T2 þ X2 þ Y2 þ Z2 þW2 ¼ 1; (28)

embedded in a 5-dimensional Minkowski space

ds2 ¼ �dT2 þ dX2 þ dY2 þ dZ2 þ dW2: (29)

To see this, one may parameterize the hyperboloid in terms
of the spherical coordinates ðr; �;�Þ as [14]

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
sinh�; X ¼ cosh�;

Y ¼ r sinh� cos� cos�; Z ¼ r sinh� cos� sin�;

W ¼ r sinh� sin�; (30)

which, upon substitution into the metric in Eq. (29), yields
the open FRW metric with the scale factor að�Þ ¼ sinh�.
This means that the point a ¼ 0 can be viewed as a
coordinate singularity. However, we have to note that in
the presence of any kind of matter field the point að��Þ ¼ 0
represents a true singularity. Thus, our following analysis
to quantize the model is based on the mini-superspace
coordinate system in terms of which the dynamical repre-
sentation of the metric, i.e., Eq. (1), is written.

In the next section, we shall see how the previous picture
may be modified when one takes into account quantum
mechanical considerations.

B. Perfect fluid classical cosmology

Now, we assume that a perfect fluid in its Schutz’s
representation is coupled with gravity. In this case the
Hamiltonian Eq. (24) describes the dynamics of the sys-
tem. The equations of motion for T and PT read as

_T ¼ fT;Hg ¼ N

a3!
; _PT ¼ fPT;Hg ¼ 0: (31)

A glance at the previous equations shows that with choos-
ing the gauge N ¼ a3!, we shall have

N ¼ a3! ) T ¼ t; (32)

which means that variable T may play the role of time in
the model. Therefore, the Friedmann equation H ¼ 0 can
be written in the gauge N ¼ a3! as follows:

3 _a2 ¼ 3jKja6! þ�a6!þ2 þ P0a
3!�1; (33)

where we take PT ¼ P0 ¼ const from the second equation
of Eq. (31). Since it is not possible to find the analytical
solutions of the previous differential equation for any
arbitrary !, we present its solutions only in some special
cases.
(i) ! ¼ � 1

3 : cosmic string. In this case we obtain

aðtÞ ¼
�
�

3
ðt� t0Þ2 � P0 þ 3jKj

�

�
1=2

; (34)

where t0 is an integration constant. We see that the
evolution of the universe based on Eq. (34) has big

bang–like singularities at t ¼ t0 � t�, where t� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðP0þ3jKjÞ

p
� . Indeed, the condition a2ðtÞ � 0 sepa-

rates two sets of solutions, aðIÞðtÞ and aðIIÞðtÞ, each

2 4 6 8
t

20

40

60

80

a

8 6 4 2
t

20

40

60

80

a

FIG. 1 (color online). The figures show the evolutionary behavior of the universes based on Eq. (27). We have used the numerical
values � ¼ 1 and �� ¼ 0.
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of which is valid for t � t0 � t� and t � t0 þ t�,
respectively. For the former, we have a contracting
universe which decreases its size according to a
power law relation and ends its evolution in a singu-
larity at t ¼ t0 � t�, while for the latter, the evolu-
tion of the universe begins with a big bang

singularity at t ¼ t0 þ t� and then follows the power
law expansion at late time of cosmic evolution.
One may translate these results in terms of the cos-
mic time �. Using its relationship with the time
parameter t in this case, that is, d� ¼ a�1ðtÞdt, we
are led to

að�Þ ¼
8<
:
aðIÞð�Þ ¼ 1ffiffiffiffiffiffiffi

12�
p ½e�

ffiffiffiffiffiffiffiffiffi
½�=3�

p
ð���0Þ � 3ðP0 þ 3jKjÞe

ffiffiffiffiffiffiffiffiffi
½�=3�

p
ð���0Þ�; � � �0 � ��;

aðIIÞð�Þ ¼ 1ffiffiffiffiffiffiffi
12�

p ½e
ffiffiffiffiffiffiffiffiffi
½�=3�

p
ð���0Þ � 3ðP0 þ 3jKjÞe�

ffiffiffiffiffiffiffiffiffi
½�=3�

p
ð���0Þ�; � � �0 þ ��;

(35)

where �� ¼ 1
2

ffiffiffi
3
�

q
ln3ðP0 þ 3jKjÞ. Again, it is seen that

there is a classically forbidden region �0 � �� < �< �0 þ
��, for which we have no valid classical solutions. For � �
�0 � ��, the universe has an exponential decreasing behav-
ior which ends its evolution in a singular point with zero
size at � ¼ �0 � ��, while in the region � � �0 þ �� it
begins with the big bang singularity at � ¼ �0 þ �� and
then grows exponentially forever.

(ii) ! ¼ �1: cosmological constant. Performing the
integration, we get the following implicit relation
between t and aðtÞ:

1ffiffiffi
3

p ðP0 þ�Þ2 ½�6jKj þ ðP0 þ�Þa2�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jKj þ ðP0 þ�Þa2

q
¼ t� t0: (36)

In terms of the cosmic time �, it is easy to see that
this solution returns to Eq. (27), in which the cos-
mological term is replaced by � ! �þ cons. This
is expected because the solutions in Eq. (27) were
equivalent to an open FRW universe with a cosmo-
logical constant. Therefore, adding a new cosmo-
logical term (a perfect fluid with ! ¼ �1) only
makes a shift in the corresponding cosmological
constant.

IV. COSMOLOGICAL DYNAMICS:
QUANTUM POINT OF VIEW

In this section we look for the quantization of the
model presented previously via the method of canonical
quantization. As is well known, this procedure is based

on the Wheeler-DeWitt equation Ĥ� ¼ 0, where Ĥ is
the operator version of the Hamiltonian constraint
and � is the wave function of the universe, a function of
the 3-geometries and the matter fields. As in the case
of the classical cosmology, we consider the matter
of free and perfect fluid quantum cosmology separately.

Before going to the subject, a remark is in order related
to the Hamiltonians in Eq. (20) and Eq. (24). The term
in the round bracket in these Hamiltonians is like
the Hamiltonian of a charged particle moving in an

electromagnetic field. From this analogy, one may define
the transformation

Pa ! �a ¼ Pa þ C�m2ffiffiffiffiffiffiffijKjp a3; a ! a; (37)

to simplify the form of the classical Hamiltonian. It is clear
that this is a canonical transformation both classically and
quantum mechanically [15]. Since going back from a new
set of variables to the old ones in a classical canonical
transformation can be made without any ambiguity, apply-
ing this transformation may not be important for the clas-
sical dynamics presented in the previous section. In the
context of quantum mechanics, on the other hand, the
subject is of little difference. The transition to the quantum
version of the theory is achieved by promoting observables
to operators which are not necessarily commuting. Thus,
by replacing the canonical variables ða; PaÞ by their opera-
tor counterparts (â, P̂a ¼ �id=da), we obtain the quantum
Hamiltonian

Ĥ ¼ � 1

12
â�1�̂2

a þ . . .

¼ � 1

12
â�1

�
P̂a þ C�m2ffiffiffiffiffiffiffijKjp â3

�
2 þ . . . ; (38)

where . . . denotes the terms out of the round bracket in
expressions of Eqs. (20) or (24). When calculating the

square, it should be noted that the operators â and P̂a do
not commute. Although the order of these operators does
not matter in the classical analysis, quantum mechanically
this issue is quite crucial. Indeed, this is the operator
ordering problem and, unfortunately, there is no well-
defined principle which specifies the order of operators in
the passage from classical to quantum theory. There are,
however, some simple rules which one uses conventionally.

If, for instance, we order the products of â and P̂a in �̂2
a

such that the momentum stands to the right of the scale
factor, we obtain

�̂ 2
a ! P̂2

a þ C2�m4

jKj a6 þ 2
C�m2ffiffiffiffiffiffiffijKjp â3P̂a � 3i

C�m2ffiffiffiffiffiffiffijKjp â2;

(39)
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in which we have used the commutation relation ½â; P̂a� ¼
i. With this expression at hand, there is still another factor

ordering ambiguity in the terms â�1P̂2
a and â2P̂a to con-

struct the quantum Hamiltonian Eq. (38). As Hawking and
Page have shown [16], the choice of different factor order-
ing will not affect semiclassical calculations in quantum
cosmology, so for convenience one usually chooses a
special place for it in the special models. However, in
general, the behavior of the wave function depends on
the chosen factor ordering [17]. In what follows, as one
usually does in the mini-superspace approximation to the
cosmological models, we work in the framework of a
special factor ordering in which, in addition to the expres-

sion in Eq. (39) for �̂2
a, we also use the orderings â

�1P̂2
a ¼

P̂aâ
�1P̂a and â2P̂a ¼ âP̂aâ to make the Hamiltonian

hermitian.1

A. Vacuum quantum cosmology

In this case, with the help of the Hamiltonian Eq. (20)
and use of the abovementioned choice of ordering, the
Wheeler-DeWitt equation reads�
d2

da2
þ

�
�a�1 þ 2i

C�
c�

�a3
�
d

da
þ

��
36þ 2i

C�
c�

�

�
a2

þ 12�a4 � C2�
c2�

�2a6
��
�ðaÞ ¼ 0: (40)

This equation does not seem to have analytical solutions.
However, we can get some properties of its solutions in
special regions where there is interest in classical and
quantum regimes. First of all, let us rewrite this equation
in the form�
d2

da2
� ða�1 þ 6i�a3Þ d

da
þ ½ð36� 6i�Þa2 þ 12�a4

� 9�2a6�
�
�ðaÞ ¼ 0; (41)

in which we have used the numerical values C� ¼ �9=4
and c� ¼ 3=4 [6]. For large values of a, the solution to this
equation can easily be obtained in the Wentzel-Kramers-
Brillouin (WKB) (semiclassical) approximation. In this
regime we can neglect the term a�1 in Eq. (41). Then,

substituting�ðaÞ ¼ �ðaÞeiSðaÞ in this equation leads to the
modified Hamilton-Jacobi equation

�
�
dS

da

�
2 þ 6�a3

dS

da
þ ð36a2 þ 12�a4 � 9�2a6Þ þQ¼ 0;

(42)

in which the quantum potential is defined asQ ¼ 1
�

d2�
da2

. It

is well-known that the quantum effects are important for
small values of the scale factor and in the limit of the large
scale factor can be neglected. Therefore, in the semiclas-
sical approximation region we can omit the Q term in
Eq. (42) and obtain

dS

da
¼ 3�a3 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þ 12�a2

p
: (43)

In the WKB method, the correlation between classical and
quantum solutions is given by the relation Pa ¼ @S

@a . Thus,

using the definition of Pa in (19), the equation for the
classical trajectories becomes

_a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

3
a2

s
; (44)

from which one finds

aðtÞ ¼
ffiffiffiffi
3

�

s
sinh

�
�

ffiffiffiffi
�

3

s
ðt� �Þ

�
; (45)

which shows that the late time behavior of the classical
cosmology of Eq. (27) is exactly recovered. The meaning
of this result is that for large values of the scale factor, the
effective action corresponding to the expanding and con-
tracting universes is very large and the universe can be
described classically. On the other hand, for small values of
the scale factor we cannot neglect the quantum effects, and
the classical description breaks down. Since the WKB
approximation is no longer valid in this regime, one should
go beyond the semiclassical approximation. In the quan-
tum regime, if we neglect the term �2a6 in Eq. (41), the
two linearly independent solutions to this equation can be
expressed in terms of the Hermite H�ðxÞ and hyper-
geometric 1F1ða; b; zÞ functions, leading to the following
general solution:

�ðaÞ ¼ e�ia2
�
c1H�ð1=2Þ�ð8=3�Þi

�ð1þ iÞð2þ 3�a2Þ
2

ffiffiffiffiffiffiffi
3�

p
�

þ c21F1

�
1

4
þ 4

3�
i;
1

2
;
ið2þ 3�a2Þ2

6�

��
: (46)

At this step we take a quick glance at the question of the
boundary conditions on the solutions to the Wheeler-
DeWitt equation. Note that the mini-superspace of the
previous model has only one degree of freedom denoted
by the scale factor a in the range 0< a<1. According to
Ref. [18], its nonsingular boundary is the line a ¼ 0, while
at the singular boundary, this variable is infinite. Since the

1With the canonical transformation (37) at hand, one may uses
the transformed Hamiltonian H ¼ � 1

12a�
2
a þ . . . to quantize

the system, where again . . . denotes the terms out of the round
bracket in expressions in Eqs. (20) or (24). Using this
Hamiltonian in the hermitian form a�1�2

a ¼ �aa
�1�a and

also representing �a by �i@a, this is equivalent to our previous
treatment in which the last term in Eq. (39) is absent. Therefore,
one may have some doubts on the validity of the main following
results due to the effects of the chosen factor ordering. To
overcome this problem, we have made some calculations based
on the abovementioned transformed Hamiltonian and have veri-
fied that the general patterns of the resulting wave functions
follow the behavior shown in following sections.
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mini-superspace variable is restricted to the abovemen-
tioned domain, the mini-superspace quantization deals
only with wave functions defined on this region.
Therefore, to construct the quantum version of the model,
one should take into account this issue. This is because in
such cases, one usually has to impose boundary conditions
on the allowed wave functions; otherwise the relevant
operators, especially the Hamiltonian, will not be self-

adjoint. The condition for the Hamiltonian operator Ĥ
associated with the classical Hamiltonian function in

Eqs. (20) and (24) to be self-adjoint is ðc 1;Ĥ c 2Þ ¼
ðĤ c 1; c 2Þ or

Z 1

0
c �

1ðaÞĤ c 2ðaÞda ¼
Z 1

0
c 2ðaÞĤ c �

1ðaÞda: (47)

Following the calculations in Ref. [19] and dealing only
with square integrable wave functions, this condition yields
a vanishing wave function at the nonsingular boundary of
the mini-superspace. Hence, we impose the boundary con-
dition on the solutions in Eq. (46) such that at the non-
singular boundary (at a ¼ 0), the wave function vanishes.
This makes the Hamiltonian hermitian and self-adjoint and
can avoid the singularities of the classical theory, i.e. there
is zero probability for observing a singularity correspond-
ing to a ¼ 0.2 Therefore, we require

�ða ¼ 0Þ ¼ 0 ) c2
c1

¼ �
H�ð1=2Þ�ð8=3�Þið 1þiffiffiffiffiffi

3�
p Þ

1F1ð14 þ 4i
3� ;

1
2 ;

2i
3�Þ

: (48)

Note that Eq. (41) is a Schrödinger-like equation for a
fictitious particle with zero energy moving in the field of
the superpotential with the real part UðaÞ ¼ �ð36a2 þ
12�a4Þ. Usually, in the presence of such a potential, the
mini-superspace can be divided into two regions, U > 0
and U < 0, which could be termed the classically forbid-
den and classically allowed regions, respectively. In the
classically forbidden region the behavior of the wave func-
tion is exponential, while in the classically allowed region
the wave function behaves oscillatorily. In the quantum
tunneling approach [18], the wave function is so con-
structed as to create a universe emerging from nothing by

a tunneling procedure through a potential barrier in the
sense of usual quantum mechanics. Now, in our model, the
superpotential is always negative, which means that there
is no possibility of tunneling anymore, since a zero energy
system is always above the superpotential. In such a case,
tunneling is no longer required, as classical evolution is
possible. As a consequence, the wave function always
exhibits oscillatory behavior. In Fig. 2, we have plotted
the square of the wave functions for typical values of the
parameters. It is seen from this figure that the wave func-
tion has a well-defined behavior near a ¼ 0 and describes a
universe emerging out of nothing without any tunneling.
(See Ref. [22], in which such wave functions also appeared
in the case study of the probability of quantum creation of
compact, flat, and open de Sitter universes.) On the other
hand, the emergence of several peaks in the wave function
may be interpreted as a representation of different quantum
states that may communicate with each other through
tunneling. This means that there are different possible
universes (states) from which the present universe could
have evolved and tunneled in the past, from one universe
(state) to another.

B. Perfect fluid quantum cosmology

In this case, the Wheeler-DeWitt equation can be con-
structed by means of the Hamiltonian Eq. (24). With the
same approximations as we used in the previous subsec-
tion, we obtain

�
@2

@a2
� ða�1 þ 6i�a3Þ @

@a
þ ½ð36� 6i�Þa2 þ 12�a4�

� ia1�3! @

@T

�
�ða; TÞ ¼ 0: (49)

We separate the variables in this equation as

�ða; TÞ ¼ eiETc ðaÞ; (50)

leading to

0.5 1.0 1.5 2.0
a

5

10

15

20

25

30

35

2

FIG. 2 (color online). The square of the wave function for the
quantum universe. We take the numerical value � ¼ 1:5.

2Such a boundary condition is also suggested by DeWitt in the
form �½Gð3Þ� ¼ 0 [20], where Gð3Þ denotes all three-geometries
which may play the roll of barriers; for instance, singular three-
geometries. As is argued in Ref. [20], with this boundary
condition some kinds of classical singularities can be removed
and a unique solution to the Wheeler-DeWitt equation may be
obtained. Although in the presence of more fundamental pro-
posals of the boundary condition in quantum cosmology (for
example, Vilenkin’s tunneling or Hawking’s no boundary pro-
posals), it is not clear that the abovementioned boundary condi-
tion is true, there is some evidence in quantum gravity models in
which suitable wave packets obey such kinds of boundary
conditions. See Ref. [21].
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�
d2

da2
� ða�1 þ 6i�a3Þ d

da
þ ½ð36� 6i�Þa2 þ 12�a4

þ Ea1�3!�
�
c ðaÞ ¼ 0: (51)

The solutions of the above differential equation may be
written in the form

c EðaÞ¼e�ia2
�
c1H�ð1=2Þ�½ð32þEÞ=12��i

�ð1þ iÞð2þ3�a2Þ
2

ffiffiffiffiffiffiffi
3�

p
�

þc21F1

�
1

4
þ32þE

24�
i;
1

2
;
ið2þ3�a2Þ2

6�

��
; (52)

for ! ¼ �1=3 and

c EðaÞ ¼ e�ið1þ½E=12��Þa2
�
c1H�ð1=2Þ�½ð1152�2�24E��E2Þ=432�3�i

�ð1þ iÞ½Eþ 6�ð2þ 3�a2Þ�
12�

ffiffiffiffiffiffiffi
3�

p
�

þ c21F1

�
1

4
þ 1152�2 � 24E�� E2

864�3
i;
1

2
;
i½Eþ 6�ð2þ 3�a2Þ�2

216�3

��
; (53)

for ! ¼ �1. Now the eigenfunctions of the Wheeler-
DeWitt equation can be written as

�Eða; TÞ ¼ eiETc EðaÞ: (54)

We may now write the general solution to the Wheeler-
DeWitt equation as a superposition of its eigenfunctions;
that is,

�ða; TÞ ¼
Z 1

0
AðEÞ�Eða; TÞdE; (55)

where AðEÞ is a suitable weight function to construct the
wave packets. The previous relations seem to be too com-
plicated to extract an analytical expression for the wave
function. Therefore, in the following (for the case ! ¼
�1=3), we present an approximate analytic method which
is valid for very small values of scale factor, i.e., in the
range that we expect the quantum effects to be important.

In this regime, if we keep only the a�1 and a2 terms in the
second and third terms of Eq. (51), the solutions to
this equation can be viewed as a superposition of the

functions sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þE�6i�

p
2 a2Þ and cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þE�6i�

p
2 a2Þ. If we

impose the boundary condition c ða ¼ 0Þ ¼ 0 on these
solutions, we are led to the following eigenfunctions:

�Eða; TÞ ¼ eiET sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þ E� 6i�

p
2

a2
�
: (56)

Now, by using the equality

Z 1

0
e�
x sin

ffiffiffiffiffiffiffi
mx

p
dx ¼

ffiffiffiffiffiffiffiffi
�m

p
2
3=2

e�ðm=4
Þ; (57)

we can evaluate the integral over E in Eq. (55), and the
simple analytical expression for this integral is found if we
choose the function AðEÞ to be a quasi-Gaussian weight

factor AðEÞ ¼ e�
E (
 is an arbitrary positive constant and
E ¼ 36þ E� 6i�), which results in

�ða; TÞ ¼ e�6ð�þ6iÞT Z 1

0
e�
EeiET sin

� ffiffiffi
E

p
2

a2
�
dE: (58)

Using the relation in Eq. (57) yields the following expres-
sion for the wave function:

�ða; TÞ ¼ N e�6ð�þ6iÞT a2

ð
� iTÞ3=2 exp

�
� a2

8ð
� iTÞ
�
;

(59)

where N is a numerical factor. Now, having this expres-
sion for the wave function of the universe, we are going to
obtain the predictions for the behavior of the dynamical
variables in the corresponding cosmological model. To do
this, one may calculate the time dependence of the expec-
tation value of a dynamical variable q as

hqiðTÞ ¼ h�jqj�i
h�j�i : (60)

Following this approach, we may write the expectation
value for the scale factor as

haiðTÞ ¼
R1
0 ��ða; TÞa�ða; TÞdaR1
0 ��ða; TÞ�ða; TÞda ; (61)

which yields

haiðTÞ ¼
ffiffiffiffi
�

3

s
ð
2 þ T2Þ1=2: (62)

This relation may be interpreted as the quantum counter-
part of the classical solutions in Eq. (34). However, in spite
of the classical solutions, for the wave function in Eq. (59),
the expectation value in Eq. (62) of a never vanishes,
showing that these states are nonsingular. Indeed, in
Eq. (62) T varies from �1 to þ1, and any T0 is just a
specific moment without any particular physical meaning
like big bang singularity. The previous result may be
written in terms of the cosmic time �. By the definition

d� ¼ a�1ðTÞdT, we obtain the quantum version of the
relations in Eq. (35) as
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haið�Þ ¼ 1

2
ðe

ffiffiffiffiffiffiffiffiffi
ð�=3Þ

p
� þ 
2e�

ffiffiffiffiffiffiffiffiffi
ð�=3Þ

p
�Þ: (63)

In Fig. 3, we have plotted the classical scale factors of
Eqs. (34) and (35) and their quantum counterparts in
Eqs. (62) and (63). As is clear from this figure, for a perfect
fluid with ! ¼ �1=3, the corresponding classical cosmol-
ogy admits two separate solutions, which are disconnected
from each other by a classically forbidden region. One of
these solutions represents a contracting universe ending in
a singularity while another describes an expanding uni-
verse which begins its evolution with a big bang singular-
ity. On the other hand, the evolution of the scale factor
based on the quantum mechanical considerations shows a
bouncing behavior in which the universe bounces from a
contraction epoch to a reexpansion era. Indeed, the classi-
cally forbidden region is where the quantum bounce has
occurred. We see that in the late time of cosmic evolution
in which the quantum effects are negligible, these two
behaviors coincide with each other. This means that the
quantum structure which we have constructed has a good
correlation with its classical counterpart.

V. BOHMIAN TRAJECTORIES

In the previous sections, we saw how the classical
singular behavior of the universe was replaced with a
bouncing one in a quantum picture. Now, a natural ques-
tion may arise: Why will the bounce occur? Clearly, it is
due to the quantum mechanical effects which show them-
selves when the size of the universe tends to very small
values. However, we would like to know whether the
massive correction to the underlying gravity theory has
any contribution to this phenomenon. To deal with this
question, let us return to the wave function in Eq. (59) and

write it in the polar form �ða; TÞ ¼ �ða; TÞeiSða;TÞ, where
�ða; TÞ and Sða; TÞ are real functions, which simple alge-
bra gives as

�ða;TÞ¼e�6�T a2

ð
2þT2Þ3=4 exp
�
� 
a2

8ð
2þT2Þ
�
; (64)

Sða; TÞ ¼ �36T þ 3

2
arctan

T



� Ta2

8ð
2 þ T2Þ : (65)

According to the Bohm-de Broglie interpretation of quan-
tum mechanics [23] and also its usage in quantum cosmol-
ogy [24], upon using this form of the wave function in the
corresponding wave equation, we arrive at the modified
Hamilton-Jacobi equation as

H
�
qi; Pi ¼ @S

@qi

�
þQ ¼ 0; (66)

where Pi are the momentum conjugate to the dynamical
variables qi and Q is the quantum potential. With begin-
ning of the wave in Eq. (49), for which we have used the
same approximations as in the previous section, the above-
mentioned procedure gives the quantum potential as

Q ¼ 1

�

@2�

@a2
� 1

a�

@�

@a
: (67)

On the other hand, the Bohmian equations of motion can be
obtained by Pa ¼ @S

@a , where by means of the relation in

Eq. (19) reads

� 6a _aþ 3�a2 ¼ � T

4ð
2 þ T2Þ : (68)

The solution to this equation denotes the Bohmian repre-
sentation of the scale factor; that is

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ce�T þ 1

24
e�T�i
�½e2i
� Eið1;��T � i
�Þ þ Eið1;��T þ i
�Þ�

s
; (69)
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FIG. 3 (color online). Left: The figure shows qualitative behavior of the classical scale factor in Eq. (34) [solid lines: the left branch
for aðIÞðtÞ and the right branch for aðIIÞðtÞ] and the expectation value of the scale factor of Eq. (62) (dashed line). Right: The same figure
in terms of cosmic time. The left and right branches of the solid lines represent aðIÞð�Þ and aðIIÞð�Þ, respectively, in Eq. (35) while the
dashed line represents the expectation value in Eq. (63).
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where c is an integration constant and Eiðb; zÞ is the
exponential integral function defined by

Ei ðb; zÞ ¼
Z 1

1
e�kzk�bdk: (70)

The bouncing behavior of the scale factor is again its main
property near the classical singularities as we have shown
in Fig. 4. To achieve an expression for the quantum poten-
tial in terms of the scale factor, we note that all of our
previous calculations are in the vicinity of T � 0, where
the scale factor is small. In this regime, a numerical analy-
sis shows that the Bohmian scale factor of Eq. (69) behaves
as aðTÞ � ð
2 þ T2Þ1=2, in agreement with the expectation
value of Eq. (62). Thus, substituting in Eq. (64), we get the
quantum potential from Eq. (67) as

Q ðaÞ ¼ 3

4

�

2

�
1

a4 � 
2a2
þ 8�

ða2 � 
2Þ3=2
�

þ�1þ 48�2a2

a2 � 
2

�
: (71)

In Fig. 4 we also have plotted the qualitative behavior of
the quantum potential versus the scale factor. As this figure
shows, this potential goes to zero for the large values of the
scale factor. This behavior is expected, since in this regime
the quantum effects can be neglected and the universe
evolves classically. On the other hand, for the small values
of the scale factor the potential takes a large magnitude and
the quantum mechanical considerations come into the
scenario. This is where the quantum potential can produce
a huge repulsive force, which may be interpreted as being
responsible of the avoidance of singularity. In Fig. 4 the
horizontal line represents a constant energy level which in
intersecting with the potential curves gives the turning
points at which the bounce will occur. The solid curve in
this figure is plotted in the case of � � 0; i.e., for the
massive theory, while the dashed curve is for � ¼ 0; i.e.,
for when the massive corrections are absent. It is seen that,
although the mass term � is not the only reason for the
bouncing behavior in the vicinity of the classical singular-
ity, it may shift the bouncing point into the smaller values

of the scale factor. This means that if we consider the
bouncing point as the minimum size of the universe (which
is suggested by quantum cosmology), then the massive
version of the underlying gravity theory predicts a smaller
value for this minimal size in comparison with the usual
Einstein-Hilbert model. These facts and also other consid-
erable possibilities such as quantum tunneling between
different classically allowed regimes (as can be seen
from Fig. 4) through the potential barrier support the idea
that the massive corrections to the classical cosmology are
some signals from quantum gravity.

VI. CONCLUSIONS

In this paper we have applied the recently proposed
nonlinear massive theory of gravity to an open FRW
cosmological setting. Although the absence of homogene-
ous and isotropic solutions is one of the main challenges
related to this kind of gravitational theory, we moved along
the lines of Refs. [6,7], in which the existence of open FRW
cosmologies is investigated. By using the constraint corre-
sponding to the Stückelberg scalars, we reduced the num-
ber of degrees of freedom, according to which the total
Hamiltonian of the model is deduced. We then presented in
detail the classical cosmological solutions either for the
empty universe or in the case where the universe is filled by
a perfect fluid (in its Schutz representation) with the equa-
tion of state parameter ! ¼ �1=3, �1. We saw that in
both of these cases, the solutions consist of a contraction
universe which finalizes its evolution in a singular point
and an expanding universe which begins its dynamic with a
big bang singularity. These two branches of solutions are
disconnected from each other by a classically forbidden
region. Also, the common feature of the vacuum and matter
classical solutions is that the mass term plays a role which
resembles the role of cosmological constant in the usual de
Sitter universe. In this sense we may relate the massive
corrections of GR to the problem of dark energy.
In another part of the paper, we dealt with the quantiza-

tion of the model described previously via the method of
canonical quantization. For an empty universe, we have
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FIG. 4 (color online). Left: The Bohmian trajectory of the scale factor. Right: The horizontal line represents a typical energy level.
The solid curve is the quantum potential for � � 0, while the dashed curve denotes the quantum potential when � ¼ 0.
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shown that by applying the WKB approximation on the
Wheeler-DeWitt equation, one can recover the late time
behavior of the classical solutions. For the early universe,
we obtained oscillatory quantum states free of classical
singularities by which two branches of classical solutions
may communicate with each other. In the presence of
matter, we focused our attention on the approximate ana-
lytical solutions to the Wheeler-DeWitt equation in the
domain of small scale factor, i.e. in the region which the
quantum cosmology is expected to be dominant. Using
Schutz’s representation for the perfect fluid, under a par-
ticular gauge choice, we led to the identification of a time
parameter which allowed us to study the time evolution of
the resulting wave function. Investigation of the expecta-
tion value of the scale factor shows a bouncing behavior
near the classical singularity. In addition to singularity
avoidance, the appearance of bounce in the quantummodel

is also interesting in its nature due to prediction of a
minimal size for the corresponding universe. We know
the idea of existence of a minimal length in nature is
supported by almost all candidates of quantum gravity.
Finally, we repeated the quantum calculations by means
of the Bohmian approach to quantum mechanics. The
analysis of the quantum potential shows the importance
of the mass term in the action of the model. Indeed,
we have shown that in the presence of the massive
graviton, the quantum potential changes its behavior
from an infinite barrier to a finite one, and hence the
minimal size of the universe, from which the bounce
occurs, will be shifted to the smaller values. Also, the
massive theory of quantum cosmology exhibits some other
possibilities; for example, tunneling between different
classically allowed regions, for cosmic evolution in the
early universe epoch.
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