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We consider universes that are close to Friedmann-Robertson-Walker in the sense that metric

perturbations, their time derivatives and first spatial derivatives are small, but second spatial derivatives

are not constrained. We show that if we, in addition, assume that the observer four velocity is close to its

background value and close to the four-velocity which defines the hypersurface of averaging, the redshift

and the average expansion rate remain close to the Friedmann-Robertson-Walker case. However, this is

not true for the angular-diameter distance. The four-velocity assumption implies certain conditions on

second derivatives of the metric and/or the matter content.
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I. INTRODUCTION

The matter-dominated homogeneous and isotropic cos-
mological model based on general relativity disagrees with
observations at late times. The observed angular-diameter
distance to the last scattering surface at redshift 1090 is a
factor of 1.4–1.9 longer (keeping the Hubble constant
fixed) [1,2], and the expansion rate is larger by a factor
of 1.2–1.7 (keeping the age of the Universe fixed, i.e.
H0t0 � 0:8 . . . 1:1) [2,3] or by a factor of 1.6–2.2 (keeping
the matter density fixed, i.e.�m0 � 0:2 . . . 0:4) [1,2,4]. The
usual remedy is to either include exotic matter with nega-
tive pressure or modify the law of gravity. However,
homogeneous and isotropic models do not include the
effect of nonlinear structures on the expansion of the
Universe and on light propagation, and the factor-two
failure of the predictions of the matter-dominated model
could be related to this shortcoming [5–9].

The effect of inhomogeneities on the average expansion
rate is called backreaction [10–12], see [13–16] for re-
views. It has been shown in toy models that nonlinearities
can lead to faster expansion, even acceleration, for dust
matter [14,17–21]. In a semirealistic model, the observed
time scale and the order of magnitude of the change in the
expansion rate emerge from the physics of structure for-
mation [22,23], but there is no fully realistic calculation
yet. If backreaction is significant (and the Universe is
statistically homogeneous and isotropic with a homogene-
ity scale smaller than the horizon), this has to be due to
non-Newtonian aspects of gravity [11,12,14,15,22,24–28],
which are related to the difference between Newtonian
gravity and the weak field, small velocity limit of general
relativity [29–36].

The magnitude of the effect in the real Universe remains
an open question. It has been argued that backreaction is
small because the Universe is close to a homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) model at

all times. However, we should be specific about what is
meant by the statement that the Universe is close to FRW.
Smallness of metric perturbations does not preclude large
deviations in the Riemann tensor because the latter in-
volves second derivatives of the metric, and the variation
of a function may be rapid (with regard to some relevant
scale) even though its amplitude is small. This is the case in
cosmology when density perturbations enter the nonlinear
regime.
The argument involves two separate questions. First, can

the Universe can be described with a metric which is
perturbatively close to the FRW metric even after density
perturbations are nonlinear? Second, does smallness of
metric perturbations imply that the average expansion
rate, the redshift, and the angular-diameter distance remain
close to their unperturbed values?
The second question has been studied in many papers

with regard to the average expansion rate [7,9,24,37–43]
(see [24] for further discussion and references). However,
almost all studies have been restricted to first- or second-
order perturbation theory and/or have had other shortcom-
ings [24].1A notable exception is [44], which considers a
new perturbative formalism adapted to the cosmological
situation where ordinary perturbation theory is not appli-
cable; see Sec. VD. There is also a large amount of
literature on nonlinear effects in light propagation, starting
with a paper by Zel’dovich in 1964 [45] (see [22] for
further discussion and references). However, the question
phrased above has rarely been the focus of light propaga-
tion studies, and it has not received a definitive answer.
We assume that metric perturbations remain small and

concentrate on the second issue. The expansion rate and
the distance both involve second derivatives of the metric,
like the density perturbation. The question is not whether it
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1In [43], the average is taken over the background FRW
volume as opposed to the physical volume, so the central issue
of the noncommutativity of time derivatives and averaging is
missing.
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is possible to have large local deviations: the variation of
the local expansion rate between different regions is of
order unity in the real Universe. The issue is whether it
follows from the smallness of metric perturbations that the
distribution of the expansion rate is such that the fluctua-
tions cancel in the average, and whether corrections to the
distance and redshift are correspondingly small.

We show that if the spacetime is close to FRW in the
sense that metric perturbations, their time derivatives, and
first spatial derivatives are small and if the observer four-
velocity is close to its background value and close to the
four-velocity which defines the hypersurface of averaging,
the redshift and the average expansion rate remain close to
the FRW case. Such a result does not hold for the angular-
diameter distance.

In Sec. II we set up the formalism and state our assump-
tions, and in Sec. III we show that the change in the redshift
is small and explain why this is not the case for the angular-
diameter distance. In Sec. IV we consider the average
expansion rate. In Sec. V we discuss our results, in par-
ticular, the relation to Newtonian gravity, and in Sec. VI we
summarize the situation.

II. THE SPACETIME GEOMETRY

A. Kinematics and the equation of motion

Two frames.
We mostly follow the notation of [46]; for reviews of the

covariant formalism, see [29,47–49]. We denote the four-
velocity of the observers by u�. We consider a spacelike
hypersurface N and denote the unit vector orthogonal to
N by n�. We will take averages on this hypersurface; at
this stage N is completely general. Both vectors are
normalized to unity u�u

� ¼ n�n
� ¼ �1. The tensors

which project on the hypersurface orthogonal to n�, and
the rest space orthogonal to u� are, respectively,

h�� � g�� þ n�n� hðuÞ�� � g�� þ u�u�; (2.1)

and we denote by r̂� the spatial covariant derivative which

is completely projected on N , e.g. r̂�f� ¼
h�

�h�
�r�f�. Without loss of generality, we write

u� ¼ �ðn� þ v�Þ; (2.2)

where v�n
� ¼ 0 and � ¼ �n�u

� ¼ ð1� v2Þ�1=2 with
v2 � v�v

�.
It is useful to decompose the gradient of n� as

r�n� ¼ 1
3h���þ ��� � A�n�; (2.3)

where � � r�n
� is the volume expansion rate, ��� �

r̂ð�n�Þ � 1
3h��� is the shear tensor, and A� � n�r�n�

is the acceleration vector. The analogous decomposition of
the gradient of u� is

r�u� ¼ 1
3h

ðuÞ
���

ðuÞ þ �ðuÞ
�� þ!ðuÞ

�� � AðuÞ
� u�; (2.4)

where !ðuÞ
�� � r½�u�� þ AðuÞ

½� u�� is the vorticity tensor and

the other quantities are defined in the same manner as those
in (2.3).
We assume that the relation between the geometry and

the matter content is given by the Einstein equation (we use
units in which 8�GN ¼ 1, GN being Newton’s constant),

G�� ¼ T�� ¼ �u�u� þ phðuÞ�� þ 2qð�u�Þ þ ���; (2.5)

where we have, without loss of generality, decomposed the
energy-momentum tensor T�� with respect to u�. Here

� � u�u�T�� is the energy density, p � 1
3 h

��T�� is the

pressure, q� � �h�
�u�T�� is the energy flux, and ��� �

h�
�h�

�T�� � 1
3h��h

��T�� is the anisotropic stress.

B. The near-FRW assumption

The metric.
We write the metric as

ds2 ¼ �ð1þ 2�Þd�t2 þ 2�id�tdx
i

þ ð½1� 2��fij þ 	ijÞað�tÞ2dxidxj; (2.6)

where fij � ð1þ K�klx
kxl=4Þ�2�ij � f�ij is the metric

of a three-dimensional homogeneous and isotropic space
with constant curvature 6K=a2. The scale factor is normal-
ized to unity today að�t0Þ ¼ 1. We have �ij	ij ¼ 0. We

define H � _a=a, where dot means derivative with respect
to the coordinate time �t. This form of the metric is com-
pletely general. We refer to the spacetime obtained when
� ¼ � ¼ 0, �i ¼ 0, 	ij ¼ 0 as the background, and refer

to these functions as perturbations. We choose the Poisson
gauge, which is defined by �ij�ijj ¼ 0, �jk	ijjk ¼ 0,

where j indicates covariant derivative with respect to fij.

We want the spacetime to be close to FRW and the
coordinate system to be close to the coordinates where
the background looks homogeneous and isotropic, so we
assume that the metric perturbations are small. For the
scalar functions� and�, we can simply demand that their
values are small everywhere. The magnitude of �i and 	ij

depends on the coordinate system, so we have to be a bit
more careful. If the background space is negatively curved,

f diverges at r ¼ 2=
ffiffiffiffiffiffiffiffi�K

p
, and f approaches zero as r goes

to infinity for either negative or positive spatial curvature.
Correspondingly, if a field Ai has finite norm with regard to
the background space, �gijA

iAj ¼ a2f�ijA
iAj (where �gij is

the spatial background metric), the components Ai will
vanish or diverge as f diverges or vanishes, respectively.
We define the background-normalized spatial components

of any field as Aî � a
ffiffiffi
f

p
Ai and Aî � ða ffiffiffi

f
p Þ�1Ai (and

correspondingly for fields with more than one spatial
index) to avoid this coordinate divergence. The require-
ment that the perturbations are small can now be stated
as 
ðxÞ � maxðj�j; j�j; j�îj; j	î ĵjÞ � 1. For �i and

	ij we can equivalently say �ij�î�ĵ ¼ �gij�i�j & 
2,
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�ik�jl	î ĵ	k̂ l̂ ¼ �gik �gjl	ij	kl & 
2. In summary, we as-

sume that the spacetime metric is everywhere perturba-
tively near the same global background. We further assume
that the background spatial curvature is not significantly
larger than the background expansion rate jKj=a2 & H2,
i.e. we do not consider near-static spacetimes.

We are interested in modes whose wavelengths are not
long, that is to say modes for which first spatial derivatives
are large compared to (or of the same order as) the pertur-
bations, but still smaller than unity, given ajHj as the
comparison scale, 1 � j~@î
j * 
, where we have defined
~@î � ða ffiffiffi

f
p Þ�1@i=jHj.2 We also assume that time evolution

is slow compared to spatial changes; more precisely that
j _
j & jHj
, i.e. time derivatives are at most of the same
order of magnitude as the background time scale. We make
no assumptions about second derivatives of the metric
perturbations; they can be comparable to the background
quantities or larger.

The Einstein tensor.
The components of the Einstein tensor for the near-FRW

metric (2.6) are

G00’3H2þ3
K

a2
þ2�jk

jk

þOð
@2
;@
@
; ��
@
;@ ��
; ��2
; ��H
;H2
Þ (2.7)

G0î ’ � 1

2
�jk
î jk þ

K

2fð1=2Þa2
xk@k�î þ 2@îð _�þH�Þ

þOð
@2
; @ ��
; ��2
; ��H
;H2
Þ (2.8)

Gîĵ ’�
�
2
€a

a
þH2þ K

a2

�
�ijþð���Þjijj

�ð���Þjkjk�ij�@ðî _�ĵÞ �2H@ðî�ĵÞ

�1

2
a2	jk

î ĵ jkþ
K

fð1=2Þ
xk@k	îĵ

þOð
@2
;@
@
; ��
@
;@ ��
; ��2
; ��H
;H2
Þ; (2.9)

where ’ indicates dropping subleading-terms in metric
perturbations and their derivatives; in the remainder terms

we have not kept track of the indices. We use the symbol ��
to refer to the background spatial Christoffel symbols; @
indicates @î and @2 indicates a combination of two spatial
derivatives (likewise for ~@ and ~@2). To simplify the book-

keeping, we take in what follows �� & jHj, in line with the
assumption that we do not consider near-static universes.

Because the Einstein equation is second-order there are
at most two derivatives acting on a metric perturbation, so
the structure remains close to linear theory. Note that this

not an expansion in powers of the metric perturbation: in
that case, perturbations and their derivatives would be
considered to be of the same order [50]. When derivatives
are large, this is inconsistent, as the first and second
derivatives of the metric perturbations are effectively new
expansion parameters [24] (see also [44]).
The four-velocity.
Observables such as the redshift, the angular-diameter

distance, and the local expansion rate depend on the
observer four-velocity u�. According to observations, de-
viations of galaxies from the mean flow are small over
large scales. These local deviations often go by the name
peculiar velocities. In linear theory and in the Poisson
gauge, it is simple to identify ui as the physical velocity
around the mean flow. However, defining the peculiar
velocity in a more general context and translating the
observational constraint into a well-defined mathematical
statement is not straightforward [49,51].
The difference between the actual value of u� and its

background value is gauge-dependent, so the physical
meaning of it being small is not obvious. (Requiring metric
perturbations to remain small is open to the same criti-
cism.) For example, it is always possible to adopt the
comoving gauge where ui ¼ 0, though then metric pertur-
bations become large at the same time as density perturba-

tions. On the other hand, juîj � 1 does not necessarily
contradict any observations, any more than metric pertur-
bations of order unity do. The physical peculiar velocity
would need to be defined with respect to a physically
defined velocity field describing the mean flow. We will
simply look at the difference from the background in the
Poisson gauge, like we do with the metric perturbations.
For the background we have �u� ¼ ��0, so we are inter-

ested in whether the conditions ju0 � 1j, juîj � 1 hold.
Given the normalization g��u

�u� ¼ �1 and the smallness

of metric perturbations, the first condition follows from the

second, so we only need to check whether juîj � 1. From
the 0i component of (2.5), we have

uî ¼
G0î � �îp� u0qî � �0î

ð�þ pÞu0 þ q0
; (2.10)

The relation (2.10) shows what is required in terms of
metric perturbations and the matter content to keep uî
small. According to (2.8), the leading contribution to G0î

is �jk
î jk ’ ða ffiffiffi

f
p Þ�3=2r2�i so smallness of metric perturba-

tions and their first derivatives is not enough to guarantee
that uî would remain small.3We could make the additional

assumption j�jk
î jk=H

2j & j~@
j for the metric, and assume

for the matter content that jqî=ð�þ pÞj & j~@
j, j�0î=ð�þ
pÞj & j~@
j, and that there is no negative pressure so large

2If the background expansion is expanding and decelerating,
this condition becomes stronger over time since 1=ðajHjÞ in-
creases. Conversely, in an accelerating expanding background
the condition becomes weaker. For a collapsing background the
situation is reversed. This is assuming that the time-dependence
of 
 does not overcome that of ajHj.

3It is important that time derivatives of metric perturbations
remain small, otherwise uî is in general large, as G0î always
involves second derivatives of the metric.
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that wewould have j�þ pj � �. (Note that the magnitude
of �î ĵ is unconstrained.) Under these conditions, (2.10)

gives juîj � 1. These conditions are sufficient, but not
necessary as there can be cancellations among the different
terms in (2.10). We will therefore simply assume that uî �
Oð~@
Þ without specifying which of these conditions hold.

If the observer motion is geodesic, AðuÞ
� ¼ 0, it follows

from the geodesic equation that juîj � j~@
j � 1. In par-
ticular, this is the case if the matter is dust (as viewed by the

observer). The condition j�jk
î jk=H

2j � 1 then also follows

automatically.

III. LIGHT PROPAGATION

A. The redshift

Most cosmological observations probe redshifts and
distances. Let us first consider the redshift. The redshift
measured by the observer is given by the change in photon
energy between emission and observation, 1þ z ¼ Ee=Eo.
In the geometrical optics approximation, light travels on
null geodesics (see [52] page 93 and [53]) and the energy is

E ¼ �u�k
� ’ k0½1þOð~@
Þ�; (3.1)

where k� is the photon momentum, tangent to a null
geodesic. It is useful to split k� as

k� ¼ Eðu� þ e�Þ; (3.2)

where u�e
� ¼ 0, e�e

� ¼ 1. We define d
d� � ðu� þ e�Þ@�.

The component k0 is determined by the null geodesic
equation

0 ¼ k�r�k
0 ¼ k�@�k

0 þ �0
��k

�k�

’ k�@�k
0 þHfijk

ikj þOðHk0k0 ~@
Þ
’ k�@�k

0 þHk0k0 þOðHk0k0 ~@
Þ; (3.3)

where we have on the last line used the null condition
g��k

�k� ¼ 0. From (3.1) and (3.3) we have

1þ z ’ exp

�Z o

e
d�½H þOðH~@
Þ�

�

’
�
ae
ao

��1½1þOð~@
Þ�: (3.4)

The redshift is (to first approximation) given by the
inverse of the background scale factor. In other words, as
long as metric perturbations are small (and the other as-
sumptions hold), emission which is nearly isotropic at the
source, looks nearly isotropic to the observer. The converse
is not true: near-isotropy of the redshift of the cosmic-
microwave background does not imply that the metric
would be close to FRW [54].

B. The distance

While the relation between the redshift and the back-
ground scale factor remains to leading order unchanged
from the FRW case, we cannot say whether changes in the
redshift are small or large unless we know how the back-
ground scale factor is related to observables. More gener-
ally, the redshift is only observationally meaningful if
expressed in relation to other observable quantities, such
as the angular-diameter distance or the age of the Universe.
In particular, the redshift-distance relation can change sig-
nificantly because the change in the angular-diameter dis-
tance DA can be large.4The reason why the redshift
remains close to its background value is that the photon
momentum is given by a first-order differential equation,
where first derivatives of the metric enter via the
Christoffel symbols, and second derivatives do not make
an appearance. In contrast, the equation for the angular-
diameter distance is second-order. We have

d2DA

d�2
¼ �½4�GNð�þ p� 2q�e

�

þ ���e
�e�ÞE2 þ ~�2�DA; (3.5)

where d
d� � k�r� and ~�2 is the null shear scalar (see

[46,52,53] for details).
When converting the derivative with respect to the affine

parameter � to derivative with respect to the observable
redshift, we have5

dDA

d�
¼ @zDA

dz

d�
¼ @zDAEðu�@� þ e�@�Þz

’ @zDAE½@0zþ ei@izþOð~@
@�zÞ�: (3.6)

Because the redshift receives corrections of order ~@
, the
conversion factor (3.6) involves second derivatives of the
metric. While the perturbations do not substantially change
the redshift, they change the relation between the redshift
and the affine parameter. This corresponds to changing the
local expansion rate, shear, and/or acceleration [46,56].
The work [57] provides an example where metric per-

turbations around a matter-dominated spatially flat FRW
background are small, and their time derivatives and first
spatial derivatives are also small, and the four-velocity
perturbation is small, but the angular-diameter distance is
very different from the background, and is designed to
exactly reproduce the best-fit �CDM FRW model. The
model studied in [57] is spherically symmetric. If the
Universe is statistically homogeneous and isotropic (and
has a finite homogeneity scale) and the distribution evolves

4Recall that the luminosity distance DL is related to the
angular-diameter distance via DL ¼ ð1þ zÞ2DA in a general
spacetime [29], [52] (page 111), [55].

5In general, this change of variables does not make sense,
because the redshift is not always monotonic along the null
geodesic, so there is no function DAðzÞ [46,56].
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slowly, it can be argued that the change due to the spatial
derivatives in (3.6) cancels in the integrals along the null
geodesic over distances longer than the homogeneity scale.
In that case, the distance is for typical light rays to leading-
order determined by the average energy density, pressure,
and expansion rate [46,56]. If the pressure can be ne-
glected, the angular-diameter distance is determined by
the average expansion rate and the value of the average
density today. If the average expansion rate is close to the
background, the distance is expected to be close to the
FRW case, in agreement with Swiss Cheese studies of light
propagation [58]. The argument should be studied in more
detail and made more rigorous.

An alternative to the integral approach considered here
is to expand DA as a series in z (leaving aside that in the
real Universe there is no function DAðzÞ), or vice versa
[59,60] as recently discussed in [61]. It would seem that
significant variations in different directions in the distance
are expected when second derivatives of the perturbations
are large. Such an expansion is only useful for small red-
shifts or distances, and the cancellations for the distance
are expected to occur only over large scales, so the two
pictures are not in contradiction.

IV. THE EXPANSION RATE

A. The local expansion rate

In addition to the redshift and the distance, we can
observe the expansion rate. Let us now consider the aver-

age expansion rate, its relation to the background scale
factor a, and the effect of perturbations on the evolution of
a. The volume expansion rate measured by the observer is

�ðuÞ ¼ r�u
� ¼ @�u

� þ ��
��u

� ’ 3H þ @iu
i þOðH~@
Þ;

(4.1)

where we applied the metric (2.6) on the last line. As
@iu

i �OðH~@2
Þ, the local expansion rate can have large
variations in different regions. However, the presence of
large local variations does not necessarily mean that the
average expansion rate would change significantly; that
depends on the distribution of the fluctuations.
We assume that the observers are moving nonrelativisti-

cally with respect to the averaging frame v � 1; to sim-
plify the bookkeeping, we assume that v & Oð~@
Þ. When
considering averages, it is useful to decompose vectors and
tensors in the direction orthogonal to and directions paral-
lel to the averaging hypersurface N , instead of the back-
ground time and space directions. To this end, we split n�

into a vector m� whose gradient gives (approximately) the
background expansion rate 3H and a vector p�, which lies
alongN . We define the former by settingm� ¼ ��0 in the
coordinates (2.6), and the latter by

p� � n� þ m�

m�n�
(4.2)

with the components p0 ’ Oð
; ~@
~@
Þ, pi ¼ ni ’ Oð~@
Þ.
With these definitions, we have

�ðuÞ ¼ g��r�u� ¼ �ðr̂�n
� þ r̂�v

� þ A�v
�Þ þ �3ðv�v�r̂�v� þ v�n�r�v�Þ ’ r̂�n

� þ r̂�v
� þOðH~@
~@
~@2
Þ

¼ � 1

m�n�
r̂�m

� þ 1

ðm�n�Þ2
m�r̂�ðm�n�Þ þ r̂�ðp� þ v�Þ þOðH~@
~@
~@2
Þ ’ 3H þ r̂�s

� þOðH~@
~@
~@2
Þ;
(4.3)

where we have defined s� � pa þ v�. Like p� and v� (but
unlike ui), s� is a vector along N . For the shear, we have
similarly

�ðuÞ
�� ¼ hðuÞ�ð
h

ðuÞ
�Þ�r�u
 � 1

3
hðuÞ���

ðuÞ

’ r̂�s� � 1

3
h��r̂�s

� þOðH~@
~@2
Þ: (4.4)

B. The average expansion rate

As wewant to average �ðuÞ overN , we need the relation
between the background time �t and the time that is constant
onN , which we denote by t (note that unless A� ¼ 0, t is
not a proper time). We have

@t �t ¼ n�@� �t ¼ n0 ’ 1þOð~@
~@
Þ (4.5)

and r̂� �t�Oð~@
Þ, so the difference between the times �t
and t is small. Nevertheless, the difference in the volume

element between the hypersurfaces of constant �t and con-
stant t can be large. If the spatial coordinates differ by
OðH�1 ~@
Þ, the Jacobian of the coordinate transformation
is Oð~@2
Þ, which is of the same order as the density
perturbations. (For dust this is rather obvious: because
mass is conserved, the density is inversely proportional
to the volume element.) For an explicit example in a case
where the hypersurface of averaging is taken to be the
hypersurface of constant proper time measured by observ-
ers, see [40]. The average of the expansion rate (4.3) onN
is

h�ðuÞi ’ h3Hð�tÞ þ r̂�s
� þOðH~@
~@
~@2
Þi

’ 3HðtÞ þ hr̂�s
�i þOðH~@
~@
~@2
Þ

’ 3HðtÞ þOðH~@
=ðHLÞ; H~@
~@
~@2
Þ; (4.6)

where hr̂�s
�i reduces to a boundary term which is sup-

pressed by Oð@
Þ and enhanced by 1=ðHLÞ, where L3 is
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the proper volume of the averaging region. As long as the
region is not so much smaller than the background Hubble
scale that it would overcome the smallness of s� �Oð~@
Þ,
the boundary term remains subdominant. There can be
large local fluctuations, but they cancel over large volumes.

For this argument it is crucial that r̂� is a derivative along
N and s� is a vector on N . The assumption that time
derivatives of perturbations are not large is also essential;
without it, all large second derivative-terms would not
reduce to suppressed boundary terms.

If the distribution on N is statistically homogeneous
and isotropic and the averaging region is at least as large as
the homogeneity scale, any total derivative would give a
small contribution even if the amplitude of the vector
field were not small. The reason is that a total derivative
corresponds to flux through the boundary, and without a
preferred direction this should be equal in both directions
across the boundary up to statistical fluctuations
[22,25,46]. Boundary terms vanish identically for periodic
boundary conditions, which are used in simulations and
implicitly assumed in Fourier series decomposition.

We have established that the average expansion rate is
close to the background quantity H. The averaging hyper-
surface N has been kept general up to the condition that
the difference between the four-velocity n� orthogonal to
N and the observer four-velocity u� is small. In general,
different hypersurfaces of averaging give different results
[62,63], and relevant averages are those which give
an approximate description of observable quantities.
Arguments about cancellations in integrals related to the
redshift and the distance indicate that these are the aver-
ages taken on the hypersurface of statistical homogeneity
and isotropy [14,22,46,56]. However, we see that varying
the choice of hypersurface does not change the leading-
order result as long as the difference between the two
frames is nonrelativistic [46]. It was argued in [46] that
the observationally relevant expansion rate is r�n

�,
which is related to the hypersurface of statistical homoge-
neity and isotropy, while we have considered r�u

�.
Nevertheless, their averages are close, because the differ-
ence between the two frames is non-relativistic.

C. The background expansion rate

We have established that the redshift and the expansion
rate are given in terms of the background scale factor in the
same way as in FRW universes. However, this does not
necessarily mean that their relation to time would be the
same as in the FRW case because the evolution of the scale
factor a (or equivalently the background expansion rate
H ¼ _a=a) could be different. In usual perturbation theory,
equations are split up in powers of the metric perturbations,
and equations at each order are assumed to be satisfied
separately [50]. In particular, the evolution of background
quantities is taken to be independent of the perturbations.
However, this is an extra assumption which does not follow

from the equations of motion. At linear order, the equations
for background quantities are the same as in the FRW case
(as long as the average of the linear perturbations van-
ishes). Beyond linear order, the average of the perturba-
tions does not vanish and when derivatives of the
perturbations become large, higher-order terms could
have a significant impact on the average.
Let us see what happens in the present case, when

second derivatives of the perturbations can be even larger
than the background quantities, and we do not assume that
the equations are satisfied order by order. From (2.5), (2.7),
(2.8), and (2.9), we have

� ’ 3H2 þ 3
K

a2
þ 2�jk

jk

þOð~@
r2�î; ~@
~@
@
2
; 
@2
; �@�
Þ (4.7)

� p ’ 2
€a

a
þH2 þ K

a2
þ 2

3
ð���Þjkjk

þOð~@
r2�î; ~@
~@
@
2
; 
@2
; @ ��
Þ: (4.8)

Let us first average (4.7) on N . The first two terms
depend only on the background time �t, which is close to the
time t, so we get simply h3Hð�tÞ2 þ 3 K

að�tÞ2i ’ 3HðtÞ2 þ
3 K
aðtÞ2 þOðH2 ~@
Þ. For the third-term we have

2h�jk
jki ’ 2hr̂�r̂��i þOð~@
~@
@2
Þ: (4.9)

This is a total derivative of a vector that has a small
amplitude, so it is suppressed on the same grounds as
before. The average of (4.8) is analogous, and we obtain

h�i ’ 3HðtÞ2 þ 3
K

aðtÞ2
þOðH@
=ðHLÞ; ~@
r2�î; ~@
~@
@

2
; 
@2
; @ ��
Þ
(4.10)

hpi ’ �2
@2t aðtÞ
aðtÞ �HðtÞ2 � K

aðtÞ2
þOðH@
=ðHLÞ; ~@
r2�î; ~@
~@
@

2
; 
@2
; @ ��
Þ:
(4.11)

In other words, to leading-order the evolution of a is
given by the FRW equations (note that here a and H are
functions of the physical time t not the background time �t).
The average expansion rate and the redshift are therefore
related to the time t in the same way as the background
quantities are related to �t, up to small corrections.
In [24], it was argued that the magnitude of the correc-

tions to the average expansion rate cannot be resolved in
usual perturbation theory once the density perturbations
become nonlinear. The reason was that when the expansion
rate was written as a series in powers of the metric pertur-
bation, the contribution of higher-order terms was not
suppressed, and the series expansion became useless
when second derivatives of the perturbations became large.
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The feature of the present treatment which makes it pos-
sible to establish the amplitude of the corrections, is that
second derivatives of the perturbations are not treated
perturbatively. The infinite series discussed in section 2.1
of [24] arises from expanding the denominator of uî in
(2.10) in a power series, though this is not obvious in a
perturbative treatment. Here we utilize the feature that the
average of @iu

i reduces (approximately) to a boundary
term at any order in perturbation theory. This fact has not
been recognized in previous perturbation theory studies
[7,9,24–27,37–43,61] (for further references and discus-
sion, see [24]).

V. DISCUSSION

A. The Buchert equations

The Buchert equations show the effect of deviations
from homogeneity and isotropy on the average expansion
rate in general terms [11,12,64]. Let us see how the above
result for the average expansion rate emerges from them.
We consider the expansion rate � ¼ r�n

�; as noted above,
the difference between the average of � and the average of

�ðuÞ is small. The average of the expansion rate � evolves

according to the equations [46],

@th�i þ 1

3
h�i2 ’ � 1

2
ðh�i þ 3hpiÞ þQ

þOð~@
@2
=ðLHÞ; ~@
r2�î; ~@
~@
~@
2
@2
Þ
(5.1)

1

3
h�i2 ’ h�i � 1

2
hð3ÞRi � 1

2
QþOð~@
~@
~@2
@2
Þ (5.2)

@th�iþh�iðh�iþhpiÞ
’�h�piþh�ihpi�h����

��i
þOðHr2�î=ðLHÞ;@
r2�î;H

3 ~@
~@
~@2
~@2
Þ; (5.3)

where we have taken into account that A� �Oð@
Þ and
that the related time dilation (i.e. deviation of t from proper
time) is small. (Note that r2�î makes an appearance as a
boundary term, which is suppressed for large averaging
volumes if we assume statistical homogeneity and isotropy,

or if we assume that jqîj & H2.) Here ð3ÞR is the spatial-
curvature scalar onN , and the backreaction variableQ is

Q � 2

3
ðh�2i � h�i2Þ � h����

��i ¼ hr̂�n
�r̂�n

� � r̂�n�r̂�n�i � 2

3
hr̂�n

�i2

’ hr̂�p
�r̂�p

� � r̂�p�r̂�p�i � 2

3
hr̂�p

�i2 þOð~@
~@2
@2
Þ

¼ hr̂�ðp�r̂�p
� � p�r̂�p

�Þ þ p�½r̂�; r̂��p�i � 2

3
hr̂�p

�i2 þOð~@
~@2
@2
Þ

¼ hr̂�ðp�r̂�p
� � p�r̂�p

�Þi � hð3ÞR��p
�p�i � 2

3
hr̂�p

�i2 þOð~@
~@2
@2
Þ; (5.4)

where we have used on the second line the definitions of �
and ��� given in (2.3), and ð3ÞR�� is the spatial-curvature
tensor. (We have also used the fact that to leading order
r̂�p� ¼ r̂ð�p�Þ.) The boundary terms are small for the
same reasons as before and the spatial-curvature contribu-
tion is suppressed by two powers of p� �Oð~@
Þ. This
structure where Q is almost a boundary term is close to
the Newtonian case, as we discuss in Sec. VC.

The integrability condition between (5.1) and (5.2) reads

@thð3ÞRiþ2

3
h�ihð3ÞRi¼�@tQ�2h�iQ�2h�pi

þ2h�ihpi�2h����
��i

þOðHr2�î=ðLHÞ;@
@2
=ðLHÞ;
�@
r2�î;H

3 ~@
~@
~@2
~@2
Þ; (5.5)

so ifQ is small and the other terms are small (which would
have to be looked at separately), the average spatial curva-
ture evolves in the same manner as in the FRW case. The
local spatial-curvature scalar is

ð3ÞR ¼ 2G��n
�n� � 2

3
�2 þ ����

��

’ 6
K

a2
þ 4�jk

jk � 4Hr̂�p
� � r̂�ðp�r̂�p

�

� p�r̂�p
�Þ þOð~@
~@2
@2
Þ

’ 6
K

a2
þ 4

1

a2f
r2�� 4Hr̂�p

� � r̂�ðp�r̂�p
�

� p�r̂�p
�Þ þOð~@
~@2
@2
Þ: (5.6)

When the density contrast is nonlinear, there are typi-
cally large local variations in the spatial curvature, like in
the expansion rate. In the average, these large deviations
cancel up to boundary terms and the leading behavior is

the same as in the FRW case, hð3ÞRi ’ 6K=aðtÞ2 þ
Oð~@
~@2
@2
Þ. If � is constant in time, the time-
dependence of the first term in (5.6) is also a�2, and it
can be viewed as a ‘‘renormalization’’ of the background
spatial-curvature constant K [26]. In general, � depends
on time and such an interpretation is not valid.
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B. The redshift and the average expansion rate

In a general spacetime, the redshift measured by an
observer is

1þz¼ exp

�Z o

e
d�

�
1

3
�ðuÞþAðuÞ

� e�þ�ðuÞ
��e

�e�
��

: (5.7)

It might appear that the change in the redshift due to
perturbations would be of the order of the change in the

average expansion rate. As we have seen, the latter reduces
to a boundary term which, while small for sufficiently large
regions, may be important for small domains. However,
according to Sec. III A, the change in redshift is always
small under our assumptions, irrespective of the distance
traveled by the light. Let us see how these facts are recon-
ciled. We have

Z o

e
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3
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� u�r�ðs�e�Þ þOðH~@
~@2
Þ�

’ ln
ao
ae

þ
��������

o

e
s�e
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þOð~@
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The leading-order deviation in the local expansion rate
cancels with a term in the projected shear. The remaining
part e�e�r̂�s� is locally large, but at leading-order it
reduces to a total derivative in � and thus to a small
boundary term. In [56] it was noted that while the cancel-
lation (up to a boundary term) between the expansion rate
and the shear in Q can be understood in terms of the
Newtonian limit, it is not clear whether their cancellation
in the redshift could be understood in a similar manner. We
now see that it follows from the smallness of uî and the
smallness of perturbations of the Christoffel symbols.

It is only the sum of the contributions of �� 3H and

�ðuÞ
��e

�e�, which is small, not either term individually. In a

statistically homogeneous and isotropic space where the

distribution evolves slowly, the integral of �ðuÞ
��e

�e� alone

should be strongly suppressed for typical light rays over

long distances (because �ðuÞ
�� has no preferred directions

while e� varies only slowly) [46,56].6It then follows that
the contribution of �� 3H is also small, in agreement with
the argument that the contribution of the expansion rate is
given by the spatial average (which is close to 3H) if the
space is statistically homogeneous and isotropic and the
distribution evolves slowly [46,56].

If matter consists of discrete clumps instead of a con-
tinuous fluid, it has been argued that there could be a large
effect on the redshift [65]. Given the above results, this

would imply that the spacetime cannot be written in terms
of a near-FRW metric and a small uî, or that the geomet-
rical optics approximation is not valid [46]

C. Relation to newtonian gravity

In Newtonian cosmology, the Raychaudhuri equation
(5.1) is identical to its general relativity counterpart
[29,66]. In contrast, the counterpart of the Hamiltonian
constraint (5.2) emerges only as the first integral of the
Raychaudhuri equation, whereas in general relativity it is
an independent equation. This difference corresponds to
the absence of spatial curvature in Newtonian gravity [29].
This is related to the fact that there are no covariant
derivatives, only ordinary derivatives, which commute; as
a result, the backreaction variable Q contains only bound-
ary terms [11]. When the system is isolated, i.e. boundary
terms vanish, the first integral of (5.1) gives (5.2) withQ ¼
0 and a conserved energy term proportional to a�2. For this
reason the evolution of the scale factor in the Newtonian
theory is always the same as in the FRW case, regardless of
the amplitude of perturbations; in particular, accelerating
expansion due to inhomogeneities is not possible.7

In contrast, in general relativity the Hamiltonian con-
straint (5.2) involves the average spatial-curvature term,
which can have nontrivial evolution [16,22,24,28,67].
However, if perturbations of the Christoffel symbols are

6To be precise, the argument should be formulated in the
n�-frame in terms of the decomposition (2.3) of r�n� [46].

7In Newtonian gravity, it is also impossible to get acceleration
by introducing exotic matter with negative pressure because
pressure does not gravitate.
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small, the spatial structure remains close to Newtonian
theory (apart from possible background curvature).
Absence of spatial curvature is related to the Newtonian
constraint that the magnetic component of the Weyl tensor
vanishes,H�� ¼ 0 [29,31,68–70]. In general relativity, the

magnetic part of the Weyl tensor decomposed with respect
to n� is

H�� ¼ 
��ð�r̂���
�Þ; (5.9)

where 
��� � �����n
� is the volume element on N with

����� being the spacetimevolume element. In theNewtonian

limit, the shear can be written as ��� ¼ r̂�r̂���
1
3 h��r̂�r̂��, where � is a scalar function identified with

the gravitational potential [29,68,69]. We then have

H�� ¼ 
��ð�r̂�r̂�r̂�Þ� ¼ 1

2

��ð�½r̂�; r̂��r̂�Þ�

¼ 1

2

��ð�ð3ÞR��

�Þ

r̂
�: (5.10)

The three-dimensional Riemann tensor ð3ÞR���� van-

ishes if and only if ð3ÞR�� does, because the Weyl tensor

is zero in three dimensions. This relates the absence of
spatial curvature and backreaction in Newtonian gravity to
the lack of propagating degrees of freedom.8For the metric
(2.6) and our approximation of treating metric perturba-
tions and their first derivatives as small, �, �, and 	ij and

their derivatives do not contribute to H�� at leading order,

while second derivatives of �i do enter and take the system
far from the Newtonian behavior, as also happens withG0i.
(In general relativity, for an irrotational dust fluid H�� is

trivially zero in usual perturbation theory at first-order,
implying that the theory has a linearization instability
[71]; see also [72]. We have not assumed that the matter
is dust.)

In the usual post-Newtonian formalism ([73], page 86),

[74] it is assumed that �, �� 
, �i � 
3=2, and 	ij � 
2.

If in the present context we were to similarly assume that
�i is smaller than � and � so that its second derivatives
are small, the situation would be closer to the usual post-
Newtonian formulation. If we start with only scalar per-
turbations at linear order and solve the equations of motion
order by order, then at second-order we have �î � 
~@
 and
	ij � 
2 [75]. However, it is not clear whether this hier-

archy persists once second derivatives of perturbations
become large and the equations cannot be solved order
by order. In the post-Newtonian formalism, each time
derivative further reduces the order of magnitude by 
,

whereas spatial derivatives do not change it. In contrast, in
the present approach we assume that time derivatives are
(at most) of the same order of magnitude as the back-
ground, while spatial derivatives increase the order of
magnitude. (The post-Newtonian formalism is constructed
around Minkowski space, so the background does not
involve a scale.)
It might seem promising to study backreaction in a post-

Newtonian approximation. However, an essential feature
of the usual post-Newtonian scheme is that the system is
finite and isolated, which is not the case in cosmology. In
fact, Newtonian gravity has a well-defined initial value
problem only for isolated systems, periodic boundary con-
ditions or fractal distributions with vanishing mean-density
[31,35,36,76–78]. Related to this, the nonrelativistic limit
of taking the speed of light to infinity is singular, so
solutions of the limiting Newtonian equations are, in gen-
eral, not limits of solutions of the relativistic equations
[32,36]. Nevertheless, there has been work on post-
Newtonian formulations of cosmology [36,69,79–81], all
in contexts where metric perturbations are assumed to
remain small. A comparison of Newtonian cosmological
simulations and relativistic analytical treatment was made
in [82] for a specific spherically symmetric dust configu-
ration. Good agreement was found between the two theo-
ries in this highly symmetric case.

D. Local and global backgrounds

As long as the metric and the four-velocity remain close
to FRW, there is no significant backreaction (with the
caveats we have mentioned). The Christoffel symbols are
given by first derivatives of the metric, and we assume that
first derivatives of perturbations are small. Therefore
powers of the perturbed Christoffel symbols higher than
the first are negligible, and the structure remains close to
linear theory. Even though variation in the Riemann tensor
can be large, the geodesic equation involves only the
Christoffel symbols, so the effect of curvature is locally
small for light propagation and for timelike geodesic
motion.
The result does not imply that in order for backreaction

to be significant, there would have to be large local devia-
tions in the Christoffel symbols. It simply means that all
regions should not be close to the same global background
[83]. Metric perturbations and their first spatial derivatives
can still remain small with regard to a local background
which is different in different regions. With reference to a
global background, the metric perturbations or their first
spatial derivatives in some regions would then be large.
For example, consider a stabilized region with a constant

nonzero density, such as a dark matter halo, in an expand-
ing spatially flat dust background. From (4.7) it follows
that r2� has a decaying part proportional to a�1 (corre-
sponding to the falling background expansion rate) and a
growing part proportional to a2 (corresponding to the

8In general relativity, the magnetic component H�� and the
electric component E�� have coupled evolution equations,
which have wave solutions. In the Newtonian theory H�� is
zero and E�� does not have an evolution equation.
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constant density). In terms of the background coordinate
time �t, the perturbation� will become larger than unity as
the Universe expands. This does not mean that there would
be locally strong gravitational effects: metric perturbations
remain small (away from regions of high mass concentra-
tion) if the metric is expanded around Minkowski space
in the local region. It is only the difference between the
global background and the appropriate local background
which is diverging. Of course, the evolution of the metric
perturbations should be determined in detail from the
equations of motion, and this argument only shows that
the metric perturbation � of a stabilized region grows
initially like a2 if the perturbations and their derivatives
are initially small. There is a complication in that it
would be more appropriate to consider the proper time
measured by observers (or at least the time t which is
constant on N ) and not the unphysical background time
�t. Even if the two times are near each other, the difference
in the corresponding spatial derivatives is of order unity
once second derivatives of the metric become large. It is
therefore not straightforward to extract the proper time-
dependence of � from the background time-dependence
of r2�.

Possibly ordinary perturbation could be used as a null
test: by calculating quantities such as the variance of the
expansion rate [84]9 in perturbation theory and comparing
to observations, we might try to rule out the assumption
that perturbation theory holds. However, to obtain predic-
tions, it is usually not enough to know that the amplitude of
the metric perturbations is small, their evolution has to be
known as well.

Straightforward perturbation theory with regard to the
metric is not suited to the case when metric perturbations
are not small around a global background, but are instead
small only with regard to local backgrounds, which are
different in different regions. A full analytical treatment is
unfeasible, but it might be possible to obtain a simplified
system of equations, which could be treated via statistical
methods [22,23] or numerical simulations. One possibility
could be to use the covariant formulation of the evolution
and constraint equations [29,47–49], which deals directly
with physical degrees of freedom, so that the problem can
be discussed without assumptions about perturbativity of
the metric around some background. However, it is not
clear whether there is a tractable approximation, which
would include the cosmologically relevant degrees of
freedom.

Let us emphasize how the present treatment differs from
previous work [7,9,24,37–43] (see [24] for more references
and discussion). Most previous studies apply either usual-
or post-Newtonian perturbation theory, where all quantities

are expanded in a series of either the metric perturbation or
peculiar velocity and solved order by order. However,
when second derivatives of metric perturbations become
large in cosmology, this procedure is inconsistent because
second-order quantities can be larger than first-order
quantities, ~@2
~@2
 � 
. In contrast, we have not assumed
that second derivatives of metric perturbations are small or
split the quantities order by order. Therefore, our result
applies beyond usual perturbation theory. Also, we have
defined the averaging hypersurface using physical criteria,
taken the volume element into account, and correctly
identified the local expansion rate measured by the
observer, unlike in some previous works. We have also
studied the observable redshift and angular-diameter
distance directly.
Recently, an interesting approach has been introduced to

tackle the backreaction problem without having to assume
that second derivatives are small [44]. The idea is to
consider a family of metrics g��ð�Þ which depend on

some small parameter �. The background is identified as
the metric g��ð0Þ, and perturbation theory is developed in

terms of �. A novelty of the formalism is that space and
time derivatives of the metric are not assumed to be ana-
lytic in �, and they have a well-defined limit as � ! 0 only
when smeared over a local region of the background space-
time. It is then shown (with some other assumptions) that if
the metric is close to the background, the background
satisfies the Einstein equation with only an additional
effective radiation term, and corrections due to perturba-
tions are small. The formalism is interesting in that
the notion of a homogeneity scale is incorporated into
the analysis in a natural manner, and the calculations are
mathematically rigorous. However, the connection to the
real Universe is somewhat unclear. The physical interpre-
tation of the parameter � and the adopted scaling of various
quantities with � is not obvious. In the present case, we use
standard general relativity, and there are no extra assump-
tions to be made. (However, in [44], it is not assumed that
the first derivatives of metric perturbations would be
small.) Note that it is important to consider correctly
defined observables as smoothing and calculating observ-
ables do not in general commute: in [44], the redshift and
the angular-diameter distance are not considered. The cau-
tionary example [57] shows that small metric perturbations
and small peculiar velocities do not guarantee that changes
to the angular-diameter distance are small. Also, as noted
in [83], the local smoothing considered in [44] is a different
procedure from averaging over large scales. (The smooth-
ing in [44] is done with respect to the background space,
not the physical space.) To the extent one can make a
comparison, the results of [44] and the present work do
not appear to be in disagreement. Both studies share the
weakness that their starting point is that the spacetime is
close to FRW, an assumption which should be carefully
looked at.

9The study [84] was mistakenly criticized in [22,24] for
misestimating the magnitude of the boundary term. However,
the analysis is still constrained by the applicability of second-
order perturbation theory.
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VI. CONCLUSION

It has been claimed that the effect of nonlinear structures
on the average expansion rate and on light propagation is
small in the real Universe because the metric remains close
to FRW at all times. The argument has two parts: that the
metric remains close to FRW and that this implies that the
change in the average expansion rate and light propagation
is small. We have considered the second part of the argu-
ment. The relevant quantities depend not only on the metric
but also on its first and second derivatives. Second deriva-
tives of metric perturbations have variations of order unity
after structures become nonlinear, so smallness of the
metric perturbations alone is not a sufficient condition for
backreaction to be small. We have made the assumptions
that time derivatives and first spatial derivatives of metric
perturbations are small and the perturbation of the observer
four-velocity is small. (The last assumption implies certain
conditions on second derivatives of the metric and/or the
matter content.) It then follows that the redshift is to
leading-order given by the background scale factor. We
further assume that the difference between the observer
four-velocity and the four-velocity which defines the
hypersurface of averaging is small. The difference between
the average expansion rate and the background expansion
rate then reduces to a boundary term which is small as long
as the averaging domain is not much smaller than the
Hubble scale, and the background expansion rate evolves
in the same manner as in the FRW case. This can be
understood from the fact that perturbations of the
Christoffel symbols remain small, so the structure is close
to Newtonian cosmology, where backreaction reduces to a
boundary term [11].

However, even with these assumptions, perturbations can
have a large effect on the angular-diameter distance, as
demonstrated in [57]. It has been argued that if the space is
statistically homogeneous and isotropic and the distribution
evolves slowly, then the distance is determined by the aver-
age expansion rate, and the change in the distance is small,
too[46,56]. The issue should be studied in more detail.

The assumptions needed for the proof show that small-
ness of metric perturbations and their time derivatives and
first spatial derivatives is not sufficient for the effect on the
redshift and the average expansion rate to be small. The

assumption about the smallness of the deviation of the
observer four-velocity u� from the background is crucial.
In general, the deviation of u� from the background is a
gauge-dependent quantity which cannot be straightfor-
wardly identified as the deviation from the physical mean
flow determined from observations. Nevertheless, if we
assume that the observer moves along a geodesic (which
is the realistic case in the late Universe), the smallness of
the deviation of u� follows from the assumptions about
metric perturbations and their derivatives. It would be
useful to have a definition of the peculiar velocity that
would be valid in a general cosmological spacetime [51],
and that would correspond to the observational use of the
term so that the observed smallness of this quantity could
be used as an input.
If backreaction is significant, its effect cannot be ex-

pressed in terms of a changed FRW background nor small
perturbations around a FRW universe [14,16,22,24,46,56].
Rather, perturbations can remain small only with respect to
a local region, and if we insist on a global background
metric instead of a patchwork of backgrounds, then metric
perturbations or perturbations of the four-velocity have to
be large. The important issue is the behavior of physical
quantities, not in which form the metric or four-velocity
can be written. In the real universe, fluctuations of the
Riemann tensor and the expansion rate are not small:
local variations of the expansion rate are of the same order
as the measured deviation of the average expansion rate
from the matter-dominated FRW value. The question is
whether the distribution of local values is such that
variations cancel when considering the average expansion
rate, the redshift, and the distance. Further focusing on
perturbativity, perhaps in the context of a patchwork of
regions, might be a useful way towards reliably quantifying
backreaction.
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Wasserman, Phys. Rev. D 78, 083511 (2008); W.
Valkenburg, J. Cosmol. Astropart. Phys. 06 (2009) 010;
V. Kostov, J. Cosmol. Astropart. Phys. 04 (2010) 001; S. J.
Szybka, arXiv:1012.5239.

[59] J. Kristian and R.H. Sachs, Astrophys. J. 143, 379 (1966).
[60] C. A. Clarkson, arXiv:astro-ph/0008089.
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