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The bizarre behavior of the apparent (black hole and cosmological) horizons of the McVittie spacetime

is discussed using, as an analogy, the Schwarzschild-de Sitter-Kottler spacetime (which is a special case of

McVittie anyway). For a dust-dominated ‘‘background’’ universe, a black hole cannot exist at early times

because its (apparent) horizon would be larger than the cosmological (apparent) horizon. A phantom-

dominated background universe causes this situation, and the horizon behavior, to be time-reversed.
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I. INTRODUCTION

Cosmology and black holes as seen through the eyes of
general relativity come together in the investigation of a
dynamical black hole embedded in a cosmological back-
ground. The interplay between the cosmic dynamics and
the black hole gives rise to interesting phenomena and can
reveal some unexpected features of the underlying theory
of gravity. In this work we restrict our attention, for sim-
plicity, to spherically symmetric systems. The prototypical
solution of the Einstein equations representing a black
hole embedded in a cosmological spacetime is the
Schwarzschild-de Sitter-Kottler solution. This metric is
special since it admits a timelike Killing vector and is,
therefore, static in the region between the black hole
horizon and the de Sitter (cosmological) horizon. A less
well-known solution is the 1933 McVittie solution [1],
which is a generalization of the Schwarzschild-de Sitter-
Kottler solution. In this case the black hole is embedded in
a general Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
background, so that the region between the black hole
horizon and cosmological horizon need not be static.
Although it has been studied and celebrated by many
authors [2–5], it has proved surprisingly difficult to under-
stand (see the recent work [6]). A simplifying assumption
in the study of this solution, explicitly stated in McVittie’s
original paper, is the no-accretion condition G1

0 ¼ 0 (in

spherical coordinates, where G�� is the Einstein tensor).

This explicitly forbids any radial flow of material, which
should otherwise occur whenever a spherically symmetric
local inhomogeneity (such as a central black hole) is
introduced in the background. When this is modeled,

however, more general solutions of Einstein’s theory be-
come possible. These include some generalized McVittie
solutions [7–9]; solutions such as those derived by Husain-
Martinez-Nuñez [10], Fonarev [11], Sultana-Dyer [12] and
McClure-Dyer [13]; the class of solutions found by
Szekeres [14–16]; Lemaı̂tre-Tolman-Bondi black hole so-
lutions [17,18]; and other solutions [19]. In extended theo-
ries of gravity, such as scalar-tensor and fðRÞ gravity,
several other solutions of the relevant field equations
(which involve an extra gravitational scalar field or higher
derivative terms, respectively) have been found and some-
times discussed [16,20–22].
The original motivation for McVittie’s work [1] was the

investigation of the effects of the cosmological expansion
on local systems. Another approach to this problem later
led to the construction of Swiss-cheese models by Einstein
and Straus [23]. However, although this problem has
stimulated much discussion over the years [24], the scien-
tific community as a whole is yet to arrive at an agreement
about the best approach to it (see the recent review [25]).
When solutions representing local inhomogeneities in cos-
mic backgrounds are considered, the scope of the inves-
tigation broadens. For example, a problem of current
interest is the possible spatial and temporal variation of
the gravitational ‘‘constant’’ (which becomes a scalar field
in Brans-Dicke and scalar-tensor gravity) [20]. We now
know several solutions of this kind, but before enlarging
the catalog further it is important to fully understand the
presently known solutions (for some of them, it is not even
known whether the local inhomogeneity is associated
with a black hole, a naked singularity, or another kind of
object). For this reason, we revisit here the no-accretion
McVittie solution, proposing a quick way of locating the
associated black hole and cosmological (apparent)
horizons and studying their evolution. We extend the
type of cosmological background to include phantom
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universes, which have not been considered before in rela-
tion to the McVittie solution.

With the exception of the Schwarzschild-de Sitter-
Kottler solution, which incorporates only a static back-
ground universe, spherically symmetric black holes in
more general cosmological backgrounds are dynamical.
This significantly complicates their analyses. Since the
solutions of Einstein’s equations corresponding to the
McVittie metric are highly dynamical, it is not convenient
for us to study the event horizons (both black hole and
cosmological), which may not even exist. It is more in-
structive to study the dynamical apparent horizons, the
importance of which is being increasingly recognized in
the literature [26]. It is known that, for dynamical cosmo-
logical black holes, apparent horizons can appear or dis-
appear [3,4,7,8]; horizons appearing, disappearing, and
jumping are observed in both numerical (e.g., [27]) and
analytical [18,28] studies. We would like to shed some
light on this bizarre phenomenology.

The plan of this paper is as follows. In Sec. II we briefly
review the Schwarzschild-de Sitter-Kottler solution; this
(over)simplified situation will serve us well when attempt-
ing to understand the more complicated phenomenology of
dynamical apparent horizons. In Sec. III we locate the
apparent horizons of the McVittie metric for nonphantom
cosmological backgrounds and recover the previous results
in certain limits. We then continue with the analysis of
phantom background universes. Finally, Sec. IV contains a
discussion of our results and our conclusions. Throughout
this work we use units in which the speed of light c and
Newton’s constant G are unity, and we mostly follow the
notations of Ref. [29]. In particular, the metric signature
is �þþþ .

II. THE SCHWARZSCHILD-DE SITTER-KOTTLER
BLACK HOLE

The Schwarzschild-de Sitter-Kottler solution is the pro-
totypical solution representing a black hole embedded in a
cosmological background (for a certain range of parameter
values). We will discuss the McVittie metric by using an
analogy with the Schwarzschild-de Sitter-Kottler metric
wherever possible, even though the latter corresponds to
a very special situation by admitting only a static black
hole in the de Sitter background, and its apparent horizons
are also event horizons. Nonetheless, analogies are made
possible by the fact that the Schwarzschild-de Sitter-
Kottler solution is contained as a special case in the
McVittie class of solutions.

The spherically symmetric Schwarzschild-de Sitter-
Kottler solution of the Einstein equations has line element

ds2 ¼ �
�
1� 2m

r
�H2r2

�
dt2

þ
�
1� 2m

r
�H2r2

��1
dr2 þ r2d�2

ð2Þ; (1)

where r is the areal radius (of a sphere with surface area
4�r2), d�2

ð2Þ ¼ d�2 þ sin2�d’2 is the metric on the unit

2-sphere, the constant H ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
is the Hubble parameter

of the de Sitter background, �> 0 is the cosmological
constant, and m> 0 is a second parameter describing the
mass of the central inhomogeneity (e.g., [30]). In general,
the locations of the apparent horizons for a spherically
symmetric system can be calculated from the radial ele-
ment of the inverse metric grr ¼ 0 [31,32]. Thus the ap-
parent horizons of the Schwarzschild-de Sitter-Kottler
solution are defined by the positive roots of the cubic
equation

1� 2m

r
�H2r2 ¼ 0: (2)

Following the method outlined by Nickalls in [33], these
roots may be written as

r1 ¼ 2ffiffiffi
3

p
H

sin�; r2 ¼ 1

H
cos�� 1ffiffiffi

3
p

H
sin�;

r3 ¼ � 1

H
cos�� 1ffiffiffi

3
p

H
sin�;

(3)

where sinð3�Þ ¼ 3
ffiffiffi
3

p
mH. Since m and H are both neces-

sarily positive (we only consider expanding universes), r3
is negative and therefore unphysical. We thus refer to this
spacetime as having only two apparent horizons. We refer
to r1 as the black hole apparent horizon, since it reduces
simply to the Schwarzschild horizon at 2m if there is no
background expansion H ! 0, and we refer to r2 as the
cosmological apparent horizon, since it reduces to the
static de Sitter horizon at 1=H if there is no mass present.
The metric (1) is static in the region covered by the
coordinates ðt; r; �; ’Þ and comprised between these two
horizons.
A number of interesting observations can be made.

First, both apparent horizons only actually exist if
0< sinð3�Þ< 1. In this case, since the metric is static
between these two horizons, the apparent black hole and
cosmological horizons are also event horizons and, there-
fore, null surfaces. Second, if sinð3�Þ ¼ 1, it is easy to
show that these horizons then coincide. This case corre-
sponds to the Nariai black hole. Finally, for sinð3�Þ> 1
both horizons become complex-valued and therefore un-
physical, and one is left with a naked singularity. These
results can be summarized as follows:

mH < 1=ð3 ffiffiffi
3

p Þ ! 2 horizons r1 and r2;

mH ¼ 1=ð3 ffiffiffi
3

p Þ ! 1 horizon r1 ¼ r2;

mH > 1=ð3 ffiffiffi
3

p Þ ! no horizons:

(4)

The Hubble parameter for an idealized de Sitter
background is a constant, whereas more realistic models
incorporate a time-dependent Hubble parameter. With a
clear understanding of the static horizons in the
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Schwarzschild-de Sitter-Kottler spacetime, we may now
study the dynamical horizons which emerge by consider-
ing a more realistic time-dependent metric.

III. APPARENT HORIZONS OF THE
MCVITTIE METRIC

We now consider the McVittie metric for a black hole
embedded in an FLRW background which is expanding
with the Hubble flow [1]. For simplicity, we restrict our-
selves to the case in which the background is spatially flat
(curvature index K ¼ 0). The line element can thus be cast
in the form [5]

ds2 ¼ �
�
1� 2m

r
�H2ðtÞ

�
dt2

� 2HðtÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r

q dtdrþ r2d�2
ð2Þ: (5)

Here HðtÞ � _aðtÞ=aðtÞ, where aðtÞ is the scale factor of the
FLRW background and an overdot denotes differentiation
with respect to the comoving time t. Note that for the case

of a static background in which aðtÞ ¼ expð ffiffiffiffiffiffiffiffiffi
�=3

p
tÞ and

H ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
, the McVittie metric actually corresponds to

the Schwarzschild-de Sitter-Kottler metric given by (1) via
a simple transformation of the time coordinate [34].
Assuming a perfect fluid stress energy tensor, we may
use Einstein’s equations to calculate forms for the density
�ðr; tÞ and pressure Pðr; tÞ of the background fluid in
McVittie’s metric. The density turns out to correspond to
the known FLRW density

�ðtÞ ¼ 3

8�
H2ðtÞ: (6)

One may consider arbitrary FLRW backgrounds generated
by cosmic fluids satisfying any equation of state (in fact, in
the next section, we study a FLRW universe dominated by
a phantom fluid). For illustrative purposes, however, in this
section we restrict our attention to a cosmic fluid which
reduces to dust at spatial infinity. This corresponds to an
equation of state parameter w ¼ 0, so the pressure can be
shown to be [5]

Pðt; rÞ ¼ �ðtÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r

q � 1

�
: (7)

Other quantities may be calculated from the inverse
metric, given by

ðg��Þ ¼

� 1
1�2m=r � Hrffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2m=r
p 0 0

� Hrffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2m=r

p
�
1� 2m

r �H2r2
�

0 0

0 0 1
r2

0

0 0 0 1
r2sin2�

0
BBBBBBB@

1
CCCCCCCA
:

(8)

The Misner-Sharp-Hernandez mass MMSH [35] contained
in a sphere of areal radius r is defined, in the case of
spherical symmetry, by

1� 2MMSH

r
¼ grr: (9)

Thus, we obtain

MMSH ¼ 4�G

3
�r3 þm; (10)

which is interpreted as the contribution of the energy of the
cosmic fluid contained in the ball plus the contribution of
the local inhomogeneity. This mass coincides with the
Hawking-Hayward quasilocal mass [36].
Since for the McVittie metric r is an areal radius and the

system is spherically symmetric, the apparent horizons can
once again be calculated from grr ¼ 0, corresponding to

1� 2m

r
�H2ðtÞr2 ¼ 0: (11)

This is clearly equivalent to the Schwarzschild-de Sitter-
Kottler horizon condition given by (2) but with a time-
dependent Hubble parameter. We denote the resulting
time-dependent apparent horizons r1ðtÞ and r2ðtÞ, and these
correspond to the solutions r1 and r2 given in Eq. (3) but
with the replacement H ! HðtÞ. Since the apparent hori-
zons for the McVittie metric are dynamical, rather than
static, their relative locations now depend on the cosmic
time.

A. Dynamics of the apparent horizons

Analogous to the Schwarzschild-de Sitter-Kottler case,
the condition for both horizons to exist is 0< sinð3�Þ< 1,

which corresponds to mHðtÞ< 1=ð3 ffiffiffi
3

p Þ (and mHðtÞ> 0
which is always satisfied). However, unlike the former case
where the Hubble parameter is a constant, this inequality
will only be satisfied at certain times during the cosmo-
logical expansion, and not at others. The time at which

mHðtÞ ¼ 1=ð3 ffiffiffi
3

p Þ is unique for a dust-dominated back-

ground with HðtÞ ¼ 2=ð3tÞ, and we denote it t� ¼ 2
ffiffiffi
3

p
m.

The three cases may then be characterized as:
(i) t < t�: at early times m> 1

3
ffiffi
3

p
HðtÞ , so both r1ðtÞ and

r2ðtÞ are complex and therefore unphysical. There
are no apparent horizons.

(ii) t ¼ t�: at this time m ¼ 1
3
ffiffi
3

p
HðtÞ and the horizons

r1ðtÞ and r2ðtÞ coincide at a real, physical location.
There is a single apparent horizon at 1ffiffi

3
p

HðtÞ .
(iii) t > t�: at late times m< 1

3
ffiffi
3

p
HðtÞ , so both r1ðtÞ and

r2ðtÞ are real and therefore physical. There are two
apparent horizons.

The qualitative dynamical picture which emerges from
this analysis is the following and is illustrated in Fig. 1.
The lack of apparent horizons for t < t� leaves a naked

singularity at r ¼ 2m, where the Ricci scalar and pressure
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also diverge (see below). This is explained by the
divergence of the Hubble parameter HðtÞ in the early
universe, causing the mass m to remain supercritical, i.e.
causing m> 1

3
ffiffi
3

p
HðtÞ to be satisfied. Analogous to the

Schwarzschild-de Sitter-Kottler solution, a black hole ho-
rizon cannot be accommodated in such a small universe.

At the critical time t� a black hole apparent horizon
appears [37] and, at this instant of time it coincides with
the cosmological apparent horizon as r1ðt�Þ ¼ r2ðt�Þ ¼

1ffiffi
3

p
Hðt�Þ . For a dust-dominated cosmological background,

this may be given as r1 ¼ r2 ¼ 3m. This is the analog of
the Nariai black hole in the Schwarzschild-de Sitter-
Kottler solution, but it is instantaneous.

As time progresses, t > t�, the single horizon splits into
a dynamical black hole apparent horizon surrounded by a
time-dependent cosmological horizon. This solution can
progressively constitute a better and better toy model for a
spherical, nonaccreting astrophysical black hole in the late
universe with mH � 1

3
ffiffi
3

p � 0:192. The black hole appar-

ent horizon shrinks, asymptoting to the spacetime singu-
larity at 2m from above as t ! þ1, while the
cosmological apparent horizon expands monotonically,
tending to 1=HðtÞ in the same limit.

The actual universe is of course not dust-dominated, and
is better described by the scale factor for expansion

aðtÞ ¼
�ð1���;0Þ

��;0

sinh2
�
3

2
H0

ffiffiffiffiffiffiffiffiffiffi
��;0

q
t

��
1=3

; (12)

consistent with the spatially flat concordance model [31].
Here H0 � 70 km s�1 Mpc�1 is the current value of the
Hubble parameter and ��;0 � 0:7 is the current dark

energy density. Using this we may calculate actual values
for t� and apparent horizon locations for black holes in our
universe. Considering, for example, the 106M� black hole

at the center of the MilkyWay, we find that a single horizon
would have first appeared as early as t� � 17 secs and at a
radius very close to the center r1ðt�Þ ¼ r2ðt�Þ �
1:4� 10�7 pc. Thereafter, this would have split into two
apparent horizons, which would have become increasingly
separated. Note that a problem with this calculation is that
it neglects mass accretion. The results are therefore purely
theoretical and would only truly be valid if this black hole
had always existed at its current mass. Although in reality
there were no bound structures in the universe at such an
early time, this calculation does at least provide some
insight into the scales involved.
Let us discuss now the well-known singularity [3,5,6].

The surface of equation fðrÞ � r� 2m ¼ 0 has normal
N� ¼ r�f ¼ �1� with norm squared,

N�N
� ¼ g��N�N�jr¼2m ¼ �4m2H2ðtÞ< 0: (13)

N� is timelike and the surface r ¼ 2m is spacelike. The
Ricci scalar

R ¼ �8�T
�
� ¼ 8�ð�� 3PÞ ¼ 8��ðtÞ

�
4� 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q
�

(14)

diverges as r ! 2mþ. This singularity separates spacetime
into two disconnected regions r < 2m and r > 2m [3]; the
latter region is described by the metric (5). At the critical

time t�, when r1ðtÞ ¼ r2ðtÞ ¼ 1=ð ffiffiffi
3

p
HðtÞÞ, the normal to

the surface of equation F ðrÞ � r� 1=ð ffiffiffi
3

p
HðtÞÞ ¼ 0 is

M� ¼ r�F ¼ �1� and

M�M� ¼ g11
�
r ¼ 1ffiffiffi

3
p

HðtÞ
�
¼ 2

3

�
1

3
� ffiffiffi

3
p

mHðtÞ
�
¼ 0:

(15)

Thus the (cosmological and black hole) apparent horizon is
instantaneously null.
By differentiating the cubic equation (11), one may

solve for the rate of change in location of the apparent
horizons with respect to the comoving time. Dropping the
t-dependencies for simplicity, one obtains

_r AH ¼ � 2H _Hr3AH
3H2r2AH � 1

: (16)

Rearranging this, one can compare the expansion
rates of the apparent horizons with that of the cosmic
substratum,

_rAH
rAH

�H ¼ �H

�
1þ 2 _Hr2AH

3H2r2AH � 1

�
: (17)

This equation shows that the apparent horizons are not
comoving except for trivial cases. This explains why the
black hole cannot remain static but is instead forced to
expand [38]. In the case of a spatially flat FLRW universe
(without the central inhomogeneity), it turns out that even

5 10 15 20
t

5

10

15

20

25

r

Black Hole Horizon

Cosmological Horizon

FIG. 1. The behavior of the McVittie apparent horizons versus
time in a dust-dominated background universe. We arbitrarily fix
m ¼ 1, hence time t and radius r are measured in units of m (see
text for details).
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the single cosmological horizon at rAHðtÞ � rcðtÞ ¼
1=HðtÞ is not comoving, since

_rc
rc

¼ � _H

H
� H: (18)

1. Horizon entropy

It is widely believed that, in the absence of event hori-
zons, an entropy can be meaningfully ascribed to apparent
horizons. The thermodynamics of these horizons has been
discussed extensively [40]. Therefore, it is interesting to
ask whether the total entropy associated with both the
black hole and cosmological apparent horizons is a non-
decreasing function of time. The area A1 of the black hole
apparent horizon is decreasing, but it is bounded from
below while this behavior is more than compensated for
by the increase of the area A2 of the cosmological apparent
horizon. The total horizon entropy

S ¼ S1 þ S2 ¼ �ðr21 þ r22Þ ¼
A

4
; (19)

where A ¼ A1 þ A2, is plotted in Fig. 2.
Since the apparent horizons emerge as a pair at t ¼ t�,

the horizon entropy S exhibits a discontinuous jump from
zero value at this time.

B. A phantom background

We now discuss the situation of a cosmological back-
ground dominated by a phantom fluid with equation of
state satisfying Pþ � < 0 (w ¼ P=� <�1) and violating
the weak energy condition. The recent renewed interest in
such a field has been motivated by the analysis of data from
supernovae Ia [41] and the study of the effects of the
accelerating universe [42]. The consideration of a phantom
background has also led to the prediction of a big rip
singularity at a finite time in the future trip [43]. We now

consider a phantom background in the context of the
McVittie solution. Surprisingly, this is a situation which
has not received much attention in previous studies.
One may consider the late-time behavior of the

Friedmann equation governing a phantom fluid and
solve it to obtain a form for the scale factor in terms of
trip and w<�1. Indeed the solution has been shown to

be [43]

aðtÞ ¼ A

ðtrip � tÞ2=ð3jwþ1jÞ ; (20)

where A is a constant. The Hubble parameter may therefore
be written concisely as

HðtÞ ¼ 2

3jwþ 1j
1

trip � t
: (21)

Note the reverse behavior of this function compared with
the Hubble parameter for a dust-dominated universe
HðtÞ ¼ 2=ð3tÞ. The latter diverges at the big bang singu-
larity and gradually decreases over time, tending to zero.
The Hubble parameter for a phantom fluid, however,
takes on a finite value at t ¼ 0 and slowly increases until
the big rip time, at which point it too diverges. This
suggests that the horizons around black holes embedded
in a phantom fluid might behave in the opposite way to
those in a dust-dominated background with w>�1.
Indeed this does turn out to be the case, and the dis-
cussion in the previous subsection can be repeated. The
result is plotted in Fig. 3.
We may summarize our results in an expanding universe

dominated by a phantom fluid as follows. In the early
universe, both black hole and cosmological apparent hori-
zons exist, and are approximately located at 2m and
1=HðtÞ, respectively. As time progresses the cosmological
horizon shrinks and the black hole horizon expands, until

5 10 15 20
t

200

400

600

800

1000

1200

1400

S

FIG. 2. The total horizon entropy S (in units kBc
3

ℏG , where kB is
the Boltzmann constant) associated with the apparent horizons
as a function of time.

20 15 10 5
t

2

4

6

8

10

12

14

r

Black Hole Horizon

Cosmological Horizon

FIG. 3. The behavior of the McVittie apparent horizons versus
time in a phantom-dominated background universe for the
parameter values w ¼ �1:5 and trip ¼ 0.

MAKING SENSE OF THE BIZARRE BEHAVIOR OF . . . PHYSICAL REVIEW D 85, 083526 (2012)

083526-5



they meet and merge at the critical time t�. Thereafter they
disappear, leaving behind a naked singularity. During this
evolution, the total apparent horizon entropy decreases and
has a discontinuous jump to zero value at t�. This behavior
is yet another manifestation of the ‘‘weirdness’’ of the
phantom fluid, which seems to violate the second law of
thermodynamics in many ways [44].

The behavior of the apparent horizons for a phantom
cosmic background was derived in Ref. [8] for generalized
McVittie solutions, which are obtained by relaxing the
McVittie no-accretion condition and allowing for a radial
energy flux onto the black hole [7,8]. For simplicity of
modeling, this radial flux density q� is necessarily space-
like and violates the energy conditions. The lesson to be
learned by the present discussion of the corresponding
McVittie solution with q� � 0 is that the disappearance
of the apparent horizons is not due to the fact that the
accreted phantom fluid violates the weak energy condition
and the total accreted mass becomes zero; it is due to the
phantom character of the fluid which dictates the unusual
cosmic expansion leading to the big rip, but not to
accretion.

IV. DISCUSSION AND CONCLUSIONS

In order to understand the bizarre phenomenology of
apparent horizons in the McVittie spacetime, it is useful
to first understand the Schwarzschild-de Sitter-Kottler
solution of the Einstein equations. This is a special
case of the McVittie solution. Our study of the simple,
static, Schwarzschild-de Sitter-Kottler metric has essen-
tially revealed that a black hole can only fit in a
de Sitter universe if its horizon size (determined by its
mass) does not exceed the size of the cosmological
horizon. Equipped with this clarity, we have then moved
on to consider the more complicated McVittie solution,
which accounts for a dynamical background and thus
better represents reality. Not surprisingly, the condition
for the existence of the apparent horizons in this case is
analogous to the corresponding one in the static case,
with the static Hubble constant replaced by a dynamical
Hubble parameter. This follows from the dynamical
nature of the apparent horizons themselves in this
case, which we are able to locate throughout their
period of existence. The absence of any (black hole or
cosmological) apparent horizons at early times is now
easily understood. At early times the mathematical so-
lutions suggest that the cosmological horizon would be
smaller than the black hole horizon, but this is not
possible since the universe at this time would be too
small to accommodate a black hole apparent horizon at
all [45]. One cannot then meaningfully distinguish be-
tween the ‘‘black hole’’ and the ‘‘universe’’ in which it
is embedded; rather, the mathematical solutions repre-
sent neither and do not possess the properties of a black
hole or a universe. Thus at early times, not only is there

a naked singularity, but the cosmological apparent hori-
zon is also absent. The presence of this naked singu-
larity prevents one from being able to derive the
McVittie solution as the development of regular
Cauchy data. At some finite time, given by 3m for a
dust-dominated background, the cosmological solution is
able to catch up with the black hole solution and a
single black hole/cosmological apparent horizon appears.
These then split and continue to diverge thereafter.
The McVittie metric does not account for accretion

onto the central mass. Hence the mass parameter m is
fixed and the horizon dynamics are wholly determined by
the expansion of the universe. If the no-accretion as-
sumption is relaxed, however, the black hole mass itself
is then also determined by the universe’s expansion
(possibly with some residual freedom) and cannot be
fixed a priori. Indeed some generalized McVittie solu-
tions, for which m becomes a function of time, have
already been derived [7,8]. At late times this class of
solutions converges to an attractor with a well-defined
mass function mðtÞ [9]. Other solutions for cosmological
lumps (including black holes) have also been derived and
investigated without imposing the no-accretion condition
in general relativity and in scalar-tensor and higher de-
rivative gravity [16,19–21]. In some of these studies, the
phenomenology of the apparent horizons appears to be
even more bizarre than in the McVittie case and involves
the creation or disappearance also of inner black hole
apparent horizons [10,22,47].
Locating the apparent horizons and understanding, at

least in principle, their behavior is not the whole story.
The recent work [6] studying the global structure of the
McVittie solution has unveiled a new feature which is
believed to be generic: radial ingoing null geodesics do
not penetrate the black hole apparent horizon to reach the
r ¼ 2m singularity, but are asymptotic to this horizon. In
our opinion, this feature is not too surprising for a
solution in which radial flow onto the central black
hole is excluded by construction. The property of radial
ingoing null geodesics merely reflects the McVittie no-
accretion condition. In fact, the ingoing radial null geo-
desics can be seen as the test-particle limit of a gravitat-
ing null dust (which, however, would be forbidden by the
no-accretion condition and could not fit in the McVittie
spacetime). Future work to fully understand this feature,
as well as more general solutions representing black
holes embedded in cosmological backgrounds, will be
presented elsewhere.
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