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In a recent paper [K. R. Dienes and B. Thomas, Phys. Rev. D 85, 083523 (2012).], we introduced

‘‘dynamical dark matter,’’ a new framework for dark-matter physics, and outlined its underlying

theoretical principles and phenomenological possibilities. Unlike most traditional approaches to the

dark-matter problem which hypothesize the existence of one or more stable dark-matter particles, our

dynamical dark-matter framework is characterized by the fact that the requirement of stability is replaced

by a delicate balancing between cosmological abundances and lifetimes across a vast ensemble of

individual dark-matter components. This setup therefore collectively produces a time-varying cosmo-

logical dark-matter abundance, and the different dark-matter components can interact and decay

throughout the current epoch. While the goal of our previous paper was to introduce the broad theoretical

aspects of this framework, the purpose of the current paper is to provide an explicit model of dynamical

dark matter and demonstrate that this model satisfies all collider, astrophysical, and cosmological

constraints. The results of this paper therefore constitute an ‘‘existence proof’’ of the phenomenological

viability of our overall dynamical dark-matter framework, and demonstrate that dynamical dark matter is

indeed a viable alternative to the traditional paradigm of dark-matter physics. Dynamical dark matter must

therefore be considered alongside other approaches to the dark-matter problem, particularly in scenarios

involving large extra dimensions or string theory in which there exist large numbers of particles which are

neutral under standard-model symmetries.
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I. INTRODUCTION

The nature of what constitutes the nonbaryonic dark
matter in our universe remains one of the most fundamen-
tal mysteries in particle physics [1]. The most precise
measurements of the relic abundance of this dark matter
to date are those derived fromWMAP data [2], which yield
a value

�CDMh
2 ¼ 0:1131� 0:0034; (1.1)

where h � 0:72 is the Hubble constant. Beyond this, we
know very little about the properties of this dominant
constituent of the matter density in our universe, save
that its interactions with the fields of the standard model
(SM) are extremely weak. One of the reasons why the
nature of the dark matter remains so elusive is its apparent
stability. Observational constraints on the lifetime �� of

any decaying dark-matter candidate � are quite stringent.
Indeed, for any particle with a relic abundance �� �
�CDM, current limits [3] from cosmic microwave back-
ground (CMB) measurements, etc., require that

�� * 1026 s: (1.2)

For this reason, most models of the dark sector posit the
existence of a single dark-matter particle (or, in the case of
certain multicomponent dark-matter scenarios [4,5], a
small number of such particles) which is either absolutely
stable (with that stability usually conferred by some addi-
tional symmetry, such as R-parity in supersymmetric mod-
els, KK-parity [6] in universal extra dimensions [7–9], or
T-parity [10] in little-Higgs theories [11]), or else suffi-
ciently long-lived as to satisfy the bound in Eq. (1.2).
Indeed, the phenomenological consequences of dark-
matter decays in models with unstable dark-matter candi-
dates [12] can be quite significant.
Recently, an alternative framework for addressing the

dark-matter question has been proposed [13]. In this so-

called ‘‘dynamical dark matter’’ paradigm, the dark sector

comprises not one or merely a few particle species, but

rather a vast ensemble of different fields �i, each of which

contributes only a fraction�i of the total dark-matter relic

abundance �CDM. None of these fields is presumed to be

absolutely stable, and thus a nonzero decay width �i is

associated with each field. However, in this framework, the

individual relic abundances of the�i fields are presumed to

be generated in such a way that the most stable members of

that ensemble are the most abundant. By contrast, the

abundances of the more unstable members are suppressed

according to the size of their decay widths. It is this

balancing between �i and �i which makes it possible for
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the phenomenological constraints relating to the effects of

dark-matter decays to be satisfied.
In Ref. [13], we focused on the model-independent

aspects of our dynamical dark-matter framework, discus-
sing its broad theoretical properties, without any detailed
phenomenological analysis or comparison with data. By
contrast, in this work, as a ‘‘proof of concept,’’ we provide
an explicit model of dynamical dark matter. In this model,
the fields which collectively constitute the dynamical dark-
matter ensemble are the KK excitations of a light axionlike
field propagating in the bulk of a spacetime with one or
more large, flat extra dimensions. In this model, the fields
of the SM, as well as the gauge fields associated with some
additional, non-Abelian gauge groupGwhich confines at a
scale �G, are taken to be localized on a four-dimensional
subspace of that bulk. The axion field is assumed to couple
to the gauge fields ofG (and also potentially to one or more
of the SM fields) via nonrenormalizable operators sup-
pressed by some effective, four-dimensional cutoff scale

f̂X. We shall demonstrate that within this setup, the result-
ing ensemble of axion KK modes naturally satisfies
all applicable observational constraints on dark-matter
decays—even if the stability of this ‘‘dark tower’’ is
entirely unprotected.

Another advantage of this particular dynamical dark-
matter model is that it is not only phenomenologically
viable, but also theoretically well motivated. In any theory
in which the SM fields reside on a brane, the KK excita-
tions of any bulk field are, from the point of view of the
four-dimensional theory, massive particles neutral under
the SM gauge group. Thus, were it not for the lack of a
stabilizing symmetry, any of these particles would be a
natural candidate for dark matter. However, our results
demonstrate that a lack of stability is not an insurmount-
able impediment to such fields serving as dark matter
collectively, rather than individually. This is an exciting
prospect, for it provides a novel way of addressing the
dark-matter question in theories with extra dimensions.
Furthermore, our model also demonstrates that realizing
a viable dynamical dark-matter ensemble does not require
an overly complicated dark sector, a large number of
independent mass scales, or an excessive degree of fine-
tuning. Indeed, the model presented here involves only
three independent physical scales: the effective four-

dimensional cutoff scale f̂X, the confinement scale �G,
and the compactification scale Mc. Together, these three
scales determine the mass spectrum and decay properties
of the entire ensemble.

The outline of this paper is as follows. In Sec. II, we
briefly review the formalism for discussing axions and
axionlike fields, beginning with the standard, four-
dimensional case and then moving on to the generalized,
five-dimensional bulk-axion case. In Sec. III, we calculate
the decay widths of the KK modes of such a bulk axion-
like field and investigate how these decay widths scale with

the mass of the mode. In the process, we show that the
decays of the lighter modes to SM fields experience a
natural suppression, but that such decays nevertheless
dominate over decays to other, lighter bulk fields in the
theory. In Sec. IV, we examine the various mechanisms
through which a population of axion modes may be gen-
erated in the early universe, and demonstrate that the
abundances generated for those modes by misalignment
production are indeed balanced against their decay widths
in precisely the manner required for dynamical dark mat-
ter. In Sec. V, we examine the collective properties of the
ensemble of axion KK modes. We show that such an
ensemble can collectively reproduce the observed dark-
matter relic density given in Eq. (1.1), and that it possesses
the appropriate equation of state to be regarded as dark
matter. In Sec. VI, we summarize the experimental, astro-
physical, and cosmological constraints on scenarios in-
volving bulk axions in large, flat extra dimensions. We
demonstrate that these constraints can be satisfied in a
model which also simultaneously yields the correct total
relic abundance—in other words, that our model truly
constitutes a viable model of dynamical dark matter.
Finally, in the Conclusions, we summarize the results of
the previous sections and discuss several further directions
for future investigation.
As we have indicated, this paper is the second part of a

two-part series that began with Ref. [13]. Consequently, we
shall assume that the reader is familiar with the ideas,
notation, and conventions established in Ref. [13] in what
follows.

II. BULK AXIONS AS DYNAMICAL
DARK MATTER

As discussed in the Introduction, the model for dynami-
cal dark matter that we shall consider in this paper is a
model in which the KK excitations of a bulk axion con-
stitute the dark-matter ensemble. In this section, therefore,
we briefly review the formalism relevant for describing the
dynamics of axions in four or more dimensions. We begin
with a brief summary of the relevant properties of the four-
dimensional QCD axion (more detailed reviews of which
may be found, e.g., in Refs. [14–17]), and then discuss how
this formalism can be generalized to a broader class of
axions and axionlike fields. Finally, we summarize the
formalism for embedding such fields in the bulk in theories
with extra dimensions.

A. Axions in four dimensions

The QCD axion emerges as a consequence of the Peccei-
Quinn (PQ) mechanism [18], a mechanism which provides
an elegant, dynamical solution to the strong CP problem.
The strong CP problem arises due to the nontrivial vacuum
structure of QCD. Specifically, the QCD Lagrangian can in
principle contain an additional term
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L QCD 3 ��
g2s�

32�2
G��a ~Ga

��; (2.1)

where gs is the SUð3Þ coupling, � is a numerical factor of
Oð1Þ, Ga

�� is the field-strength tensor for the gluon field,

and ~Ga
�� ¼ 1

2 ���	
G
	
a is its dual. The parameter �� is

given by �� � �þ Arg detM, where � is the strong-
interaction theta-angle and M is the Cabbibo-Kobayashi-

Maskawa (CKM) matrix. In principle, �� can take any
value. However, experimental bounds on the electric dipole

moment dn of the neutron serve to constrain ��. The most
stringent limit is currently jdnj � 2:9� 10�26 e cm [19],
which translates into a bound

��< 0:7� 10�11: (2.2)

While there is, in principle, no problem with �� taking so
small a value, there is no particular reason why it should be
so small. This fine-tuning issue is what is commonly
referred to as the strong CP problem.

In the Peccei-Quinn solution to the strong CP problem,

the effective ��-parameter associated with the gluon field
relaxes to zero dynamically as a consequence of the spon-
taneous breaking of an anomalous, global Uð1Þ symmetry,
usually dubbed Uð1ÞPQ, at some high scale fPQ. The spon-
taneous breaking of this Uð1ÞPQ symmetry implies the

presence of a pseudo-Nambu-Goldstone boson: a real
pseudoscalar commonly known as the QCD axion [20],
which necessarily interacts with the gluon field via the
Lagrangian

L 3 1

2
@�a@

�aþ g2s�

32�2fPQ
aG��a ~Ga

��; (2.3)

where a denotes the axion field. Furthermore, this pseudo-
scalar may also have interactions with the other fields of

the SM. The presence of the anomalous Uð1ÞPQ symmetry

in the high-scale theory determines the effective
Lagrangian for these interactions (at leading order) to be

Lint ¼ g2s�

32�2fPQ
aGa

��
~Ga�� þX

i

ci
fPQ

ð@�aÞ �c i�
��5c i

þ e2c�

32�2fPQ
aF��

~F��; (2.4)

where c i are the SM fermions and c� and ci are dimen-

sionless coefficients. These coefficients depend on the
charge assignments of the SM fields (and potentially of
additional fields in the theory as well) under Uð1ÞPQ, and
are therefore substantially more model-dependent than �.
At high temperatures, the axion field is effectively mass-

less, as befits a Nambu-Goldstone boson; however, it
acquires a small, temperature-dependent mass maðTÞ at
lower scales due to QCD instanton effects. A number of
computations of this mass have been performed, and while
the results depend to some extent on the assumptions and
calculational techniques involved, maðTÞ is often assumed
to have the rough form [21,22]

maðTÞ� gs�

4
ffiffiffi
2

p
�

�2
QCD

fPQ
�
8<
:
b

�
�QCD

T

�
4
for T*�QCD

1 for T&�QCD;

(2.5)

where �QCD � 250 MeV is the QCD confinement scale, b
is a numerical coefficient of Oð10�2Þ, and � is an Oð1Þ
numerical factor.
The fact that the axion necessarily couples to the gluon

field implies that it will also have effective couplings to
hadrons. The most important such couplings, phenomeno-
logically speaking, are those of the axion to pions and
nucleons. These couplings take the form [23]

Lhad ¼ Ca�

f�fPQ
ð@�aÞ½ð@��þÞ���0 þ ð@���Þ�þ�0 � 2ð@��0Þ�þ��� þ Can

fPQ
ð@�aÞ �n���5nþ Cap

fPQ
ð@�aÞ �p���5p

þ iCa�N

f�fPQ
ð@�aÞ½�þð �p��nÞ � ��ð �n��pÞ�: (2.6)

The precise values for the effective nucleon-nucleon-axion
couplings Cap and Can, the nucleon-pion-axion coupling
Ca�N , and the axion-pion-pion couplingCa� depend on the
Uð1ÞPQ charges of the quark fields. For the case of a so-
called hadronic axion [24], which does not couple directly
to the SM quarks, the coefficients for the axion-nucleon-
nucleon interaction are

Cap ¼ 0:24
z

ð1þ zÞ þ 0:15
z� 2

ð1þ zÞ þ 0:02;

Can ¼ 0:24
z

ð1þ zÞ þ 0:15
1� 2z

ð1þ zÞ þ 0:02;

(2.7)

where z ¼ mu=md � 0:56 denotes the ratio of the up-
quark to down-quark masses. Similarly, the coefficients
for the interactions involving pions are given by

Ca�N ¼ 1� z

2
ffiffiffi
2

p ð1þ zÞ ; Ca� ¼ 1� z

3ð1þ zÞ ; (2.8)

where m� � 135:0 MeV is the neutral pion mass, and
f� � 93 MeV is the pion decay constant. These hadronic
couplings play an important role in constraining the pa-
rameter space of axion models.
The QCD axion is the prototypical example of a light

pseudoscalar field whose mass arises solely due to non-
perturbative effects associated with instanton dynamics,
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and whose interactions with the SM fields are highly sup-
pressed. It is by no means the only example, however.
Indeed, a wide variety of additional particles possessing
these same properties have appeared in the literature in a
number of beyond-the-Standard-Model (BSM) contexts,
and are often generically referred to as axionlike particles
(ALPs). One particularly well-motivated example is the
model-independent axion [25] in string theory. Since axi-
ons of this more general sort are, by and large, no less
viable as dark-matter candidates than the QCD axion, it
behooves us to extend our focus to encompass such fields
as well.

For the remainder of this work, then, we will use the
term ‘‘axion’’ to refer to any pseudoscalar field whose mass
is generated by the instanton dynamics associated with an
arbitrary non-Abelian gauge group G. This gauge group
could be the SM SUð3Þ color group, as it is for the QCD
axion, but alternatively it could be some additional group
which either resides in a hidden sector, or else confines at a
very high scale. As with the QCD axion, any axion we
consider will be assumed to be a pseudo-Nambu-Goldstone
boson associated with the breaking of some global sym-
metry Uð1ÞX at a scale fX by the vacuum expectation value
(VEV) of some scalar field. The axion field is assumed to
couple to the field strength Ga

�� associated with G via a

term of the form

L int 3 g2G�

32�fX
aGa

��
~G��a; (2.9)

where a again denotes the axion field, gG is the coupling

constant associated withG, ~G��a is the dual ofG��a, and �
is a model-dependent coefficient which parametrizes the
strength of the effective interaction between the axion and
the gauge fields. We will also assume thatG goes through a
confining phase transition at some scale �G, and that a
potential analogous to that appearing in Eq. (2.21) is
thereby generated for a. In other words, this general axion
couples to G in a manner completely analogous to that in
which the QCD axion couples to the SM SUð3Þ. It there-
fore follows that all of the QCD-axion formalism
outlined above continues to hold for axions in the broader
sense of the word, provided one makes the substitutions
�QCD ! �G, g3 ! gG, fPQ ! fX, etc., where appropriate.

There is, however, one crucial physical distinction be-
tween axions in general and the QCD axion in specific: for
general axions, the confinement scale �G is essentially a
free parameter. The properties of such an axion are there-
fore far less constrained than those of a QCD axion, simply
because the axion mass is not uniquely determined by fX
alone. Moreover, the vast majority of the experimental
bounds on axions depend crucially on the charge assign-
ments of the SM gauge fields under the global Uð1ÞX
symmetry. For a generic axion, these charges need not
have any relationship to the Uð1ÞPQ charge assignments

for these fields. An important consequence of this is that a

generalized axion need not couple directly to the gluon
field at leading order. Moreover, other scenarios could be
realized in such a framework that cannot arise for a QCD
axion. For example, one can imagine a purely ‘‘photonic’’
axion which couples to the photon field at leading order,
but not to the gluon field or to any of the SM fermions. In
what follows, we will focus on several different concrete
coupling scenarios. One of these will be such a photonic
axion; another will be a ‘‘hadronic’’ axion which couples
to the gluon and photon fields, but not directly to any of
the SM fermions. However, we note that numerous other
possibilities exist, and that the laboratory, astrophysical,
and cosmological constraints on any given model depend
sensitively on the couplings between the axion and the
fields of the SM.
It is also worth noting that certain details of any scenario

of this sort will depend on the details of the instanton
dynamics associated with the particular gauge group G in
question. The scaling behavior ofmXðTÞ as a function of T,
for example, may not be identical to the scaling behavior
quoted in Eq. (2.6) for QCD instantons. However, none of
these details plays a crucial role in the dark-matter phe-
nomenology of the our model. We will therefore assume
for the remainder of this work that, except for the values of
�G, gG, etc., the standard axion results derived in the
context of QCD-instanton dynamics apply to G-instanton
dynamics as well.

B. Axions in extra dimensions

Having summarized the formalism applicable to a four-
dimensional axion, we now consider how the situation
changes when the axion in question is allowed to propagate
in the extra-dimensional bulk of a theory with more
than four dimensions. As was originally pointed out in
Ref. [26], the dynamics of such an axion is far richer
than that of a purely four-dimensional axion, due both to
the presence of an entire KK tower of axion excitations and
to a nontrivial mixing between these excitations due to the
presence of brane-mass terms, which explicitly violate KK
mode-number conservation. Indeed, as we shall see, it is
those KK excitations which will constitute the dark-matter
ensemble in our model, and it is their mixing which gives
this ensemble the appropriate properties to be a viable
dynamical dark-matter candidate. Of course scenarios in-
volving large extra dimensions have many other attractive
features as well: they provide a geometric interpretation of
the hierarchy between the weak scale and the Planck scale
[27–29], between the weak scale and the grand-unification
scale [8], and between the weak scale and the string scale
[8,30]. Moreover, a higher-dimensional axion field can be
accommodated quite naturally in such a brane/bulk frame-
work. Indeed, while only gravity is required to propagate in
the bulk, the propagation of SM-gauge-singlet fields there,
including axions of all varieties, is, in a sense, almost
expected.
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In what follows, we present the setup for a generic axion
field in the bulk. This parallels the setup for a QCD axion
put forth in Ref. [26]. For concreteness, we choose to focus
on the case in which the axion is allowed to propagate in a
single, large extra dimension compactified on a S1=Z2

orbifold of radius R, while the fields of the SM and the
gauge fields associated with the additional symmetry group
G are confined to the brane located at x5 ¼ 0. However, we
emphasize that the setup described here can easily be
extended to scenarios in which the axion in question is
allowed to propagate in multiple extra dimensions, or in
which the background geometry is more complicated [31].

At scales below the weak scale but above the confine-
ment scale �G, the effective action for a bulk axion in five
dimensions takes the form

Seff ¼
Z
d4x

Z 2�R

0
dx5

�
1

2
@Ma@

Maþ�ðx5ÞðLbraneþLintÞ
�
:

(2.10)

Here, we have divided the brane-localized terms in the
Lagrangian into two parts. The first, Lbrane, contains the
terms involving the brane fields alone—both the fields of
the SM and any additional fields, including the gauge fields
associated with the gauge group G. The second, Lint,
contains the interaction terms involving the brane-
localized fields and the five-dimensional axion. This sec-
ond piece is given by

L int ¼ g2G�

32�2f3=2X

aGa
��

~Ga�� þX
i

ci

f3=2X

ð@�aÞ �c i�
��5c i

þ g2scg

32�2f3=2X

aGa
��

~Ga�� þ e2c�

32�2f3=2X

aF��
~F��;

(2.11)

where e and gs are the respective couplings forUð1ÞEM and
SUð3Þ color, and fX is the fundamental five-dimensional
scale associated with the breaking of Uð1ÞX (the analogue
of the Peccei-Quinn scale fPQ in Ref. [26]).

The first term in Lint is the requisite coupling between
the five-dimensional axion a and the gauge fields ofG. The
second term represents the derivative couplings between
the five-dimensional axion a and the SM fermion fields c i,
with model-dependent coefficients ci that depend on the
Uð1ÞX charges of the c i. The remaining two terms repre-
sent the interactions between the axion and the gluon and
photon fields, the field-strength tensors for which are here,
respectively, denoted G��a and F��, with (once again
model-dependent) coefficients c� and cg.

The five-dimensional axion field can be represented as a
tower of KK excitations via the decomposition

aðx�; x5Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p X1
n¼0

rnanðx�Þ cos
�
nx5
R

�
; (2.12)

where the factor

rn �
�
1 for n ¼ 0ffiffiffi
2

p
otherwise

(2.13)

ensures that the kinetic term for each mode is canonically
normalized. Substituting this expression into Eq. (2.11) and
integrating over x5, we obtain

Seff ¼
Z
d4x

�X1
n¼0

�
1

2
@�an@

�anþ g2G�

32�2f̂X
rnanGa

��
~Ga��

þX
i

ci

f̂X
rnð@�anÞ �c i�

��5c iþ
g2scg

32�2f̂X
rnanG

a
��

~Ga��

þ e2c�

32�2f̂X
rnanF��

~F��

�
�VðaÞ

�
; (2.14)

where

VðaÞ ¼ X1
n¼0

1

2

n2

R2
a2n; (2.15)

and where the quantity f̂X, defined by the relation

f̂ 2
X � 2�Rf3X; (2.16)

represents the effective four-dimensional Uð1ÞX-breaking
scale. Note that each mode in the KK tower couples to the

SM fields with a strength inversely proportional to f̂X.
Note also that at these scales, the axion mass-squared
matrix

M 2
mn � @2VðaÞ

@am@an
(2.17)

is purely diagonal.
The effective action in Eq. (2.14) is valid at high scales

where T 	 �G. Around T ��G, however, instanton ef-
fects give rise to an additional contribution to the effective
axion potential. In the low-temperature regime, the full
potential takes the form

VðaÞ ¼ X1
n¼0

1

2

n2

R2
a2n

þ g2G
32�2

�4
G

�
1� cos

�
�

f̂X

X1
n¼0

rnan þ ��G

��
;

(2.18)

where ��G is the analogue of the QCD theta-parameter ��.
Minimizing the potential yields the vacuum configuration

ha0i ¼ f̂Xð� ��G þ �‘Þ=� for ‘ 2 2Z, with hani ¼ 0 for
all n > 0. This additional potential term modifies the axion
mass-squared matrix at scales T & �G to

M2
mn¼M2

cn
2�mn

þg2G�
2

32�2

�4
G

f̂2X
rmrncos

�
�

f̂X

X1
k¼0

rkakþ ��G

�
; (2.19)
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where Mc � 1=R is the compactification scale. We see
here that the terms originating from the instanton-induced
potential in Eq. (2.18) include off-diagonal contributions,
which result in mixings among the KK eigenstates. In the
vicinity of the minimum of VðanÞ, the axion mass-squared
matrix above takes the form [26]

M2 ¼ m2
X

1
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
. . .ffiffiffi

2
p

2þ y2 2 2 . . .ffiffiffi
2

p
2 2þ 4y2 2 . . .ffiffiffi

2
p

2 2 2þ 9y2 . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(2.20)

where

y � Mc

mX

and m2
X � g2G�

2

32�2

�4
G

f̂2X
: (2.21)

The eigenvalues 2 of this mass-squared matrix are the set
of solutions to the transcendental equation

�mX

y
cot

�
�

mXy

�
¼ 2: (2.22)

The normalized mass eigenstate a corresponding to each
 may be written as a sum of the KK eigenstates an:

a ¼ X1
n¼0

Unan �
X1
n¼0

�
rn ~

2

~2 � n2y2

�
Aan; (2.23)

where ~ � =mX, and where

A �
ffiffiffi
2

p
~
½1þ ~2 þ �2=y2��1=2: (2.24)

The quantity A can be shown to obey the sum rules [26]

X


A2
 ¼ 1;

X


~2A2
 ¼ 1; (2.25)

which follow directly from the unitarity of Un. Upon
rewriting Eq. (2.14) in this mass eigenbasis, we obtain
the axion effective action at temperatures T & �G, which,

up to Oða6=f̂6XÞ, is given by

Seff ¼
Z

d4x

�X


�
1

2
@�a@

�a � 1

2
~2m2

Xa
2
 þ

e2c� ~
2A

32�2f̂X
aF��

~F�� þ g2scg ~
2A

32�2f̂X
aG

a
��

~G��a

þX
i

ci ~
2A

f̂X
ð@�aÞ �c i�

��5c i

�
þ g2G�

4�4
G

768�2f̂4X

X
i;j;k;‘

~2
i
~2
j
~2
k
~2
‘Ai

Aj
Ak

A‘
ai

aj
ak

a‘

�
: (2.26)

The quartic axion self-interaction terms shown above originate from the instanton-induced potential in Eq. (2.18). Other,
higher-order terms not shown may be safely neglected when T 
 f̂X.

If a nontrivial coupling exists between the bulk axion and the gluon field, effective interactions will also arise between
the a and the hadron fields at temperatures below �QCD. (In the case of the QCD axion, of course, such couplings are

mandatory.) The Lagrangian which describes these interactions is just the five-dimensional analogue of Eq. (2.6):

L had ¼ ~2A

Ca�

f�f̂X
ð@�aÞ½ð@��þÞ���0 þ ð@���Þ�þ�0 � 2ð@��0Þ�þ��� þ ~2A

Can

f̂X
ð@�aÞ �n���5n

þ ~2A

Cap

f̂X
ð@�aÞ �p���5pþ i~2A

Ca�N

f�f̂X
ð@�aÞ½�þ �p��n� �� �n��p�;

(2.27)

where the coefficients Ca�, Can, etc., depend on the details
of the theory, and may differ from those given in Eqs. (2.7)
and (2.8).

As discussed in Ref. [13], the mass spectrum of the
model reduces to a reasonably simple form in certain
limiting cases which depend on the value of the ratio y
defined in Eq. (2.21). The first of these is weakly-mixed
regime, in which y 	 1. In this regime, the a are all very
nearly equivalent to the KK modes an, with masses  �
nMc, where n is an integer. The extent to which any given
value of  differs from Mc is set by the size of the off-
diagonal terms in Eq. (2.20), and, in particular, the lightest

mass eigenstate a0
has a mass 0 � Mc=y ¼ mX. In short,

the KK tower essentially comprises a single light mode
plus a tower of massive KK excitations of that mode. In the
extreme limit, in which Mc ! 1, the theory reduces to an
effectively four-dimensional theory with a single light
axion whose mass is precisely equal to mX, as expected.
In the opposite limit, in which y 
 1, the situation is

markedly different [26]. The lighter mass eigenstates in
the theory have masses  � ðnþ 1=2ÞMc 
 mX (where
n ¼ f0; 1; 2; . . .g is an integer), while the heavier mass
eigenstates have masses  � nMc. The transition region
between the two regimes occurs at around
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� trans � �m2
X

Mc

; (2.28)

which corresponds to a value n ¼ �=y2. In this regime, the
states with masses below this threshold are highly mixed,
owing to the large, off-diagonal terms in Eq. (2.20) pro-
portional tomX. We dub this the ‘‘strongly-mixed’’ regime.
In this latter regime, as we shall soon see, the full KK tower
plays a far larger role in the dark-matter phenomenology of
a given model than in weakly-mixed scenarios, in which
the dark-matter phenomenology is, more or less, the phe-
nomenology of the zero mode. Indeed, the bulk-axion
scenarios which give rise to dynamical dark-matter ensem-
bles in which the full tower contributes significantly tend to
be those in which y is small.

It is evident fromEqs. (2.26) and (2.27) that the parameter

combination ~2A=f̂X plays a critical role in bulk-axion
dynamics. Indeed, it is this combination which determines
the strength of the interaction between a given mass eigen-
state a and any of the SM fields. It turns out to be phenom-
enologically quite significant that not all a couple to the
fields of the SM with the same strength. We discuss the
impact of such a coupling structure on the decay properties
of the tower states in Sec. III, and summarize its impact on
phenomenological constraints in Sec. VI (a more detailed
analysis of which can be found in Ref. [32]). In addition, a

plot of how A and ~2A depend on  is provided in
Ref. [13]. It is worth remarking that the nonuniversality of
the a couplings is yet another direct consequence of the
nontrivial mixing between axion KK modes implied by
Eq. (2.20). This effect does not arise for bulk fields in the
absence of suchmixing: the couplings of theKKexcitations
of the graviton to the SM fields in theories of this sort, for
example, are identical for all modes.

In summary, our model for dynamical dark matter con-
sists of an axion propagating in the bulk of an extra
dimension of radius R, with the SM living on a brane.
From the perspective of an observer on the brane, our
dynamical dark-matter ensemble consists of the KKmodes
of this bulk-axion field. As we have discussed above, our
model involves three important dimensionful parameters:

f̂X, Mc, and �G. We have also shown that the physics of
this model depends crucially on one particular dimension-
less combination of these parameters, namely y, which
governs the extent to which the individual KK modes
mix when forming the constituents of our dynamical
dark-matter ensemble.

III. CHARACTERIZING THE CONSTITUENTS:
DECAY WIDTHS

Now that we have reviewed the setup underlying our
model for dynamical dark matter, we may begin to assess
its phenomenological ramifications. As discussed in
Ref. [13], the essence of the dynamical dark-matter frame-
work lies in the balance between the decay widths and relic

abundances of the fields which contribute to �CDM.
Therefore, our principal aim must be to evaluate the decay
widths � and relic abundances � of the fields a which
our dark-matter ensemble comprises, and examine how
these two quantities scale with . In this section, we focus
on decays: we calculate the partial-width contribution
associated with each of the potentially relevant decay
channels for a generic a and assess how the total width
� depends on the dimensionful parameters of the model,

namely f̂X, Mc, and �G. In the subsequent section, we
focus on abundances.

A. Decays to standard-model states

We begin our discussion of axion decays by computing
the decay widths of the a directly to SM states on the
brane. The first step is to derive Feynman rules for the
relevant interactions, which can be obtained directly from
the interaction terms given in Eq. (2.26) and (2.27). For
those a with  below a few GeV, the relevant vertices are:

Here, and throughout the rest of this work, the symbol MP

represents the effective, four-dimensional reduced Planck
mass. Since the coupling of each a to the SM fields is

suppressed by f̂X, the contribution to the total decay width
� of each a which comes from decays to SM fields will

be suppressed by f̂�2
X . At low temperatures, the most

relevant decay processes (depending, of course, on the
precise values of ci and c� in any given model) will be

a ! ��, a ! eþe�, and a ! �i ��i, where i ¼ f1; 2; 3g
labels the three light neutrino mass eigenstates.
The one decay channel which is kinematically accessible

for all axion modes, regardless of their mass (provided c� is

nonvanishing), is a ! ��. The partial decay width of an
axion mass eigenstate a into a pair of photons is
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�ða!��Þ¼ c2��
23

256�3f̂2X
ð~2AÞ2¼G�ð~2AÞ2

3

f̂2X
; (3.1)

where � � e2=4�, and where we have defined the quantity
G� � c2��

2=256�3. Note that �ða ! ��Þ includes an

overall factor ð~2AÞ2. This factor is a direct consequence
of mixing in the axion mass matrix, and it appears univer-
sally in all partial-width expressions for axion decays to
states on the brane. For those modes with masses  *
�m2

X=Mc, this factor is Oð1Þ; however, for those modes
with  & �m2

X=Mc, this factor can be much smaller. We

therefore see that the mixing factor ð~2AÞ2 suppresses the
decay widths of the lighter a, while leaving the widths
of the heavier a unsuppressed. This decay-width suppres-
sion for the light modes plays a crucial role in bulk-brane
models of dynamical dark matter, as discussed in Ref. [13]:
since these light modes also turn out to have the largest
relic abundances, their decays are generally the most dan-
gerous from a phenomenological perspective.

As  increases, additional decay channels open up in
which a given a decays to a light fermion-antifermion
pair, provided that direct couplings exist between the axion
and the fermionic species c i in question. The partial width
for any decay of this sort is given by

�ða ! c i
�c iÞ ¼

c2i m
2
c

2�f̂2X
ð~2AÞ2

�
1� 4m2

c

2

�
1=2

; (3.2)

where mc is the mass of the fermion in question. Note that

if the five-dimensional axion field couples to the SM
neutrinos, the � will have a nontrivial dependence on
the neutrino mass spectrum. While the precise masses of
the three neutrino species are as yet unknown, measure-
ments of the solar and atmospheric squared-mass splittings
place lower limits on two of the threem�i

. The current best-

fit values for these splittings are [33]

�m2� ¼ 7:59þ0:19
�0:21 � 10�5 eV2;

j�m2
Aj ¼ 2:43þ0:13

�0:13 � 10�3 eV2:
(3.3)

In what follows we shall assume a normal hierarchy, andwe
will take the mass of the lightest neutrino to be vanishingly
small. In this case, the masses of the heavier two neutrinos
are m�2

’8:7�10�3 eV and m�3
’ 4:9� 10�2 eV, which

are comparable to the lower bound [34]

Mc * 3:9� 10�3 eV (3.4)

on the compactification scale Mc from modified-gravity
experiments. Therefore, if Mc lies only slightly above this
bound, the masses  of certain light a will be comparable
to m�2;3

. The partial width for the decays of those a to

neutrinos can therefore in principle be quite large compared
to their partial widths for decays to photons, as can be seen
by comparing Eqs. (3.1) and (3.2). Note that if c�i

¼ 0

for all i, the decay-width loses all sensitivity to the neutrino
mass spectrum. This is indeed the case for the photonic and

hadronic axions which will serve as our primary examples
in what follows.
As  increases still further, decays of the a to hadrons

become kinematically accessible—provided, of course,
that either cg � 0, or else that cqi � 0 for some quark

species qi. The lowest such threshold is that for decays
of the form a ! �þ���0, which are kinematically al-
lowed whenever  > 2m�� þm0

�. The relevant interaction
vertex is that appearing in the top line of Eq. (2.27), and the
corresponding contribution to the decay width of a from
this three-body decay takes the form

�ða ! �þ���0Þ ¼ C2
a�ð~2AÞ2

1024�33f2�f̂
2
X

IðÞ; (3.5)

where IðÞ denotes the phase-space integral

IðÞ ¼
Z ð�m�0

Þ2

4m2

��
dm2

12ð2 þm2
12 �m2

�0
Þ2
�
1� 4m2

��

m2
12

�
1=2

� ½m4
12 þ 2m2

12ð2 � 3m2
�0Þ þ ð2 �m2

�0Þ2�1=2;
(3.6)

with integration variable m2
12 � ðkþ þ k�Þ2. For  	

2m�� þm�0 , this expression takes the asymptotic form

�ða ! �þ���0Þ � ð2:07� 10�2ÞC2
a�

�
5

f2�f̂
2
X

�
ð~2AÞ2:

(3.7)

In practice, this asymptotic expression is a good approxi-
mation for �ða ! �þ���0Þ as long as  roughly ex-
ceeds a few GeV.
For even larger values of , decays to nucleons become

kinematically accessible. In the present treatment, how-
ever, any a with masses this large will not play a signifi-
cant role in the phenomenology of such ‘‘dark-tower’’
scenarios, nor will they have a significant impact on the
observational and experimental constraints on such scenar-
ios. Indeed, as was observed in Ref. [35] for the related
case of KK-graviton decays, such modes are innocuous
precisely because of the large contributions to their decay
widths from hadronic decays. The axion case under con-
sideration here differs qualitatively from this KK-graviton
case only in that the decay width � of each a contains an

additional factor ð~2AÞ2. However, as we shall see in
Sec. VI, the quantity �m2

X=Mc is never much larger than
a few GeV in realistic axion models of dynamical dark
matter. Consequently, this factor will be Oð1Þ for modes
with  roughly exceeding a few GeV—those modes for
which decays to nucleons are kinematically allowed—and
the partial widths for those decays will therefore be unsup-
pressed. We therefore refrain from explicitly calculating
the partial-width contribution from such decays, and sim-
ply acknowledge that any a with  roughly exceeding a
few GeV will decay quite early—i.e., before the big-bang-
nucleosynthesis (BBN) epoch.
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Thus far, we have obtained partial-width expressions for all of the relevant decay channels for those a with  less than
roughly a few GeV directly into final states involving SM fields alone. The total width for the decays of a into this set of
final states is obtained by combining the expressions in Eqs. (3.1), (3.2), and (3.5):

� ¼ 3

8�f̂2X
ð~2AÞ2

�
�2c2�

32�2
þX

i

�ð� 2mc i
Þ 4c

2
i m

2
c i

2

�
1� 4m2

c i

2

�
1=2 þ�ð� 2m�� �m�0Þ C2

a�IðÞ
128�2f2�

6

�
; (3.8)

where the Heaviside functions �ð� 2mc Þ and
�ð� 2m�� �m�0Þ enforce that only kinematically ac-
cessible decays contribute in the sum.

B. Intraensemble decays

Up to this point, we have only been considering the
decay-width contributions from decays of a given a di-
rectly to the fields of the SM. We have yet to address the
issue of intraensemble decays—i.e., decays in which a
given state in the dynamical dark-matter ensemble decays
to a final state containing one or more other, lighter states
in that ensemble. Indeed, as discussed in Ref. [13], such
decays can have a significant impact on the phenomenol-
ogy of a given dynamical dark-matter model: not only will
they alter the individual relic abundances �i of the parti-
cles �i in a given ensemble, but they will also alter the
phase-space distributions fið ~pi; tÞ of those particles, poten-
tially generating a sizable population of�i with relativistic
three-momenta ~pi. For these reasons, it is crucial to assess
whether such decays occur at a substantial rate in the bulk-
axion model presented here, or whether the net rate for
these decays is negligible, in which case the quantity �

given in Eq. (3.8) truly represents the total decay width of a
given a with  less than a few GeV.

In the model under discussion here, the dark sector
properly comprises KK axions, KK gravitons, and grav-
iscalars. A complete description of the dynamics of the
ensemble would therefore involve solving the coupled
system of Boltzmann equations which describes the evo-
lution of the respective phase-space distributions fð ~p; tÞ,
fnð ~pn; tÞ, and fsð ~ps; tÞ for the various axion modes a, KK

gravitons GðnÞ
��, and graviscalars ’s, as discussed in the

Appendix of Ref. [13]. In the present work, our aim will
not be to solve the Boltzmann equations in complete gen-
erality, but rather to demonstrate that the effects of intra-
ensemble decays on the abundances and phase-space
distributions of the �i are sufficiently small that they
may be safely neglected for any otherwise phenomenolog-
ically reasonable choice of model parameters. Some of
these effects—for example, the depletion of� for a given
a due to intraensemble decays—depend only on the net

contribution �ðIEÞ
 to the width of a given a, obtained by

summing over the partial widths from all such decays. On
the other hand, certain other effects, such as the increase in
the abundances � and alteration of the phase-space
distributions fð ~p; tÞ of the lighter a due to the decays

of the heavier a, depend on these partial widths in a
different manner. Determining the precise magnitude of
these effects therefore requires a more thorough analysis of

the Boltzmann equations. Nevertheless, �ðIEÞ
 can still be

useful as a rough rubric for assessing whether or not the
effects in question are likely to be significant. In this work,

then, we simply demonstrate that �ðIEÞ
 for any given a is

sufficiently small in comparison with the result in Eq. (3.8)
in otherwise phenomenologically reasonable regions of
model parameter space that its effect on total decay widths
may safely be neglected. This result provides a good initial
indication that the additional effects mentioned above are
also unimportant. A more rigorous justification for neglect-
ing these effects will appear in Ref. [32].
We begin our discussion of intraensemble decays by

discussing the partial-width contribution arising from the
decays of a given a into multiple, lighter axion modes.
The leading contribution to this partial width comes from
the quartic interaction term appearing in Eq. (2.26), which
gives rise to decays of the form a ! a1

a2
a3

, where

ai
, with i ¼ f1; 2; 3g, are lighter axion states whose

masses satisfy the constraint  � 1 þ 2 þ 3. The
Feynman rule for the corresponding four-point interaction
vertex is

from which the contribution to � from this three-body
decay is found to be

�ða ! a1
a2

a3
Þ ¼ 4�

3

�
gG�

2�2
G

32�2f̂2X

�
4ð~2AÞ2

�Y3
i¼1

~2
i Ai

�
2

�
Z ðm2

12
Þmax

ðm2
12Þmin

Z ðm2
23
Þmax

ðm2
23Þmin

dm2
12dm

2
23;

(3.9)

where now m2
12 ¼ ðp1 þ p2Þ2 and m2

23 ¼ ðp2 þ p3Þ2, with
pi representing the four-momentum of the final-state ai

.

The limits of integration for the dm2
12 integral are

ðm12Þ2max ¼ ð� 3Þ2 and ðm12Þ2min ¼ ð1 þ 2Þ2, and
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since we are primarily interested in the parametric depen-
dence of the partial width on , Mc, etc., it will be suffi-
cient for our purposes to construct an upper bound on
�ða ! a1

a2
a3

Þ by setting ðm23Þ2max ! ð� 1Þ2 and

ðm23Þ2min ! ð2 þ 3Þ2. Doing so, we obtain the result

�ða ! a1
a2

a3
Þ

� 4�

3

�
gG�

2�2
G

32�2f̂2X

�
4ð~2AÞ2

�Y3
i¼1

~2
i Ai

�
2

� ð1 þ 2 þ 3 � Þ2
� ð2 � 2

1 þ 2
2 � 2

3 þ 22 þ 213Þ: (3.10)

Note that the asymmetry of this expression under permu-
tations of the i is due to the asymmetric limits of integra-
tion we have adopted in order to construct this bound. In
order to obtain the total contribution �ða ! 3aÞ to the
partial width of a given a from decays of this form, we
need to sum over the contributions from all kinematically
allowed decays of the form a ! a1

a2
a3

. Next, we

approximate the sums over the different allowed final-state
axions with integrals over d1, d2, and d3. Furthermore,

Eq. (2.24) implies that ~2A <
ffiffiffi
2

p
for all . Therefore, in

order to obtain an upper bound on �ða ! 3aÞ, we make

the replacements ~2
i Ai

! ffiffiffi
2

p
and ~2A ! ffiffiffi

2
p

. Doing so,

we obtain our final result:

�ða ! 3aÞ � g4G�
8

45ð4�Þ7
4

M3
c

�
�G

f̂X

�
8
: (3.11)

Given this result, we are now prepared to address the
question of whether axion decays to other bulk axions can
ever contribute significantly to the total width � of any a.
For example, the bound in Eq. (3.11) implies that the ratio
of �ða ! 3aÞ to the decay rate �ða ! ��Þ given in
Eq. (3.1) is bounded from above by

�ða ! 3aÞ
�ða ! ��Þ �

4g4G�
8

45ð4�Þ4�2c2�

�
�8

G

M3
cf̂

6
X

�

� ð6:69� 10�2Þ � ðgG�2Þ4
�
�8

G

M3
cf̂

6
X

�
: (3.12)

As we shall see in Sec. VI, forOð1Þ values of � and gG, the

phenomenologically preferred ranges for f̂X and �G turn

out to be f̂X � 1014–1015 GeV and �G � 103–105 GeV,
while Mc is bounded from below by Eq. (3.4). Within this
parameter-space regime, we find that the ratio in Eq. (3.12)
will be vanishingly small, as desired, unless  *
1010 GeV. Since this is far larger than the cutoff scale fX
in this same regime, we conclude that decays of the form
a ! a1

a2
a3

will not play a significant role in the

phenomenology of realistic bulk axion models of dynami-
cal dark matter. Thus such decays can be safely neglected
in computing the total decay width of a given a.

Not only can the a decay to final states comprising
lighter axion modes alone, but they can also decay into
final states which include other bulk states. In the minimal
bulk-axion theory under discussion here, these include KK
graviscalars and KK gravitons. (Note that the vector de-

grees of freedom hðnÞ�5 with n > 0 in the gravity multiplet do

not couple to the a in the linearized-gravity limit in the

unitary gauge, and the zero-mode hð0Þ�5 vanishes due to the

orbifold projection.) Therefore, we must also assess
whether decay channels involving these KK gravitons
and KK graviscalars can provide an appreciable contribu-

tion to �ðIEÞ
 . In the five-dimensional theory under discus-

sion here, in the unitary gauge, the only physical
graviscalar present is a single radion mode, which we
assume here to be sufficiently massive (e.g., as the result
of some stabilization mechanism) as not to be relevant for
a decays. As for decays involving KK gravitons in the
final state, a rough upper bound on their contribution to �

for the case of a single, flat extra dimension will be given in
Ref. [32] within the framework of linearized gravity. As we
will see, the leading contribution comes from two-body

decays of the form a ! GðnÞ
��a0 , where GðnÞ

�� denotes the
KK graviton with KK mode number n. The total contribu-
tion from decays of this sort, summed over all kinemati-
cally accessible combinations of n and 0, is found to be
approximately [32]

�ða!GaÞ&8m4
Xð~2AÞ2

9�3M2
cM

2
P

Z 

0
d0ð~02A0 Þ2ðþ0Þ

�½ð2þ02ÞEðxÞ�20KðxÞ�; (3.13)

where KðxÞ and EðxÞ respectively denote the complete
elliptic integrals of the first and second kind, with x �
ð� 0Þ2=ðþ 0Þ2.
In order to compare �ða ! GaÞ to the rate for a

decays to SM fields, it is necessary to integrate Eq. (3.13)

numerically, as a function of f̂X, �G, and Mc. The results
of such an analysis are given in Ref. [32]. Here, however, to
illustrate our point, we simply choose a set of benchmark
values typical of a phenomenologically consistent scenario
for which �ða ! GaÞ=�ða ! ��Þ is roughly maximal.
Specifically, we take �G ¼ 1 TeV and Mc ¼ 10�11 GeV,
with gG ¼ � ¼ 1. We then find that �ða ! GaÞ
always remains several orders of magnitude smaller than

�ða ! ��Þ for all values of f̂X & 1015 GeV. We there-
fore conclude that the decays of a to KK gravitons will
not have a significant impact on the total widths of the a.
Taken together, these results strongly suggest that intra-

ensemble decays do not play a significant role in the phe-
nomenology of bulk-axion dynamical dark matter, and can
therefore be neglected. Therefore, from this point forward
we will ignore intraensemble decays and identify �, as
given in Eq. (3.8), with the total width of any given a.
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C. Axion lifetimes across the ensemble

In Fig. 1, we show how the lifetime � � 1=� of an
axion mass eigenstate a behaves as a function of . The
left panel shows the results for an axion with�G ¼ 1 GeV,
while the right panel shows the results for an axion with
�G ¼ 1 TeV. In each case, we have taken gG ¼ � ¼ 1
and set Mc ¼ 10�11 GeV. In each of the two panels, the
three solid curves correspond to three different choices of

f̂X for a photonic axion with c� ¼ 1. The solid red curve

corresponds to f̂X ¼ 108 GeV, the solid green curve cor-

responds to f̂X ¼ 1012 GeV, and the solid blue curve

corresponds to f̂X ¼ 1016 GeV. The dashed curves corre-

spond to the same choices of f̂X for an axion with c� ¼
cg ¼ 1 and ci ¼ 1 for i ¼ fe; �e; ��; ��g. The series of

kinks which are evident in each dashed curve correspond
to the thresholds atm�2

,m�3
,me, andm� above which new

decay channels for a open up. The sharp drop in � at
around � 400 MeV is the result of the a ! �þ���0

decay channel opening up.
One significant property of the decay rates of the a in

bulk-axion scenarios can be readily appreciated upon com-
paring the curves appearing in the two panels of Fig. 1: the
total width � is independent of mX (and therefore inde-
pendent of �G) in the limit in which  	 �m2

X=Mc. This

can also be seen from Eq. (3.8). It therefore follows that the

corresponding curves appearing in the two panels of this
figure should coincide for values of  above the threshold
at which this condition is met for both of the selected
values of �G. Indeed, we see that this is in fact the case.

The f̂X ¼ 1016 GeV curves coincide for nearly the entirety
of the range of  shown, since �m2

X=Mc is approximately
9:95� 10�12 GeV for �G ¼ 1 TeV and is far smaller for

�G ¼ 1 GeV. The f̂X ¼ 1012 GeV curves, on the other
hand, begin to coincide only for � 10�3 GeV, which is
just above the threshold�m2

X=Mc � 9:95� 10�4 GeV for
�G ¼ 1 TeV.
There is, however, an even more important message to

be gleaned from Fig. 1. Note that in each panel, we have
included for reference a set of horizontal, dashed lines
indicating the time scales associated with the beginning
of BBN (tBBN � 1 s), the present age of the universe
(tnow � 4:3� 1017 s), and the usual limit on the lifetime
�� of a single decaying dark-matter candidate � given in

Eq. (1.2). These benchmark times are absolutely critical
for the survival of our dynamical dark-matter model. Any
a with a lifetime that falls between tBBN and �� has the

potential to disrupt BBN predictions for the abundances of
light elements, distort the CMB to an unacceptable degree
[28,36], produce too large a flux of X-ray or gamma-ray
photons, etc. For this reason, the success of our dynamical
dark-matter model rests upon the assumption that such a
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FIG. 1 (color online). The lifetime � of the axion mass eigenstate a, shown as a function of its mass  for�G ¼ 1 GeV (left panel)
and an axion with �G ¼ 1 TeV (right panel). In both panels, we have set � ¼ gG ¼ 1 and have chosen Mc ¼ 10�11 GeV—a value
just above the lower bound imposed by modified-gravity experiments. The three solid curves in each panel shown correspond to
different choices of f̂X for a photonic axion with the coupling-coefficient assignments c� ¼ 1, cg ¼ 0, and ci ¼ 0 for all fermions

i ¼ fe; �e; ��; ��g. The solid red curve corresponds to f̂X ¼ 108 GeV, the solid green curve corresponds to f̂X ¼ 1012 GeV, and the

solid blue curve corresponds to f̂X ¼ 1016 GeV. The dashed curves correspond to the same choices of f̂X for an axion with the
coupling assignments c� ¼ cg ¼ 1 and ci ¼ 1 for all i. The kinks in the curves reflect the opening up of new decay channels as  is

increased past a series of kinematic thresholds associated with decays to neutrino pairs, electron pairs, muon pairs, and �þ���0.
The horizontal lines indicate the time scales associated with the onset of BBN (tBBN � 1 s), the present age of the universe (tnow �
4:3� 1017 s), and the usual lower limit given in Eq. (1.2) on the lifetime �� of a single-particle dark-matter candidate.
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have sufficiently small relic abundances � that these
decays are harmless. It is in this manner that lifetimes
must be balanced against abundances across our dark-
axion towers.

The results in Fig. 1 also highlight another important
aspect of our dynamical dark-matter ensemble, which is
that at a given time t, only a fraction of the a—those
which have not already decayed—can contribute signifi-
cantly to �CDM. Therefore, since � increases monotoni-
cally as a function of , there exists a maximum value dec

for which a may be considered stable for particular time
scale t (in the sense that �t < 1) and which is potentially
capable of contributing significantly to �CDM. For a pho-
tonic axion, for example, the approximate form of dec can
readily be obtained in both the y 
 1 and y 	 regimes by
inverting Eq. (3.1):

dec �

8>>>><
>>>>:

�
g4
G
�4

2ð32�Þ2G�tnow

�
1=5

�
�8=5

G

f̂2=5X M2=5
c

�
y 
 1

�
1

2G�tnow

�
1=3

f̂2=3X y 	 1:

(3.14)

In Fig. 2, we illustrate the behavior of dec (solid curves)

for a photonic axion a function of f̂X for several choices of
Mc. In each case, we have fixed�G ¼ 10 GeV and set � ¼
gG ¼ c� ¼ 1. For reference, we have also included the

corresponding curves for two other critical values of  in
any given axion KK tower for eachMc. These are the mass
0 (dashed curves) of the lightest axion mass eigenstate a0

and the mass trans (dotted curves) defined in Eq. (2.28)
which delineates the transition point between the small-
and large- regimes. We have also included a pair of black
curves indicating the asymptotic behavior of 0 and dec

for large Mc. Note that in this limit, mixing is negligible,

and 0 � mX for all values of f̂X.
The behavior of 0, dec, and trans depends primarily on

the value of the mixing parameter y. When f̂X is suffi-
ciently large that y 	 1 for a given value ofMc (i.e., in the
lower right portion of Fig. 2), we find that 0 � mX, as
expected. At the same time, since mixing is negligible in

this regime, increasing f̂X results in a uniform suppression
of the decay widths of all a, and hence dec increases with

increasing f̂X (i.e., in the upper right portion of the figure).

However, as f̂X decreases past the point at which the 0

and trans curves intersect, we pass from the y 	 1 to the
y 
 1 regime. In this latter regime, mixing is significant
and 0 � Mc=2. At first, dec still decreases with decreas-

ing f̂X in this regime, as those modes with  & �m2
X=Mc

continue to destabilize down the tower. However, as f̂X
decreases still further, to the point at which the dec and
trans curves intersect, the a in the  & �m2

X=Mc regime

begin to destabilize as well. The dependence of � on f̂X is
qualitatively different for such modes, as indicated in
Eq. (3.14), and consequently dec actually begins to

increase with decreasing f̂X. These observations will turn
out to be critical in interpreting the results to be derived in
Sec. V.

FIG. 2 (color online). Curves showing a variety of critical values of  as functions of f̂X for �G ¼ 10 GeV and several different
choices of Mc ranging from 10�16 GeV to 10�8 GeV. Each dashed curve indicates the mass 0 of the of the lightest axion mass
eigenstate a0

for a given choice ofMc. Each solid curve indicates the mass dec of the heaviest a for that choice ofMc which has not

decayed by present time, assuming a photonic axion with c� ¼ 1. Each dotted curve marks the transition point trans between the

small- and large- regimes for the same choice of Mc, as defined in in Eq. (2.28). The black curves indicate the asymptotic behavior
of 0 and dec for large Mc.
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IV. CHARACTERIZING THE CONSTITUENTS:
RELIC ABUNDANCES

In the previous section, we focused on one of the two
crucial properties of the particles that constitute a dynami-
cal dark-matter ensemble: their stability. In particular, we
examined the decay widths of the various a and inves-
tigated how these widths scale with . In this section, we
focus on the other property: their abundances. We begin by
establishing a consistent cosmological context in which to
situate our bulk-axion theory. We then proceed to evaluate
the various mechanisms through which a population of a
can be produced in the early universe, and explain why
misalignment production is favored from the perspective of
dynamical dark matter. This thereby justifies the emphasis
placed on this mechanism in Ref. [13]. We then derive
explicit formulas for �, and demonstrate that the proper
balance between � and � is indeed realized in the
context of misalignment production. In the following sec-
tion, we will then use these results for � and � to
characterize the aggregate properties of the entire en-
semble, such as its equation of state, its total relic abun-
dance, and the way in which that abundance is partitioned
among its constituents.

A. Standard and low-temperature reheating
(LTR) cosmologies

Before embarking on a discussion of axion production in
the early universe, however, we must first specify the
cosmology in which that production occurs. This is par-
ticularly relevant in the context of theories involving large
extra dimensions, since the properties of the early universe
in such theories can differ dramatically from those which
characterize the standard cosmology. For example, the
presence of substantial energy density in the bulk can alter
the expansion rate of the universe in a significant way [37],
and late decays of KK excitations of the graviton (or other
bulk fields) can disrupt BBN, produce visible distortions in
the diffuse photon spectrum, etc. For this reason, such
scenarios must obey stringent constraints [28] on the so-
called ‘‘normalcy temperature’’ T: the temperature below
which the universe is effectively four-dimensional, in the
sense that the bulk is essentially empty of energy density
and the radii of the extra dimensions can be regarded as
fixed. These bounds come from a diverse array of consid-
erations and leave a very narrow window of 4 MeV &
T & 30 MeV for this normalcy temperature. The most
attractive solution for arranging such a value of T is to
posit a very late period of cosmic inflation, precipitated by
a brane-localized inflaton [28], with a reheating tempera-
ture TRH ’ T.

If TRH is indeed to be identified with T, then the uni-
verse must be described not by the standard cosmology, but
by an alternative framework commonly dubbed the low-
temperature reheating (LTR) cosmology [38]. In the
LTR framework, inflation occurs very late, and the energy

density of the universe remains dominated by coherent
oscillations of the inflaton field �. Such oscillations be-
have like massive matter down to very low temperatures—
potentially as low as a few MeV. Consequently, the
universe undergoes an additional epoch of matter domina-
tion (MD) at early times, which ends only once decays of�
into SM fields in the radiation bath have depleted the
energy density 	� to the point that 	� ¼ 	rad. This con-

dition defines the reheating temperature TRH, which is
determined solely by the decay width �� of the inflaton:

TRH �
�

90

�2gðTRHÞ
�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��MP

q
; (4.1)

where gðTÞ denotes the effective number of massless,
interacting degrees of freedom at temperature T. At tem-
peratures T & TRH the universe is effectively radiation
dominated (RD), and maps onto the standard cosmology.
This modification implies that the relationship between
time and temperature in the LTR cosmology is quite differ-
ent from that obtained in the standard cosmology at early
times. In particular, one finds that in any universe which
underwent a period of cosmic inflation immediately prior
to the RD era, the relationship between time and tempera-
ture is given by

t¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffi
45
2�2

q
g1=2 ðTRHÞ
gðTÞ

T2
RHMP

T4 Tmax * T * TRHffiffiffiffiffiffi
45
2�2

q
g�1=2
 ðTÞMP

T2 TRH * T * TMREffiffiffiffiffiffi
45
2�2

q
g�1=8
 ðTMREÞg�3=8

 ðTÞ MP

T1=2
MRET

3=2
T & TMRE;

(4.2)

where TMRE �OðeVÞ is the temperature associated with
the usual matter/radiation transition, at which the energy
density of the universe once again becomes dominated by
the contributions from dark and baryonic matter. (For our
purposes, it will be sufficient to approximate the present,
�CDM universe as matter-dominated.) In the standard
cosmology, TRH is high enough that the universe will be
radiation-dominated at all time scales relevant to axion
dynamics, all the way down to the time scale tMRE asso-
ciated with this transition. By contrast, in a LTR cosmol-
ogy with TRH �OðMeVÞ, much of the relevant dynamics
will occur while the universe is still dominated by coherent
oscillations of the inflaton field. Such a cosmological
modification can have profound effects on axion dynamics,
even in the case of a four-dimensional axion [39,40].
Since our model necessarily involves large extra dimen-

sions, constraints on T would seem to require that the
universe be described by the LTR cosmology, rather than
the standard cosmology, at early times. Indeed, for this
reason, we shall adopt such an LTR cosmology in what
follows. This will actually turn out to be advantageous, as
the relic abundance of a light scalar generated via misalign-
ment production can differ substantially between the two
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cosmologies [40]. To better facilitate comparison between
the results obtained in these two cosmologies, we therefore
find it instructive to present results for each in parallel. The
reader should keep in mind, however, that the results
obtained for an LTR cosmology with 4 MeV & T &
30 MeV should be taken, in some sense, as the ‘‘true’’
ones, given the constraints on T.

In this paper, we shall be interested in values of the
confinement scale �G which range between roughly
10 MeV and 100 TeV. When operating in the standard
cosmology, we shall assume that �G 
 TRH, so that con-
finement takes place within the RD era. Conversely, when
operating within the LTR cosmology, we will assume that
�G > TRH, so that confinement takes place before or dur-
ing reheating, when the universe is dominated by coherent
oscillations of the inflaton field. Note, however, that for
smaller confinement scales �G < TRH, the results for the
LTR cosmology are identical to those for the standard
cosmology.

B. Axion production mechanisms

Having now set the cosmological tableaux, let us begin
our discussion of axion production in the early universe. A
number of production mechanisms can, in principle, con-
tribute significantly to the axion relic density. In generic
models, three such mechanisms typically tend to provide
the dominant contribution to the relic density of any indi-
vidual axion field. One of these mechanisms is thermal
production via the interactions of the a with the SM fields
in the radiation bath. The other two are nonthermal in nature
and can generate a population of cold axions. These are
misalignment production and production from the decays of
topological defects (in particular, cosmic strings) associated
with the breaking of the global Uð1ÞX symmetry.

We begin with a discussion of thermal production. A
number of processes can contribute appreciably to thermal
axion production in the early universe, depending of course
on the magnitudes of the couplings between the axion in
question couples to the SM particles. Among hadronic
processes, qg ! qa, q �q ! ga, gg ! ga, etc., domi-
nate for T * �QCD, while pion-axion conversion off nuclei

(including all processes of the form N� ! N0a, where
N;N0 ¼ fn; pg) and the purely pionic process �� ! �a
dominate at lower temperatures. Since we are interested in
values ofMc which are far belowTRH, it follows thatT 	 
for a large number of the a for at least some of the post-
inflationary era. These a can therefore be considered ef-
fectively massless at such temperatures. In this massless
limit, the rate for each of the axion-production processes
enumerated above (except for the inverse-decay process,
which is generally subleading) takes the rough, parametric
form

� / T3

f̂2X
ð~2AÞ2: (4.3)

In other words, since kinematic distinctions between states
for which T 	  are unimportant, the dependence of their
production rates on  occurs primarily through the cou-

pling factor ~4A2
. This factor too is effectively indepen-

dent of  when  * �m2
X=Mc; hence, at a given

temperature T, any a with a mass  in the range
�m2

X=Mc &  & T will be produced at essentially the
same rate. Moreover, production rates actually increase
with increasing  for those modes with masses  &
�m2

X=Mc. This means that at a given temperature T, the
heavier a in this mass range will actually be produced
from the thermal bath at an equal or higher rate than the
lighter a—at least until  becomes comparable with T,
and their production rates are Boltzmann suppressed. Since
� also increases with , the less stable states will be
thermally produced at an equal or higher rate than the
more stable ones. Such a relationship is clearly undesirable
in models of dynamical dark matter. Moreover, the major-
ity of light axions produced through interactions with the
thermal bath would be relativistic at the time of production,
and therefore not cold.
From these considerations, we conclude that if an en-

semble of axion KK modes is to constitute the majority of
the dark-matter relic density, thermal production must
contribute only a negligible fraction of the total relic
abundance of each a, with the remainder of that abun-
dance generated through nonthermal means. This require-
ment places a nontrivial constraint on scenarios of this sort,
a detailed analysis of which appears in Ref. [32]. We will
defer the discussion of how this constraint restricts the
parameter space of our model until Sec. VI. For the
moment, we simply note that this constraint exists, and
proceed to discuss nonthermal mechanisms for axion pro-
duction. Note, however, that in traditional models of KK
dark-matter (either single-component [6] or multicompo-
nent [5]), in which the dark-matter candidates are stable,
thermal freeze-out can be a viable production method for
generating relic abundances.
One method in which a nonthermal population of axions

may be generated in the early universe is production via the
decay of cosmic strings associated with the broken global
Uð1ÞX symmetry. However, this mechanism can contribute
significantly to axion production only if HI * fX, where
HI is the value of the Hubble parameter during inflation, so
that those cosmic strings are not inflated away. Since the
value of HI is relatively unconstrained, and since astro-
physical and cosmological constraints will turn out to

require f̂X to be quite large, in the rest of this paper, we
shall assume that HI 
 fX. We will therefore not consider
axion production from Uð1ÞX string decay. However, it
should be noted that in other scenarios (or in other regions
of parameter space), axions produced via cosmic-string
decay could have important phenomenological consequen-
ces in dynamical dark-matter models, and this production
mechanism therefore deserves further study.
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Finally, we turn to nonthermal axion production via the
misalignment mechanism. As we shall see, this turns out to
be the most promising axion-production mechanism from
the perspective of dynamical dark matter. The basis of this
mechanism is that at temperatures T 	 �G, the instanton-
induced contribution to the axion potential in Eq. (2.18)
effectively vanishes. This implies that the only contribution
to the axion mass matrix at such high temperatures are the
diagonal contributions from the KK masses: no mixing
occurs, and consequently the mass eigenstates are merely
the KK eigenstates an. While the potential for each an with
n � 0 is therefore nonvanishing, due to the presence of the
KK masses, and is minimized at an ¼ 0, the potential for
the zero mode a0 vanishes. In the absence of a potential for
a0, there is no preferred vacuum expectation value ha0i
which minimizes Vða0Þ; indeed, any ha0i & f̂X is as good
as any other. This means that when the Uð1ÞX symmetry is
broken, the value of ha0i within a given domain is essen-
tially arbitrary. Thus, immediately after this phase transi-
tion occurs, one would expect to find a set of domains, each
with a different homogeneous background value for the
axion field, which would generically be expected to be

Oðf̂XÞ, but could in principle be smaller. Our ignorance of
this initial value of ha0i is commonly parameterized by a
‘‘misalignment angle’’ �, so that the initial conditions at
the time at which the Uð1ÞX symmetry is broken can be
written as [26]

ha0i ¼ �f̂X; hani ¼ 0 for n � 0: (4.4)

Indeed, as was noted in Ref. [13], this initial condition
follows from Uð1ÞX invariance, which manifests itself here
in the form of a five-dimensional shift symmetry under
which a ! aþ c, where c is a constant.

At lower temperatures, however, the situation changes,
as instanton effects generate a brane mass mXðTÞ for the
bulk axion. Here, we write mXðTÞ rather than mX in order
to emphasize that this instanton-induced mass term is
temperature dependent, and reserve the symbol mX (with-
out the argument) to refer to the constant, late-time (i.e.,
low-temperature) value of mXðTÞ. Assuming that the in-
stantons associated with the group G behave analogously
to QCD instantons, Eq. (2.5) implies that mXðTÞ scales
roughly like ð�G=TÞ4. Thus, when T ��G, the off-
diagonal terms in the mass matrixM2

mnðTÞ become appre-
ciable, and the an are no longer mass eigenstates. In this
regime, the equations for an form a coupled system [26],
with the evolution of each such field governed by an
equation of the form

€a n þ 3H _an þ
X


�ðTÞUnðTÞ _an þ
X1
m¼0

M2
nmðTÞam ¼ 0;

(4.5)

where UnðTÞ denotes the unitary matrix in Eq. (2.23), a
dot denotes a derivative with respect to the time t, and H is

the Hubble parameter. Note that since the mass eigenvalues
ðTÞ, decay widths �ðTÞ, and even the rotation matrix
UnðTÞ itself all depend on mX, these quantities all implic-
itly depend on temperature, and hence on t.
During any period in which �ðTÞ and ðTÞ vary appre-

ciably in time, it is in general not possible to write down an
exact, closed-form solution to the coupled system in
Eq. (4.5). Fortunately, however, mXðTÞ can be regarded
as effectively constant during most of the history of the
universe. The only exception occurs at temperatures
around T ��G, where mXðTÞ rapidly rises from a negli-
gible initial value to the asymptotic value it attains at
T 
 �G. At all other times, mXðTÞ is well approximated
either by zero or by mX, and the system of equations
therefore decouples in the mass-eigenstate basis. In this
basis, the time-evolution of each field a is governed by an
equation of the form

€a  þ �

t
_a þ � _a þ 2a ¼ 0: (4.6)

In arriving at this expression, we have used the fact that
within an RD or MD era, H is approximately given by the
relation 3H � �=t, where

� �
�
3=2 inRD
2 inMD:

(4.7)

Exact, closed-form solutions for a and _a, given an
evolution equation of this form, do exist, and we present
these solutions in the Appendix. It may be observed, how-
ever, that Eq. (4.6) is simply the equation of motion for a
damped harmonic oscillator with a time-dependent damp-
ing term. As we shall see at the end of this section, it turns
out that � 
 3H at the time when  � 3H=2 for all a. It
then follows that the solutions for each a can be divided
into two regimes, depending on the relationship between 
and H at any given time t. When  & 3H=2, a does not
oscillate, and therefore its energy density scales approxi-
mately like vacuum energy. By contrast, when  * 3H=2,
a oscillates coherently around the minimum of its poten-
tial, with oscillations damped by a ‘‘friction’’ term with
coefficient (3H þ �).
Despite the fact that mXðTÞ is effectively constant both

well before and well after the time scale tG at which
T ¼ �G, the nontrivial dynamics of the a at t� tG cer-
tainly can play a crucial role in establishing the initial relic
abundances for these fields. Nevertheless, while such a
time-dependence can indeed have a significant quantitative
impact on the results of relic-density calculations in certain
cases, as has been shown to be the case with a standard,
four-dimensional axion [22], a great deal of information
can be obtained by working in the ‘‘rapid-turn-on’’ ap-
proximation, in which we approximate

mXðtÞ ¼ mX�ðt� tGÞ: (4.8)

In this approximation, the procedure for calculating the
background value of each a at any time t is clear [13].
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At early times, when t < tG, mXðTÞ ¼ 0, and hence the an
remain fixed at the initial values given in Eq. (4.4). At t ¼
tG,mXðTÞ immediately assumes its constant, nonzero, late-
time valuemX, and each of themass eigenstates a acquires
a background value proportional to its overlap with a0:

hai ¼ �f̂XA; h _ai ¼ 0 at t ¼ tG: (4.9)

Even though all of the a acquire background values at
t ¼ tG, only those fields for which  * 3HðtGÞ=2 begin
oscillating immediately at the time of this phase transition.
As discussed above, all other, lighter a will begin oscillat-
ing later, once the  * 3H=2 threshold is crossed. The
time t at which a given a begins to oscillate is therefore
given by

t � max

�
�

2
; tG

�
; (4.10)

where� is thevalue of� corresponding to the epoch during
which this oscillation begins. At times tG < t & t, a given
a continues to behave like vacuum energy rather than like
matter, and thus properly contributes not to �CDM, but
to the dark-energy abundance. (Note that this definition
of t is slightly different from the one given in Ref. [13],
where t was simply defined as �=, regardless of its
relationship to tG.)

For any given a, however, the relevant quantity for
dark-matter phenomenology is not the value of a itself,
but its energy density 	, which is related to a and _a by
the relation

	 ¼ 1

2
½ _a2 þ 2a2�: (4.11)

At early times, when t < tG, only a0 has a nonzero
background value in the rapid-turn-on approximation,
and since this field is massless, its energy density vanishes.
At t ¼ tG, however, Eq. (4.9) implies that each field
acquires an initial energy density

	ðtGÞ ¼ 1

2
�2f̂2X

2A2
: (4.12)

Since a remains effectively constant until t ¼ t for any
field for which t > tG, we also see that 	ðtÞ ¼ 	ðtGÞ.
This implies that the energy density stored in such a field
behaves like vacuum energy until t ¼ t, at which point the
field begins to oscillate coherently around the minimum of
its potential. The energy density stored in such oscillations,
as is well known, scales like massive matter. At late times
t 	 t, when the time scale associated with these oscilla-
tions becomes rapid compared to the time scale over which
the amplitude of a changes appreciably, the virial ap-
proximation implies that 	 � h _a2i, where h _a2i denotes
the average of _a2 over one cycle of oscillation. In this
regime, one finds that

	ðtÞ ¼ 	ðtGÞ
�
t
t

�
�

e��ðt�tGÞ (4.13)

for each 	 during the epoch in which oscillation began,
with 	ðtGÞ given in Eq. (4.12). Computing 	 during
subsequent epochs is simply a matter of applying
Eq. (4.13) iteratively with the appropriate boundary
conditions for 	 at the transition points at which �
changes.
All that remains, then, in order to specify the energy

density 	 associated with a given a for any particular
choice of model parameters is to determine the time scales
tG and t as a function of those parameters. Indeed, the
results for 	 clearly depend sensitively both on the epoch
during which abundances are established, and the epoch
during which oscillation begins. In principle, tG could fall
within the RD era, during the usual MD era, or during
reheating; likewise, t could occur at any time at or after
tG. However, as will be shown in Sec. V,�G 	 10 MeV is
required in order for our ensemble of a to yield a relic
abundance on the order of �CDM. For such values of �G,
tG 	 tMRE. Moreover, for Oð1Þ values of gG and �, t 

tMRE as well. Therefore, when discussing the standard
cosmology, we will focus on the case in which tG � t <
tMRE for all a. Furthermore, when operating within the
context of the LTR cosmology, we will implicitly assume
that tG � t < tRH for all a, so that all fields begin oscil-
lating while the energy density of the universe is still
dominated by coherent oscillations of the inflaton field.
This is justified by the fact that tRH � 10�1 � 10�4 s for
reheating temperatures TRH within the phenomenologi-
cally allowed window 4 MeV & T & 30 MeV. In con-
junction with the experimental bound on Mc given in
Eq. (3.4), this implies that t & tRH for all a in any given
tower, unless �G & 10 MeV. In summary, we shall there-
fore assume that

standard cosmology: tRH < tG � t < tMRE

LTR cosmology: tP < tG � t < tRH
(4.14)

in what follows, where tP is the Planck time. Note that in
the standard cosmology, tRH is assumed to be so early that
all tG of interest will easily satisfy the lower bound. Also
note that in the LTR cosmology, modes for which t occurs
during or prior to inflation will inflate away and therefore
carry zero abundance at present time.

C. Axion relic abundances

We now provide explicit expressions for 	 in both
the standard and LTR cosmologies. We begin by consider-
ing the case of the standard cosmology, in which � ¼ 3=2
at all relevant time scales prior to matter-radiation
equality, and � ¼ 2 after the transition to matter-
domination at tMRE. In this cosmological framework, given
the regimes for tG and t specified in Eq. (4.14), it therefore
follows that
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By contrast, in the LTR cosmology, the energy of the
universe remains dominated by coherent oscillations of
the inflaton field from the end of inflation until a very
late time tRH � 1 s. Thus, if the axion fields begin oscillat-
ing at a time t < tRH, as specified in Eq. (4.14), we
initially have � ¼ 2, followed by a transition at tRH to
the usual RD era, in which � ¼ 3=2. This signifies that
in the LTR cosmology, we have

	LTR
 ðtÞ ¼ 1

2
�2f̂2X

2A2
e

��ðt�tGÞ

�

8>>>>>>>><
>>>>>>>>:
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t
t
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t2t1=2
RH

�
t * tMRE:

(4.16)

In other words, Eq. (4.16) replaces Eq. (4.15) in the context
of the LTR cosmology, in which the usual RD era is
preceded by an initial period of matter domination. It is
worth emphasizing here that the value of t for a given
mass eigenvalue  will, in general, differ between the two
cosmologies, due to the differing relationship between H
and t at times t & tRH.

Comparing Eqs. (4.15) and (4.16), we see that the cos-
mological context in which the axion fields evolve can
have a potentially dramatic effect on the late-time results
for the various 	. However, for any given mode, Eq. (4.10)
implies that the magnitude ELTR of that suppression de-
pends on the relationship between  and tG. Comparing
Eqs. (4.15) and (4.16), we find that the axion energy
densities are suppressed in the LTR cosmology, relative
to the standard cosmology, by a factor

ELTR � 	LTR

	Std

�

8>>>><
>>>>:

g5=4 ðTRHÞ
g5=4 ð�GÞ

�
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�
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45

�
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g1=4 ðTRHÞ TRH
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P 1=2

 < 1=tG:

(4.17)

These results imply that the energy-density contributions
from those modes which begin oscillating at tG are sup-
pressed in the LTR cosmology, relative to their value
in the standard cosmology, to a greater degree than the

contributions from those modes which begin oscillating
later. These results are analogous to those obtained in
Ref. [40] for a standard, four-dimensional axion, where
the suppression factor is referred to as VLTR=VStd.
It is also possible (and indeed when�G is large, more or

less inevitable) that in the LTR cosmology, a great many of
the heavier a will begin to oscillate either during or prior
to the end of inflation. Since the scale factor R grows
exponentially during this epoch, the energy density in
stored any such mode, which scales like 	 / R�3, will
effectively be diluted into irrelevance by this rapid expan-
sion. As long as �G & Tmax, i.e., as long as confinement
occurs only after inflation is over, no energy density is
stored in these modes during inflation. As a result, the
energy density is given by Eq. (4.16) as usual. However,
if confinement occurs before or during inflation, 	 for any
mode for which  > 3HI=2 will be exponentially damped
by Hubble dilution, and it is therefore reasonable to take
	 ¼ 0 for any such mode.
From the results in Eqs. (4.15) and (4.16), it is straight-

forward to obtain the relic abundance � � 	=	crit for
each a. Let us begin by addressing those modes for which
t ¼ tG. Since the critical density for a flat universe is
given by 	crit ¼ 3H2M2

P, we find that in the rapid-turn-on
approximation, the contribution to the dark-matter relic
abundance from each such mode at a given time t in the
standard cosmology is

�Std
 ¼ 3

�
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(4.18)

By contrast, in the LTR cosmology, the corresponding
result is

�LTR
 ¼ 3
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(4.19)

For the rest of the a (i.e., those for which t � tG), the
corresponding results in the context of the standard cos-
mology are
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whereas in the context of the LTR cosmology, we instead
have

�LTR
 ¼ 3

�
�f̂XmX

MP

�
2
�2

�
1þ 2

m2
X

þ �2m2
X

M2
c

��1
e��ðt�tGÞ

�

8>>>>>>><
>>>>>>>:

1
4 1= & t & tRH

4
9

�
t

tRH

�
1=2

tRH & t & tMRE

1
4

�
tMRE

tRH

�
1=2

t * tMRE:

(4.21)

Note that this is valid only for those a for which  &
3HI=2. For those modes with  * 3HI=2, as discussed
above, effectively � ¼ 0 due to Hubble dilution during
inflation. During periods of matter domination, we see that,
	 and 	crit scale identically with time, and consequently
� remains constant in each of these expressions. During
periods of radiation domination, on the other hand, 	 falls

faster with time than 	crit, and � grow like t1=2.
Note that for t ¼ tnow, Eqs. (4.18) through (4.21) take the

forms specified in Eqs. (54) through (60) in Ref. [13],
where the brane mass m appearing in these equations is
identified with mX for a bulk axion. In other words, the
distinction between the � expressions for the standard
and LTR cosmologies given here is tantamount to identi-
fying the era in which the initial abundances are estab-
lished in Ref. [13].

Since we will be primarily interested in scenarios in
which the dark-matter relic abundance �CDM receives
contributions from a large number of different axion
mass eigenstates, it is of critical importance to determine
precisely how � scales with , as this describes the
relative contributions to the total relic abundance �CDM

from the various states in the tower. Fortunately, in the
rapid-turn-on approximation, the dependence of � on 
stems from only three factors, as discussed in Ref. [13].
The first, of course, is the choice of cosmology. The second
is how  compares to the mass scales mX and �m2

X=Mc,
which determines the overlap between a and the KK zero
mode a0, and therefore the initial displacement of a at
t ¼ t. For those modes for which *maxfmX;�m

2
X=Mcg,

the 2=m2
X term dominates in the factor in brackets appear-

ing in each of Eqs. (4.15) and (4.16), and � acquires a
factor of �2. By contrast, for those modes for which  &
maxfmX;�m

2
X=Mcg, the constant terms dominate, and �

acquires no such dependence.

The third factor which determines how� scales with 
in the rapid-turn-on approximation is whether or not the
axion mode in question begins oscillating at tG, or at some
later time. Indeed, in Ref. [13], these cases were referred
to, respectively, as the ‘‘instantaneous’’ and ‘‘staggered’’
turn-on regimes. Comparing the expressions valid for t ¼
tG in Eqs. (4.18) and (4.19) with those valid for t > tG in
Eqs. (4.20) and (4.21), we see that the � for those a
which begin oscillating after the confining phase transition
takes place acquire an additional dependence on . The
precise form of this dependence depends on the cosmo-
logical context within which the model is embedded: in the

standard cosmology, it is �3=2; in the LTR cosmology, it is
�2. Physically, this factor stems from the fact that prior to
the time it begins to oscillate coherently, the energy density
in any given a remains constant, whereas after oscillation
begins, it scales like massive matter. Therefore, the later a
given mode begins to oscillate, the longer the energy
density stored in that mode will remain unaffected by
cosmic expansion, and therefore the larger the present-
day value of � will be.
In order to illustrate the implications of these effects, in

each of the panels of Figs. 3 and 4 we track the evolution of
� for a representative sample of a within a given theory
from tG to present time. The curves shown in Fig. 3 reflect
typical results which arise in the context of the standard
cosmology. The left panel corresponds to a scenario
with a small confinement scale �G ¼ 1 MeV, a moderate

value f̂X ¼ 109 GeV for the effective four-dimensional
Uð1ÞX-breaking scale, and a small misalignment angle � �
0:04. The right panel corresponds to the opposite case: a

scenario in which �G ¼ 1 TeV, with f̂X � 2� 107 GeV
and � ¼ 1. In each scenario, we have taken � ¼ gG ¼ 1,
and set the compactification scale to be Mc ¼ 10�11 GeV.
The curves shown in each panel (from top to bottom)
correspond to the lightest two values of , here referred
to as 0 and 1, corresponding to that particular choice

of f̂X and Mc (0 � 5� 10�12 GeV and 1 �
2� 10�11 GeV for the right panel; 0 � 6� 10�17 GeV
and 1 � 10�11 GeV for the left panel), along with
several additional values of , including  ¼
f10�10; 10�8; 10�6; 10�4; 10�2g GeV. It should be noted
that in the right panel, all curves shown lie essentially on
top of one another, and are thus not individually apparent.
It is worth remarking that y 	 1 in the scenario depicted in
the left panel, while y 
 1 in the scenario depicted in the
right panel. Also shown are a horizontal, dot-dashed line
indicating the value for �CDM observed by the WMAP
experiment [2], as quoted in Eq. (1.1), and a pair of vertical
lines indicating the positions of tRH and tMRE.
Both of these scenarios yield a total dark-matter relic

abundance which is consistent with the WMAP results
given in Eq. (1.1). However, it should be noted that the
parameter assignments used for these figures have been
chosen exclusively for purposes of illustration. In Sec. VI,
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we will discuss the situation using the parameters which
are consistent with all observational and phenomenologi-
cal constraints.

Note that the sets of curves shown in the two panels of
Fig. 3 differ quite significantly. For example, in the left
panel, the effect of the nonzero decay widths of the heavier
a is readily apparent. Indeed, the curves corresponding to

masses  � 10�4 GeV rapidly drop to zero at a time scale
t� �. By contrast, in the right plot, which corresponds to
a scenario with y 
 1, the decay rate of each a is sup-

pressed by a factor of ~4A2
, which can be quite small in

such a scenario. Consequently, all of the a for which �

curves are shown in the plot are stable on cosmological
time scales.
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FIG. 3 (color online). The individual relic abundances� associated with a variety of different a in the standard cosmology, shown
as a function of time t, for two scenarios with different values of the parameters f̂X, �G, and �. The left panel corresponds to a choice
of f̂X � 109, �G ¼ 1 MeV, and � � 0:04, while the right panel corresponds to a choice of f̂X � 2� 107 GeV, �G ¼ 1 TeV, and
� ¼ 1. In both cases, we have taken � ¼ gG ¼ 1, with Mc ¼ 10�11 GeV. The range of t displayed in each panel spans from the
corresponding confinement time scale tG for the hidden-sector gauge group G, and a vertical, dashed line indicating the time scale
associated with matter-radiation equality has also been included for reference. The horizontal, dash-dotted line indicates the total
observed dark-matter relic abundance, as measured by the WMAP satellite. It should be emphasized that in both of these scenarios, the
total present dark-matter relic-abundance contribution from all of the a in the tower reproduces this observed value.
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FIG. 4 (color online). The individual relic abundances� associated with a variety of different a in the LTR cosmology, shown as a
function of time t, for two scenarios with different values of f̂X, Mc, and �G. The left panel corresponds to a choice of f̂X ¼ 106,
Mc ¼ 4� 10�12 GeV, and �G � 37 MeV, while the right panel corresponds to a choice of f̂X � 6� 1014 GeV, Mc ¼ 10�11 GeV
and �G ¼ 1 TeV. In both cases, we have taken � ¼ gG ¼ � ¼ 1, with TRH ¼ 5 MeV and HI ¼ 10 GeV. The range of t displayed in
each panel spans from the end of cosmic inflation to present day, and vertical (dashed) lines indicating the time scales associated with
the end of reheating and with matter-radiation equality have also been included for reference. The horizontal, dash-dotted line
indicates the total observed dark-matter relic abundance, as measured by the WMAP satellite. It should be emphasized that in both of
these scenarios, the total present-day dark-matter relic-abundance contribution from all of the a in the tower reproduces this observed
value of �CDM to within the limits quoted in Eq. (1.1).
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The abundance curves shown in Fig. 4, on the other
hand, display typical results obtained in the LTR cosmol-
ogy. More specifically, the results shown here correspond
to the parameter assignments TRH ¼ 5 MeV and HI ¼
10 GeV. As in Fig. 3, the two panels shown in this figure

correspond to two different choices for f̂X, Mc, and �G

which both yield a total present-day relic abundance con-
sistent with WMAP data. The curves shown in the left

panel correspond to a scenario with f̂X ¼ 106 GeV,Mc ¼
4� 10�12 GeV, and �G � 37 MeV. This scenario exem-

plifies the case in which f̂X and�G are both comparatively
small. By contrast, the curves displayed in the right panel
correspond to a scenario with far larger values for these

parameters: f̂X ¼ 6� 1014 GeV and �G ¼ 1 TeV, with
Mc ¼ 1011 GeV. In both cases, we have taken � ¼ gG ¼
� ¼ 1. Once again, the curves shown in each plot corre-
spond to  ¼ f10�10; 10�8; 10�6; 10�4; 10�2g GeV, as
well as 0 and 1. For the left plot, 0 ¼ 2� 10�12 GeV
and 1 ¼ 6� 10�12 GeV; for the right plot, 0 ¼
5� 10�12 GeV and 1 ¼ 2� 10�11 GeV. Again, in the
left panel, the 0 and 1 curves are not apparent because
they lie directly beneath the  ¼ 10�10 GeV curve.

The contrasting features between the two panels in Fig. 4

are predominately due to the differences between their f̂X
and�G values. First, as stated above, f̂X is quite small in the
scenario displayed in the left panel, and consequently, the
couplings between the a and the fields of the SM are quite
large. This implies that the decay rates associated with the
heavier a will be sizable in this scenario, and that a large
number of these heavier modes will decay before present
time. Indeed, the precipitous drop in each of the curves
corresponding to a mass eigenvalue in the range  �
10�6 GeV in this plot is a consequence of the decay of these
modes to SMfields. By contrast, in the scenario displayed in

the right plot, f̂X is large enough that all of the a for which
� curves are shown are stable on cosmological time
scales, and no such effect is apparent. Second, �G is also
quite small in the scenario displayed in the left panel, and
the confinement time scale tG � 10�5 s is consequently
quite late. As a result, t ¼ tG for all a. This implies not
only that all of the modes begin oscillating at the same time,
but moreover, that the� only become nonzero quite late.
By contrast, in the right panel, �G is large and tG is
correspondingly quite early. This results in a situation in
which the t for the lighter modes are staggered in time. As
discussed in Ref. [13], the primary consequence of this
staggering is that the � curves for these lighter modes
depend more sensitively on .

The most important implication of Eqs. (4.18) through
(4.21), however, is that � decreases with increasing 
regardless of the details of the cosmological framework.
On the other hand, we saw in Sec. III that � increases
monotonically with . This observation is indeed encour-
aging, in that it suggests that � and� possess the appro-
priate, reciprocal relationship needed for an ensemble of a

to serve as dynamical dark matter. In the following section,
wewill quantifymore precisely the relationship between�

and � and demonstrate that this is indeed the case. The
results of the present section therefore attest that misalign-
ment production, in stark contrast to thermal production, is
an ideal mechanism for the generation of axion relic abun-
dances in dynamical dark-matter models. Moreover, as we
shall soon demonstrate, this mechanism dominates in the
regime of model-parameter space in which an ensemble of
a tends to be phenomenologically viable, in the sense that
it correctly reproduces the observed dark-matter relic abun-
dance, while at the same time satisfying all relevant con-
straints from experiment, astrophysical observation, and
cosmology.
Before we proceed to analyze the collective properties of

such ensembles, however, two brief comments are in order.
The first of these concerns the validity of the rapid-turn-on
approximation. As we have stated above, Eq. (4.6) is
strictly valid only when  and � are essentially indepen-
dent of temperature. However, there turn out to be certain
situations in which the time-dependence of  and � at
temperatures T * �G is physically unimportant, and in
which these quantities can be reliably treated as constants
throughout the period in which a are oscillating. One such
situation arises in cases in which t > tG for all of the a
which contribute meaningfully to the total dark-matter
relic abundance, and therefore coherent axion oscillations
do not occur until after mXðTÞ is effectively constant. This
situation tends to arise either when �G is quite large, in
which case mXðTÞ attains its constant, late-time value very

early, or else when�G is fairly small, but f̂X is quite large,
in which case mX itself is extremely small. As we shall see
in Sec. V, these turn out to be precisely the situations in
which the total relic-abundance contribution from the en-
semble of a successfully reproduces the observed value
for �CDM quoted in Eq. (1.1). This retroactively justifies
our use of the rapid-turn-on approximation.
Our second comment concerns the assumption that � is

sufficiently small that the solution of Eq. (4.6) for any given
a includes a period during which this equation ofmotion is
effectively underdamped. This is critical, since in the ab-
sence of such a period, coherent oscillations cannot occur.
Indeed, the energy density 	 stored in any a for which
� � 2 would never scale in an appropriate manner for
that field to behave like massive matter; hence it would
never contribute to �CDM. However, it is not difficult to
demonstrate that this situation essentially never arises in
realistic bulk-axion scenarios, even for the most massive
modes in a given tower. For example, consider the case of a
purely photonic axion with c� ¼ 1. In this case, it follows

from Eq. (3.1) that the solution for a becomes critically
damped at a valuecd, which is determined by the condition

2cd ¼ G�

3
cd

f̂2X
ð~2AÞ2: (4.22)
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Solving this equation for cd, we find that

cd ¼ f̂Xffiffiffiffiffiffiffiffiffi
2G�

p
2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G�m

2
X

f̂2X

�
1þ �2

y2

�vuut
3
75

1=2

; (4.23)

which implies that cd � f̂X=
ffiffiffiffiffiffiffiffiffi
2G�

p
. However, since the

effective description of the theory in terms of a tower of axion
modes breaks down at the five-dimensional Uð1ÞX-breaking
scalefX 
 f̂X,we are assured that� 
 2 for allmodes in
such a tower. Indeed, this qualitative result is not specific to a
photonic axion, but applies broadly to any axion field which
couples to the SMfieldswithOð1Þ coupling coefficients.As a
corollary, this result also implies that the standard oscillation
criterion � 3H=2 will always be met before the decay
criterion � �H. This indicates that indeed H, rather than
�, sets the time scale at which oscillations begin, and that
any given a decays during a time frame in which its energy
density can legitimately be described by Eq. (4.13).

V. CHARACTERIZING THE ENSEMBLE: TOTAL
ABUNDANCES, TOWER FRACTIONS, AND

EQUATIONS OF STATE

In the previous two sections, we derived expressions for
the decay widths and relic abundances for the individual
mass eigenstates a in a mixed tower of KK axions. We
have shown that these quantities scale with  in an appro-
priate, reciprocal manner for an ensemble of such states to
serve as dynamical dark matter. We are therefore finally
equipped to address the dark-matter phenomenology of the
ensemble as a whole.

As discussed in Ref. [13], the crucial quantities which
characterize a given dynamical dark-matter ensemble are
the total relic abundance�tot, the tower fraction �, and the
effective equation-of-state parameter weff . In this section,
we investigate how these three quantities depend on the

scales f̂X, Mc, and �G which characterize a given bulk-
axion model and thereby assess which regions of parameter
space are interesting from a dynamical dark-matter per-
spective. In the next section, we discuss the applicable
phenomenological constraints on the model and demon-
strate that substantial regions of parameter space exist
within which all such constraints are satisfied.

A. General definitions

The first of the three principal quantities mentioned
above which characterize any given dynamical dark-matter
ensemble is �tot. This is simply the total contribution to
�CDM from all constituent modes in the ensemble which
have already begun oscillating:

�tot �
X


�: (5.1)

The second is the so-called ‘‘tower fraction’’ �, which is a
measure of how the total abundance �tot is distributed

across the ensemble. Specifically, � is defined for a given
dynamical dark-matter ensemble to be the fraction of �tot

provided by all of the oscillating components of that en-
semble except for the one which yields the largest individ-
ual contribution. Explicitly,

� � 1��max

�tot

; (5.2)

where �max � maxf�g. After all the a have begun
oscillating, the lightest mass eigenstate a0

always yields

the largest individual relic abundance �0
, and therefore

�max ¼ �0
. When � 
 1, essentially the entirety of�tot

is provided by a single field, as in most traditional dark-
matter models. By contrast, having ��Oð1Þ signals a
departure from this traditional setup, which is indeed one
of the hallmarks of dynamical dark matter. (Note that when
we say that � should differ significantly from zero, we are
willing to accept �� 0:1, as such values could result in
observable differences from traditional models, but not, for
example, �� 10�3.)
In our dynamical dark-matter framework, both �tot and

� are intrinsically dynamical quantities, with nontrivial
time dependences. For this reason, we will designate their
present-day values as �

tot � �totðtnowÞ and � � �ðtnowÞ
in what follows.
As discussed in Ref. [13], a given dynamical dark-matter

ensemble as a whole can also be described in terms of a
single, effective equation-of-state parameter weff :

weff � �
�
1

3H

d ln	tot

dt
þ 1

�
; (5.3)

where 	tot � �tot	crit. Indeed, one of the hallmarks of this
framework is that evenweff itself is continually changing in
time. We shall therefore define w � weffðtnowÞ. As dis-
cussed in Ref. [13], this quantity is given by

w ¼ AB

2�
tott

1þ�þ�
now

(5.4)

for any given dynamical dark-matter ensemble in which
the widths, abundances, and densities of states obey the
approximate scaling relations � � A�� and n� � B��,
where n� denotes the density of states per unit decay width.
Taken together,�tot,�, andweff serve to characterize any

given dynamical dark-matter ensemble. For the remainder
of this section, then, our taskwill be to investigate how these

three quantities depend on the parameters f̂X, Mc, and �G

which characterize our bulk-axionmodel. Also recall that in
Eq. (2.21) we defined the mixing parameter

y ¼ 4
ffiffiffi
2

p
�

gG�

f̂XMc

�2
G

; (5.5)

which quantifies the extent to which the different modes in
the KK tower mix with each other. We will also therefore
keep track of the corresponding values of y in our analysis.
Moreover, as we have seen in Sect. IV, our results will also
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depend on the cosmological framework adopted. We shall
therefore derive results in the context of the standard and
LTR cosmologies independently. However, as discussed
above, constraints on T in theories with large, flat extra
dimensions provide a strong motivation for working within
the context of an LTR cosmology with a reheating tempera-
ture TRH �OðMeVÞ. For this reason, the results obtained
for the LTR cosmology are more likely to be realistic.

Needless to say, phenomenological consistency imposes
certain constraints on the parameters�tot, �, and weff . For
example, WMAP data require that�

tot � �CDM; likewise,
w should not differ too significantly from zero. Beyond
this, however, � and weff are fairly unconstrained by data.
Nevertheless, while any values for � and weff can be
realized within the general dynamical dark-matter frame-
work, we are particularly interested in situations in which
� is also significantly different from zero, for these are the
situations in which our dynamical dark-matter ensemble
represents a significant departure from traditional, single-
component models of dark matter.

B. Dark towers: relic abundances and tower fractions

In Fig. 5, we show how the total present-day dark-matter

relic abundance �
tot depends on f̂X, Mc, and �G in the

standard cosmology, assuming a photonic axion with
c� ¼ 1. Each panel in the figure displays contours of

�
tot for a different choice of �G. A dashed blue line

highlighting the �
tot ¼ 1 contour has also been included

in each panel. The red lines are contours of y: the solid red
line corresponds to y ¼ 1, which roughly indicates the
transition point between the strongly-mixed regime (below
and to the left of the contour) and the weakly-mixed regime
(above and to the right of the contour). Proceeding from
left to right, the dotted lines correspond to the values
y ¼ f0:01; 0:1; 10; 100g. In Fig. 6, we present the corre-
sponding contour plots for the tower fraction �.
Moreover, to complement the results shown in Figs. 5
and 6 for the standard cosmology, we present the corre-
sponding results for the LTR cosmology in Figs. 7 and 8.

As Figs. 5 and 7 illustrate, the dependence of�
tot on the

model parameters f̂X, Mc, and �G is somewhat compli-
cated, and the results displayed therein clearly warrant de-
tailed explanation. Perhaps the most intuitive way of
understanding these results is to begin by examining them
in certain limiting regimes. For example, consider a situation
in which�G is relatively small. In this case, the confinement
time scale tG is relatively late. If tG is sufficiently late that all
modes in the tower begin oscillating immediately at tG, each
� is given in the standard cosmology by Eq. (4.18) for all
and by Eq. (4.19) in the LTR cosmology. In addition, let us

assume that f̂X is large enough that decays can be neglected,
and thatHI is at leastmoderately large, so that essentially all
of the a which contribute meaningfully to �

tot survive
inflation. In this special case, we can explicitly sum the
contributions� to obtain the result

�
tot � 3

256�2
ðgG�Þ2

�
��2

G

MP

�
2
t3=2G t1=2MRE

�
8<
:
1 standard cosmology

ðtG=tRHÞ1=2 LTR cosmology:
(5.6)

In deriving this result, we have used the second identity in
Eq. (2.25). Note that Eq. (4.14) implies that tG < tRH; hence
�

tot is suppressed in the LTR cosmology relative to the
standard cosmology by a factor which can be quite signifi-
cant. Indeed, this suppression factor in �

tot is due to the
uniform suppression of each individual contribution � in
this regime by the factor ELTR given for the � 1=tG case in
Eq. (4.17).
Perhaps the most interesting aspect of this result is that it

depends only on �4
G, and is independent of both Mc and

f̂X. This is quite surprising indeed, for it indicates that in
this regime, no matter how many of the a contribute
significantly to �tot, the total contribution to the dark-
matter relic abundance is the same. For example, a
strongly-mixed scenario with y 
 1 and a vast number
of modes contribute more or less democratically to �tot

will yield the same abundance as a weakly-mixed scenario
with y 	 1 in which a single, light axion accounts for
essentially the entirety of the dark matter. This situation
is realized in the �G ¼ 10 MeV and �G ¼ 100 MeV
panels in Figs. 5 and 7, in which the value of �

tot remains
essentially constant throughout the region of parameter
space shown.
At an algebraic level, the fact that �

tot is a constant

throughout substantial regions of ðf̂X;McÞ space for small
�G is a reflection of the fact that the identity in Eq. (2.25)
holds regardless of the value of y. Of course, this identity
requires that the sum over � be taken over the entire KK
tower, from the lowest mass eigenstate up to infinity. At a
physical level, this is the appropriate sum to take for small
�G, because all of the modes begin oscillating at a com-
mon time tG, and because the full structure of the tower is
undisturbed by the decay of any modes which contribute
meaningfully in the sum. Indeed, as we have seen from the
panels of Figs. 5 and 7, this result is characteristic of
situations in which �G is small.
However, as we increase �G, three effects can begin to

alter this picture and thereby destroy the uniformity of�
tot:

(i) First, tG becomes smaller and smaller, and conse-
quently t can begin to exceed tG for the lower
modes in the KK tower. In other words, these lower
modes may begin to experience oscillations with
staggered onset times, a phenomenon which begins
with the lowest-lying modes in the tower and ulti-
mately affects higher and higher modes as �G

increases.
(ii) Second, y decreases with increasing �G (for fixed

f̂X and Mc), and consequently more and more
of the excited a contribute significantly to �

tot.
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Although the lifetimes � of these modes also in-
crease with increasing �G, they do so at a slower
rate. As a result, a larger and larger fraction of the
contributing portion of the KK tower is effectively
truncated by decays. This effect can therefore lead

to a reduction in �
tot, especially in the y 
 1

regime.
(iii) Third, as �G increases, tG can be pushed back into

the inflationary era. The contributions from those
modes which begin oscillating prior to or during

FIG. 5 (color online). Contours of the total contribution�
tot from a KK tower of general axions, plotted in ðf̂X;McÞ space, assuming

the standard cosmology. Each panel corresponds to a different choice of �G ranging from 10 MeV to 100 TeV. In each case, we have
taken � ¼ gG ¼ � ¼ 1 and set HI ¼ 10�7 GeV. Note that the contour corresponding to �

tot ¼ 1 has been highlighted with a dotted
blue line in each panel for clarity. The solid oblique red line appearing in each panel indicates where y ¼ 1, and proceeding from left to
right, the dashed red lines correspond to y ¼ f0:01; 0:1; 10; 100g.
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inflation will therefore be inflated away. This too
can result in a reduction of �

tot.
Of course, which of these effects happens to be relevant

in any given situation ultimately depends on the parameters
in question, and whether we are working in the standard

cosmology or an LTR cosmology. Let us therefore begin by
examining the situation in the standard cosmology, as
shown in Fig. 5. As we increase �G from 10 MeV to
100 TeV, we see that a series of contours with smaller
and smaller values of �

tot emerges in the region of

FIG. 6 (color online). Contours of the tower fraction � from a KK tower of general axions, plotted in ðf̂X;McÞ space, assuming the
standard cosmology. As in Fig. 5, each panel corresponds to a different choice of �G ranging from 10 MeV to 100 TeV; likewise, we
have taken � ¼ gG ¼ � ¼ 1 and set HI ¼ 10�7 GeV. Once again, the solid oblique red line appearing in each panel indicates where
y ¼ 1, and proceeding from left to right, the dashed red lines correspond to y ¼ f0:01; 0:1; 10; 100g.
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parameter space where y 
 1 and gradually spreads over a

substantial region of ðf̂X;McÞ space. This is the effect of
decays truncating the contributions from the higher modes
in the tower, as discussed above. Note that for the regions
of parameter space shown in Fig. 5, neither of the
other two effects outlined above is apparent. In particular,
staggering effects only occur within regions of parameter

space for which tG < t0
, where t0

is the time at which

the lightest mode in the tower begins oscillating. This
criterion can be rephrased as a condition on the model

parameters f̂X, Mc, and �G by substituting �G for T in
the middle line of Eq. (4.2). In the y 	 1 and y 
 1
regimes, we can approximate 0mX and 0 � Mc=2 re-
spectively to obtain

FIG. 7 (color online). Same as in Fig. 5, but for the LTR cosmology rather than the standard cosmology.
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standard cosmology:

8<
:
f̂X * ð1:38� 1017 GeVÞ � gG�½g�1=2

 ð�GÞ� y 	 1

Mc & ð8:18� 10�19 GeVÞ � ½g1=2 ð�GÞ�
�
�G

GeV

	
2

y 
 1:
(5.7)

Given these results, it is clear that staggering effects will not be visible in Fig. 5: for the y 	 1 case, extremely large values
of f̂X are required, regardless of the value of �G; for the y 
 1 case, Mc & 1013 GeV or �G * 100 TeV is required for
these effects to be apparent.

FIG. 8 (color online). Same as in Fig. 6, but for the LTR cosmology rather than the standard cosmology.

KEITH R. DIENES AND BROOKS THOMAS PHYSICAL REVIEW D 85, 083524 (2012)

083524-26



The situation is quite different in the LTR cosmology,
as shown in Fig. 7. Indeed, as we increase �G, all three
of the above effects begin to become relevant. First, we
observe the same effect of decaying a modes in the y 
 1
region that we saw in Fig. 5. This effect is particularly
evident in the �G ¼ 1 GeV panel of Fig. 7. However, in

the LTR case, we also observe effects due to staggering,
which begin to appear in the large-f̂X region. Indeed,
following the same procedure applied above for the stan-
dard cosmology but using the top line in Eq. (4.2), we find
that these effects emerge in regions of parameter space
where

LTR cosmology:

8><
>:
f̂X * ð1:03� 1011 GeVÞ � gG�

�
g1=2 ðTRHÞ
gð�GÞ

��
TRH

MeV

�
2
�
�G

GeV

��2
y 	 1

Mc & ð2:73� 10�13 GeVÞ �
�

gð�GÞ
g1=2 ðTRHÞ

��
TRH

MeV

��2
�
�G

GeV

�
4

y 
 1:

(5.8)

The first of these limiting forms accounts for the vertical
contours which appear on the right side of the �G ¼
100 MeV panel in Fig. 7 and encroach further and further
to the left as �G increases.

Finally, as �G grows beyond 100 GeV, we see the third
effect emerging: the inflating away of heavy KK modes. In
particular, since we have chosen HI ¼ 10�7 GeV in this
plot, the relic-abundance contributions from all modes with
 * 3HI=2will be inflated away. Indeed, we see that when
y 
 1 (which implies that 0 � Mc=2) and Mc *
3� 10�7 GeV, the entire tower is inflated away, yielding

�
tot ¼ 0. Indeed, since y increases with �G for fixed f̂X

and Mc, this effect spreads across a wider region as �G

increases.
Ultimately, for large �G, those modes which have not

inflated away exhibit a completely staggered behavior in
the LTR cosmology. This limit may be regarded as the
converse of the ‘‘instantaneous turn-on’’ limit taken in
Eq. (5.6) for small �G: indeed, we now have t > tG for
all of the modes which contribute significantly to �

tot.
Moreover, in this case the sum over � can be explicitly
evaluated using the first identity in Eq. (2.25), allowing us
to obtain explicit results for �

tot in the completely stag-
gered limit for both the standard and LTR cosmologies:

standard cosmology: �
tot � 35=4

229=4�1=2
ðgG�Þ1=2

�
�

MP

�
2
t1=2MREf̂

3=2
X �GCðyÞ

LTR cosmology: �
tot � 3

8

�
�

MP

�
2
�
tMRE

tRH

�
1=2

f̂2X; (5.9)

where CðyÞ � P

~1=2A2

 for the standard-cosmology case.
Note that the y-dependence ofCðyÞ is illustrated in Fig. 4 of
Ref. [13]. In sharp contrast with the results obtained in
Eq. (5.6), we see that in this staggered regime, the expres-
sions for �

tot in the standard and LTR cosmologies differ
significantly. In the standard cosmology,�

tot depends non-
trivially on f̂X, �G, andMc (through its dependence on y).
By contrast, in the LTR cosmology, �

tot depends on f̂X in
this staggered-oscillation regime, but not on �G or Mc.

Following similar reasoning, we can also understand the
behavior of the tower fraction �, beginning with the
results displayed in Fig. 6 for the standard cosmology.
These results nicely illustrate an important general prop-
erty of � in brane/bulk models of dynamical dark matter
discussed in Ref. [13], which is that the behavior of � is
strongly correlated with the value of y. In particular, when
y 	 1, the mass of the lightest mode in the KK tower is
proportionally far lighter than those all of the excited
modes, and consequently its contribution �0

to the total

abundance will be much larger than the contributions
from all of those other modes combined. Indeed, this is
nothing but the four-dimensional limit of the KK theory.
This property of � is independent of both the specific

cosmological context and whether or not any of the modes
in the tower have staggered oscillation onset times, as can
be seen from Eqs. (4.18) through (4.21). By contrast, when
y 
 1, each mode with a mass  
 trans contributes
essentially equally toward �

tot when t ¼ tG for all a,
and hence � � 1. This behavior is manifest in the various
panels of Fig. 6, in which � rapidly transitions from
nearly zero to nearly unity as one crosses the y ¼ 1
contour.
In Fig. 8, we display the behavior of � in the LTR

cosmology. For small �G, the situation is very similar to
that in the standard cosmology: all modes in the tower
begin oscillating at tG, and hence � � 0 for y 	 1, while
� � 1 for y 
 1. However, as �G increases, the oscilla-
tion onset times for more and more of the lighter modes in
the tower become staggered in time. In this regime, the
energy densities 	 associated with the lighter modes in
the tower scale like vacuum energy (and are hence unaf-
fected by Hubble dilution) for a longer time before coher-
ent oscillations set in and they begin to scale like massive
matter, as illustrated in Fig. 1 of Ref. [13]. It follows that in
this regime, the lighter modes account for a greater fraction
of �

tot. For this reason, as discussed in Ref. [13], � no
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longer approaches unity for y 
 1 in those regions of
parameter space in which oscillation onset times are stag-
gered, but instead asymptotes to1

�max � 1� 8

�2
� 0:189; (5.10)

for the case of the LTR cosmology. Roughly speaking, the
regions of parameter space in which this occurs are those in
which the staggered-onset criteria in Eq. (5.8) are satisfied.
Indeed, this effect first becomes apparent in the �G ¼
1 GeV panel of Fig. 8 and becomes increasingly significant
as�G increases and staggering effects become relevant for

smaller and smaller f̂X and larger and largerMc. By�G ¼
10 GeV, these staggering effects are realized over nearly

the entirety of ðf̂X;McÞ space shown, leaving only a narrow
strip in which all modes still begin oscillating at tG, and by
�G ¼ 100 GeV, even this strip vanishes. Note also that the
effect on� of modes being inflated away is apparent in the
upper left of those panels in Fig. 8 for which �G �
10 GeV. While � is technically undefined in this region
of parameter space because �

tot ¼ 0, we have set � ¼ 0
within this region to illustrate where this effect is relevant.

As discussed in the beginning of this section, the inter-
esting regions of parameter space for dynamical dark
matter are ultimately those in which �

tot � �CDM, while
at the same time � differs significantly from zero. Given
the results in Figs. 5 through 8, we can now determine
whether this situation ever actually arises in our model.
Comparing the results in Figs. 5 and 6, we see that this

occurs in the standard cosmology for small values of f̂X,
within a diagonal stripe of parameter space slightly to the
left of the blue�

tot ¼ 1 contour in each panel. We also see

that this stripe moves to the right in ðf̂X;McÞ space as �G

increases. By contrast, comparing the results in Figs. 7 and
8, we see that the above conditions are satisfied in the LTR
cosmology in the region of parameter space where

preferred regionðLTRÞ:

8>>><
>>>:
� f̂X�1014–1015 GeV

� �G*100GeV

� Mc small enough thaty&1:

(5.11)

This result is certainly intriguing, as it suggests that the
preferred scale for �G in this model is roughly the TeV
scale for the LTR cosmology—a scale at which there is
good reason to expect new physics to appear.
The principal message of Figs. 5 through 8, then, is that

our bulk-axion model indeed satisfies the conditions on
�

tot and � for dynamical dark matter within these regions
of parameter space. In other words, within these regions,
our axion ensemble reproduces the observed dark-matter
relic abundance, and does so in a nontrivial manner, with a
substantial number of its constituents contributing signifi-
cantly to �CDM. Of course these alone are not sufficient
conditions for a successful model of dynamical dark mat-
ter: such a model must also not only have an appropriate
present-day equation-of-state parameter w, but also sat-
isfy all additional relevant phenomenological constraints.
In the remainder of this section, we will address the con-
straints on w; the rest of the applicable constraints will be
addressed in Sect. VI.
One particular ramification of these constraints, how-

ever, is appropriate to mention before proceeding further.
As discussed in Sec. IV, certain bounds which apply ge-
nerically to models with large, flat extra dimensions
strongly prefer the LTR cosmology over the standard cos-
mology. For this reason, we will focus primarily on the
LTR case from this point forward.

C. Dark towers: equations of state

Having characterized the behavior of �
tot and � over

the parameter space of our bulk-axion model, we now
proceed to discuss the third critical quantity which char-
acterizes the dynamical dark-matter ensemble in this
model: the present-day effective equation-of-state parame-
ter w. Since it is now clear which regions of model
parameter space are suitable for dynamical dark matter,
wewill not perform a general survey ofw over the entirety
of that parameter space, as we did with �

tot and �,
but instead focus on the preferred regions indicated in
Eq. (5.11).
In order to calculate w we need to know the values of

the coefficients and exponents A, B, �, and � appearing in
Eq. (5.4). This, in turn, requires knowledge of how our
abundances and decay widths scale with . As in the
previous subsection, we will assume that the abundances
of the a result from misalignment production, and like-
wise we will assume that their decay widths � are those
appropriate for a photonic axion with c� ¼ 1. Because the

preferred region of parameter space specified in Eq. (5.11)
for our model is one which is well approximated by assum-
ing staggered oscillation onset times for all relevant modes,
the correct expression for� is the one given in Eq. (4.21).
Likewise, the decay width for a photonic axion is given by
the expression in Eq. (3.1). We therefore find that the
coefficients A and B appearing in Eq. (5.4) are given,
respectively, by

1Note that there are two (ultimately equivalent) ways to derive
this result, corresponding to two different methods of taking the
y ! 0 limit. In Ref. [13], we recognized that n � ðnþ 1=2ÞMc

as y ! 0. Since the y ! 0 limit also implies that  
 trans for
all , we can similarly approximate A � 1= in this limit. We
then have � � A2

 � 1=2, whereupon it follows that
�0

=�tot ¼ 4=
P

nðnþ 1=2Þ�2 ¼ 8=�2, or equivalently �max ¼
1� 8=�2. However, it is also possible to retain the exact form
� � A2

, whereupon we see that �0
=�tot ¼ A2

0
where A0

is
the value of A for the lightest eigenvalue 0 and where we have
used the identity

P
A

2
 ¼ 1 to perform the sum over KK modes.

Note that this result is exact and valid for all y. However, it is
easy to verify that A0

! 2
ffiffiffi
2

p
=� as y ! 0. We thus again find

that �max ¼ 1� 8=�2.
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A ¼ 3
�2

M2
P

�
tMRE

tRH

�
2 �

8>>><
>>>:

24=3G4=3
� m4

X

f̂2=3X

 *
�m2

X

Mc

22=5G4=3
� ðf̂XmXÞ6=5

ð1þ�2=y2Þ7=5  &
�m2

X

Mc

(5.12)

and

B ¼

8>>><
>>>:

ð2f̂XmXÞ2=3
6McG

1=3
�

 *
�m2

X

Mc

ð4f̂XmXÞ2=5
10McG

1=5
�

ð1þ �2=y2Þ1=5  &
�m2

X

Mc
;

(5.13)

while the power-law indices � and � are given by

ð�;�Þ �
8<
:
ð�4=3;�2=3Þ  *

�m2
X

Mc

ð�2=5;�4=5Þ  &
�m2

X

Mc
:

(5.14)

Substituting these results into Eq. (5.4), we find that

w ¼ �2

M2
PMc�


tot

�
tMRE

tRH

�
1=2�

8<
:
G�m

4
Xtnow *

�m2
X

Mc

3ð2G�m
8
Xf̂

8
XtnowÞ1=5

10ð1þ�2=y2Þ6=5 &
�m2

X

Mc
:

(5.15)

Let us discuss the implications of these results. First, it
was noted in Ref. [13] that the effective equation-of-state
parameter weffðtÞ for any given dynamical dark-matter
ensemble at any time t < tnow will always fall within the
range 0 � weffðtÞ � w as long as �þ �<�1. This
makes such ensembles less dangerous from a phenomeno-
logical point of view. Indeed, we see from the results above
that this criterion is satisfied for both the large- and
small- regimes in the bulk-axion model under considera-
tion here.

Second, in order to convey a sense of the characteristic
size of w in the favored region of parameter space for
dynamical dark matter given in Eq. (5.11), we note that for

the choice of f̂X ¼ 1014 GeV, Mc ¼ 10�11 GeV, and
�G ¼ 1 TeV, with gG ¼ � ¼ � ¼ 1, we find that w �
8:4� 10�23 for  * �m2

X=Mc, while w � 5:7� 10�11

for  & �m2
X=Mc. As these numbers are both extremely

close to zero, we conclude that at present time our axion
ensemble has an effective equation of state which can be
legitimately interpreted as that of dark matter. Thus our
ensemble meets all three requirements for a self-consistent
model of dynamical dark matter.

VI. CHARACTERIZING THE ENSEMBLE:
CONSTRAINTS AND PROSPECTS

FOR DETECTION

In the previous section, we demonstrated that an en-
semble of mixed KK excitations of a bulk-axion field can
collectively account for the observed relic abundance of
dark matter in our universe. However, as discussed in
Ref. [13], in order to be a viable model of dynamical

dark matter, the model must also comply with a variety
of additional laboratory, astrophysical, and cosmological
constraints. Some of these constraints are intrinsic to any
theory involving large extra dimensions, while others arise
due to the physical effects of the axion field which prop-
agates in the bulk of those dimensions. A number of
analyses of such constraints exist in the literature
[26,41,42] for the specific case in which the bulk axion
in question is identified with the QCD axion and the
fundamental, D-dimensional quantum-gravity scale is
taken to be roughly MD �OðTeVÞ. By contrast, in the
present analysis, we are interested in a broader class of
axions which are neither required to couple to the fields of
the SM (and, in particular, to hadrons) in the same manner
as a QCD axion, nor subject to the same strict relationship
between the suppression scale for those couplings and the
axion mass. Moreover, our primary motivation is not to
address the hierarchy problem, but to address the issue of
what constitutes the nonbaryonic dark matter in our uni-
verse. For these reasons, we will not focus exclusively on
scenarios in whichMD is at or near the TeV scale, but also
consider scenarios with much larger MD. As a conse-
quence, exclusion limits on the parameter space of the
more general axion scenarios considered here can differ
quite significantly from those presented in previous stud-
ies, and thus warrant reexamination.
We begin our summary of the applicable constraints on

our model with a brief synopsis of those limits which arise
generically in theories with large, flat extra dimensions and
which do not depend on the presence or properties of the
bulk-axion field. For the most part, these limits, an over-
view of which was presented in Ref. [28], tend to derive
from the nonobservation of physical effects related to the
dynamics of KK gravitons. These limits take many forms.
First, there is the direct lower bound on Mc quoted in
Eq. (3.4) from experimental limits on modifications of
Newton’s law at short distances due to KK-graviton ex-
change [33]. In addition, a number of constraints arise as a
consequence of the production of these particles in the
early universe [28,36]. As discussed in Sec. IV, these
cosmological constraints can collectively be addressed by
positing that the universe underwent a late period of
cosmic inflation with a reheating temperature TRH �
OðMeVÞ. Thus, by adopting an LTR cosmology with a
reheating temperature of this order, as we have done, we
automatically ensure that a large number of these model-
independent constraints are satisfied.
A number of additional constraints on theories of

this sort can be derived from observational limits on
KK-graviton production in astrophysical sources, such as
stars [43] and supernovae [44,45]. The most stringent
of these constraints are currently those resulting from
gravitationally trapped KK gravitons in the halos of neu-
tron stars either decaying to photons or serving as a heat
source for the stars themselves. In the case of n > 1 flat
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extra dimensions with equal radii compactified on an
n-torus, these limits supersede the limit on Mc given
in Eq. (3.4). In particular, for n ¼ 2, the bound is Mc *
5:8� 10�7 GeV, while for n ¼ 3, one finds Mc *
3:8� 10�10 GeV [43]. However, if the radii of the extra
dimensions differ from one another, or if the compactifi-
cation manifold is not toroidal, these bounds can be con-
siderably weaker. Furthermore, it is possible that the axion
propagates only within some number na of the additional
dimensions, na < n. In other words, the axion could be
confined to a (4þ na)-dimensional brane within the bulk.

In this case, the effective, four-dimensional scales f̂X and
MP are related to the fundamental, higher-dimensional
scales fX and MD in completely different ways:

M2
P ¼ VnM

2þn
D f̂2X ¼ Vnaf

2þna
X : (6.1)

The upshot, then, is that naı̈ve limits on MD derived from
KK-graviton dynamics under the assumption of toroidal
compactification and equal radii do not necessarily trans-
late in a straightforward manner into constraints on the
mass scales relevant to the physics of a bulk axion.
Fortunately, the bound in Eq. (3.4) is universal and is not
sensitive to the total number of extra dimensions, unless
they are each of comparable size. We will therefore take
this bound to be the lower limit onMc in the na ¼ 1model
under consideration here.

We now turn to address those constraints which relate to
the effects of the bulk axion itself. Indeed, a number of
considerations serve to constrain the properties of light
exotic particles with suppressed couplings to SM fields.
Some of these constraints derive from observational limits
on the production of such particles in astrophysical sources
such as stars and supernovae; others derive from limits on
the decays of a cosmological population of such fields into
SM fields; and still others owe to direct experimental
bounds from microwave-cavity experiments, helioscopes,
etc. A detailed analysis of the exclusion limits implied by
these constraints on general bulk-axion scenarios will be
presented in Ref. [32]. Here, we merely summarize the
results and discuss their implications for a mixed KK tower
of axions as a model of dynamical dark matter.

As we shall discuss further in Ref. [32], it is convenient
to separate the applicable constraints into four rough
classes, based on the origin of the constraint and on the
dynamics being probed. The first class of constraints which
apply to scenarios of this sort are those related to the total
present-day dark-matter relic abundance �

tot. Most of
these bounds have been addressed in previous sections,
but it will be useful to recapitulate them here:

(i) The axion ensemble must yield an acceptable con-
tribution to the present-day dark-matter relic density.
While �

tot <�CDM is permitted, provided some
additional field or fields make up the deficit, values
of �

tot in excess of the WMAP upper bound in
Eq. (1.1) are excluded.

(ii) At no time in the past may our ensemble overclose
or prematurely matter-dominate the universe.

(iii) The present-day effective equation-of-state pa-
rameter w for the ensemble must not deviate
significantly from zero.

(iv) Misalignment production must provide the domi-
nant contribution to � for all a, and the popula-
tion of hot axions generated via thermal production
must be negligible. We therefore require that
�prod 
 H at all times after the end of cosmic

inflation, where �prod is the total production rate

of axions from interactions with SM fields in the
thermal bath.

(v) We have also assumed that the population of axions
generated from the decays of cosmic strings associ-
ated with the breaking of the global Uð1ÞX symme-
try is small compared to the population generated by
misalignment production. We therefore impose the
requirement that fX * HI, so that such strings are
diluted away by inflation.

(vi) Our model must respect current observational lim-
its on isocurvature fluctuations from WMAP [2].

The last of these constraints warrants additional discus-
sion. Nonadiabatic fluctuations—also known as isocurva-
ture fluctuations—refer to fluctuations not in the total
energy density (which relates directly to spacetime curva-
ture) but rather in how that total energy density is distrib-
uted among different contributing fields (including the
collective contribution from the dark sector). Such isocur-
vature fluctuations are tightly constrained by a combina-
tion of CMB observations, baryon-acoustic-oscillation
(BAO) measurements, and supernova data [2]. Such fluc-
tuations generically arise whenever a cosmological popu-
lation of particles is produced in a manner such that its
primordial density perturbations are uncorrelated with
those of the inflaton field. Indeed, limits on isocurvature
fluctuations place severe constraints on the relic abundance
of a standard QCD axion produced via vacuum misalign-
ment [17], so it might reasonably be assumed that such
limits might play a significant role in constraining our
model as well.
It turns out, however, that our model satisfies theWMAP

constraints on nonadiabatic fluctuations far more easily
than do standard axion dark-matter models. A detailed
discussion of these constraints and how they apply to
bulk-axion models of dynamical dark-matter will be pre-
sented in Ref. [32], but the gist of the argument is as
follows. Although our dynamical dark-matter ensemble
comprises a large number of individual components a,
the fact that �

tot � �CDM implies that the individual
abundance � associated with each of these components
is actually quite small. Furthermore, the underlying five-
dimensional nature of our KK axion tower guarantees that
the primordial density fluctuations for each a are all
determined by the fluctuations �� of the same initial
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misalignment angle �. For these reasons, the expected
magnitude for isocurvature fluctuations in our model turns
out to be no greater than it is in models in which misalign-
ment production causes a single four-dimensional field to
carry the complete dark-matter abundance. Moreover, if
one assumes a Gaussian distribution for ��, it is straight-

forward to demonstrate [32] that hð��Þ2i �H2
I =ð2�f̂XÞ2.

Thus, all that is required is that HI 
 f̂X within our
preferred regions of parameter space. However, as dis-
cussed in Eq. (5.11), the phenomenologically preferred

scale for f̂X in our model is roughly Oð1014–1016ÞGeV.
For f̂X at or around this scale, it turns out that current
constraints on isocurvature fluctuations can be satisfied,
provided thatHI & Oð109–1010Þ GeV. Such a scale forHI

is easy to realize in traditional cosmological scenarios, and
is even more natural in LTR cosmologies wherein the
reheating temperature is OðMeVÞ. Thus, in our model,
it is not difficult to satisfy current isocurvature bounds
while simultaneously obtaining a total relic abundance
�

tot � �CDM.
The underlying reason why our model easily evades

these nonadiabatic constraints is that within the preferred
region of parameter space in Eq. (5.11), the five-
dimensional axion in our model is not the standard QCD
axion. In particular, we see that the scale �G is signifi-
cantly larger than �QCD. Our model is thus freed from the

implicit parametric dependence on �QCD which afflicts

more traditional models of axion dark matter, and allows
the corresponding nonadiabatic fluctuations to have a
much smaller scale.

A second class of constraints comprises those observa-
tional limits on processes in which axions are produced
via their interactions with the fields of the SM and then
subsequently detected via those same interactions. These
include:

(i) Limits from helioscope experiments, such as CAST
[46], which search for axions produced by interac-
tions with SM particles in the sun via their ‘‘conver-
sion’’ to photons in the presence of a magnetic field.

(ii) Limits from light-shining-through-walls (LSW)
experiments (see Ref. [47] for a thorough review),
including those by the BEV and GammaeV
collaborations.

The most stringent of these bounds is currently that from
CAST; we shall therefore take the CAST bound as repre-
sentative of this class.

The physical processes to which this second class of
limits applies are all subject to a particular effect which
arises universally in models with both brane and bulk mass
terms. This is the phenomenon of decoherence discussed in
Refs. [13,26]. This decoherence phenomenon can substan-
tially suppress the cross sections for such processes in our
model, and thereby significantly weaken the bounds on

f̂X, Mc, and �G. To summarize, the cross section for any

process in which axions are produced at some time t0 and
then subsequently detected at a later time t is given by


ðtÞ / N2

f̂4X
PðtÞ; (6.2)

where N � fX=Mc is the number of modes contributing
in the sum and where PðtÞ is the detection probability at
time t. This latter quantity is given in the relativistic limit
by [26]

PðtÞ ¼ 1

N2

�X


~8A4
e

��t þX


X
0�

~4 ~04A2
A

2
0

� e�ð�þ�0 Þt=2 cos
�ð2 � 02Þðt� t0Þ

2p

��
; (6.3)

where p is the initial momentum of the axion. For any
reasonable choice of model parameters, the sum in the
second term decoheres on time scale so rapid as to be
effectively instantaneous [26]. As a result, 
ðtÞ is sup-
pressed, relative to the naı̈ve expectation, by an additional
factor of N. This effect considerably weakens the con-
straints in this class.
A third class of constraints can be derived from pro-

cesses in which axions are produced via their interactions
with SM fields but not subsequently detected. Instead, the
presence of the axions is made manifest by their ability to
carry away momentum and energy from a given system.
These constraints include:
(i) Observational limits on the energy loss in superno-

vae, and, in particular, on the fraction of the energy
released by SN1987A in the form of light exotic
fields [48].

(ii) Limits related to the effects of energy dissipation
by axions on stellar lifetimes. The most stringent
such limits currently come from observations of
globular-cluster stars [33], but similar limits have
also been derived from constraints on the lifetimes
or energy-loss rates of other astrophysical bodies
(e.g., the sun [49] and white dwarfs [50]).

(iii) Constraints from the absence of observed signals in
channels such as jþ 6ET and �þ 6ET at particle
colliders. In general, the constraints on axion pro-
duction in these channels are analogous to the well-
known constraints on KK-graviton production [51].

(iv) Limits on the branching fractions in particular ex-
otic decay channels for certain hadrons [52].

The degree to which many of these limits constrain the
parameter space of bulk-axion scenarios depends quite
crucially on how the axion in question couples to the fields
of the SM. Moreover, many of the constraints in this class
are considerably relaxed in regions of parameter space in
which y & 1, due to the coupling-suppression phenomenon
discussed in Ref. [13]. This effect will be discussed in
greater detail in Ref. [32].
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A fourth and final class of constraints is related to the
interactions and decays of a cosmological population of
axions. Depending on the cosmological epoch during
which such decays occur, they can result in a number of
potential signals, none of which have been observed to
date. For example, these include:

(i) Decays of cosmic axions which occur after the be-
ginning of the BBN epoch (at around t� 1 s), but
before last scattering (at around t� 1013 s). These
could disrupt nucleosynthesis and affect the abun-
dances of light elements [53].

(ii) Photoproduction (either primary or secondary) from
any axion decays that occur between the epoch of
electron-positron annihilation (at around t� 103 s)
and last scattering. These can lead to observable
distortions of the CMB [54].

(iii) Photoproduction (either primary or secondary)
from any axion decays that occur after last scatter-
ing. These can lead to peaks and other indicative
features in the diffuse X-ray and gamma-ray
spectra [55], but such features have not been ob-
served by FERMI [56], EGRET [57], COMPTEL
[58,59], or any other X-ray or gamma-ray telescope
[60–62].

(iv) Entropy production from late axion decays. This
can have observational effects on cosmological
parameters, such as the rate of cosmic expansion.

(v) Limits from microwave-cavity-detector experi-
ments such as CARRACK [63] and ADMX [64],
which search for cosmic axions via their conversion
to photons in the presence of strong magnetic fields.

It should be reiterated that the vast majority of the
constraints enumerated above are highly model-dependent.
The standard energy-dissipation limit from SN1987A [48],
for example, provides one of the most stringent limits on
the parameter space of a QCD axion. However, these limits
are predicated on the assumption that the axion couples
to hadrons with significant strength, and that processes
such as NN ! NNa consequently dominate the axion-
production rate. A purely photonic axion, on the other
hand, lacks such couplings, and hence can only be gener-
ated via interactions such as the Primakoff process e�� !
e�a, for which the rate is much smaller. As a result, the

bounds on f̂X, Mc, and �G for such an axion are consid-
erably weaker than those for a hadronic axion (see, for
example, Refs. [52,65] for an analysis of this constraint for
a four-dimensional photonic axion). A variety of other
constraints, including bounds from monojet searches at
hadron colliders and from the requirement that misalign-
ment production of axions dominates over thermal produc-
tion, also differ markedly depending on whether or not the
axion in question couples to hadrons. Still other bounds,
such as that from energy loss in white dwarfs [50], depend
sensitively on whether or not a given axion couples to
leptons.

In Figs. 9 and 10, we display a series of exclusion plots

in ðf̂X;McÞ space, taken from Ref. [32], which indicate the
regions of parameter space excluded by the considerations
enumerated above. The three panels in Fig. 9 correspond to
�G ¼ f1 GeV; 1 TeV; 100 TeVg for the case of a photonic
axion with c� ¼ 1, while the three panels in Fig. 10 cor-

respond to the same choices of�G, but for a hadronic axion
with c� ¼ cg ¼ 1. In each case, we have taken � ¼ gG ¼
� ¼ 1, with TRH ¼ 5 MeV and HI ¼ 10�3 GeV; for the
hadronic case, we have also assumed that Ca�, Ca�N, etc.,
take the values given in Eqs. (2.7) and (2.8). The shaded
regions in each panel are excluded by the battery of con-
straints discussed above. The red region is excluded by
CAST data, the magenta region by limits on collider
processes in which axions appear as missing energy, the
purple region by limits on modifications of Newton’s law
from Eötvös-type experiments, the orange region by limits
on distinguishable features in the diffuse extragalactic
X-ray and gamma-ray background spectra, the yellow
region by observations of the lifetimes of globular-cluster
stars, the cyan region by energy-loss limits from supernova
SN1987A, the gray region by the model-consistency re-
quirement that �G < fX, and the brown region by the
upper bound on the dark-matter relic abundance from
WMAP. A black, dashed line corresponding to the condi-
tion y ¼ � has also been included in each panel for refer-
ence. Note that each of the exclusion regions shown, with
the exception of that from WMAP, differs from the corre-
sponding exclusion region for a four-dimensional axion.
The exclusion regions shown are those appropriate for the
five-dimensional axion on which our model is based, and
are derived in Ref. [32].
The constraints enumerated above for which no exclu-

sion contour has been included in these figures are gener-
ally subleading. For example, the applicable constraints
from exotic hadron decays [52] are generally far weaker
than the constraints from SN1987A, thermal production,
etc., for any given choice of parameters. The constraints
arising from observational limits on distortions of the CMB
are not particularly stringent either, and turn out not to
constrain any portion of the model parameter space shown
in any of the panels appearing in Figs. 9 and 10. This is
because the regions of parameter space in which the � are

sizeable are those in which f̂X is quite small, meaning that
the � are also quite small, as is evident from Fig. 7.
Constraints related to the effects of late-decaying a on
BBN were not explicitly calculated in Ref. [32]. However,
exclusion contours derived from BBN constraints on late-
decaying particles are expected to be roughly similar to
those derived from CMB constraints, and consequently
such constraints are not expected to rule out any additional
region of model parameter space not already excluded by
other considerations. Limits on the effective equation-of-
state parameter weffðtÞ are not particularly constraining
either. This should come as no surprise, given that we
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showed in Sec. V that the effect of decays on �
tot was

negligible within the region of parameter space relevant for
dynamical dark matter. A number of additional constraints
not listed above also serve to constrain very light axions
and axionlike particles [66]; however the particles for
which these constraints apply typically involve values of
mX far smaller than those of interest here.

It is evident from these figures that the most stringent
constraints on both photonic and hadronic axions are those
from SN1987A (cyan) and collider limits on missing-
energy processes (magenta). Nevertheless, it is also evident
that a hadronic axion is significantly more constrained
than a purely photonic axion. As discussed above, the
primary reason for this is that the rate of axion production
in a thermal setting via interactions with nuclei, pions,

etc., is far larger than the corresponding rate of production
via the electron Primakoff process and other interac-
tions which involve the coupling of an axion to photons
alone.
Having assessed the phenomenological constraints on a

bulk axion, we are now able to definitively address the
question as to whether or not our model is a viable model
of dynamical dark-matter. In order for this to be so, we
require that at least some part of the preferred region in
Eq. (5.11) be consistent with the constraints discussed
above. Inspecting Figs. 9 and 10, we see that indeed
our preferred region is compatible with all of these con-
straints in both the photonic and hadronic axion cases
for �G * 100 GeV, with Mc above the lower bound from
Newton’s-law modification, but small enough so that

FIG. 10 (color online). Same as in Fig. 9, but for a hadronic axion—i.e., an axion coupled both to the photon and to the gluon field
(and hence to pions, nucleons, etc.), but not directly to SM quarks or leptons.

FIG. 9 (color online). Exclusion contours associated with all applicable phenomenological constraints for our bulk-axion model with
�G ¼ 1 GeV (left panel), �G ¼ 1 TeV (middle panel), and �G ¼ 100 TeV (right panel). In each case, we have taken � ¼ gG ¼ 1,
with TRH ¼ 5 MeV and HI ¼ 10�3 GeV, and we have assumed that the axion only couples to the photon field. The shaded regions
are, respectively, excluded by data from helioscope measurements with CAST (red), collider considerations (magenta), tests of
Newton’s-law modifications at Eötvös-type experiments (purple), measurements of the diffuse extragalactic X-ray and gamma-ray
spectra (orange), observations of the lifetimes of globular-cluster stars (yellow), energy-loss limits from supernova SN1987A (cyan),
the model-consistency requirement that �G < fX (gray), and the upper bound on the dark-matter relic abundance from WMAP
(brown). The black, dashed line corresponds to the condition y ¼ �.
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y & �. Furthermore, we also see from Figs. 9 and 10 that
the phenomenological constraints even permit us to reach
deeply into the y 
 1 region. Note that this represents a
radical departure from the QCD-axion results presented
in Ref. [26]—a departure which is enabled because �G is
a free parameter in our model. Thus, we conclude that
within this region of parameter space, our bulk-axionmodel
constitutes a viable, explicit model of dynamical dark
matter.

It should be stated that in addition to the limits dis-
cussed above, certain additional astrophysical bounds
may also serve to constrain the parameter space of
bulk-axion scenarios. For example, it has recently been
shown [67] that limits on gamma-ray signals from decay-
ing axions with masses of Oð10–100 MeVÞ produced in
supernovae can yield an even more stringent limit than
that arising from energy-dissipation considerations alone.
While these bounds are once again model-dependent
(and directly applicable only to cases in which the axion
in question couples directly to hadrons with significant
strength, and not to a photonic axion), they could provide
an important additional constraint on the parameter space
of dynamical dark-matter scenarios involving bulk axi-
ons. Furthermore, it is also possible that comparable
bounds could be obtained from an analysis of photo-
emission limits and cooling-rate constraints from neutron
stars, similar to that performed for KK gravitons in
Ref. [43].

It is important to note that while additional bounds
related to axion production in supernovae may serve to
further constrain the parameter space of bulk-axion sce-
narios, these constraints cannot rule out axion models of
dynamical dark matter entirely. This is due to the fact that

for any given choice of model parameters f̂X,Mc, and�G,
the couplings of any mode for which  & �m2

X=Mc to the
SM fields will be suppressed by mixing effects, as dis-
cussed in Ref. [13]. Indeed, because we can reach deeply
into the y 
 1 region, the magnitude of this coupling
suppression can be quite significant. For example, for
y�Oð10�3Þ, we find that the first 20 axion mass eigen-

modes have coupling suppressions ~2A � 10�6. If the
coupling suppressions are significant for those a
with masses in the ‘‘dangerous’’ range 10 MeV &  &
100 MeV discussed above, such a will be produced in
supernovae at a negligible rate, and thus all supernova
bounds on axion production can be evaded. This can be
arranged by demanding that �m2

X=Mc * 1 GeV, so that
all modes with masses  
 1 GeV are effectively in the
small- regime. Therefore, since �

tot is essentially inde-
pendent of �G within our preferred region of parameter
space, satisfying this condition is simply a matter of
choosing a sufficiently large value for �G. Indeed, setting

f̂X ¼ 1014 GeV in accord with Eq. (5.11), we find that all
axion-production constraints from supernovae can be
avoided for

�G * ð56 TeVÞ �
�

Mc

10�11 GeV

�
1=4

: (6.4)

We emphasize that this rough bound is not a necessary
condition for consistency with supernova data, but a suffi-
cient one. Furthermore, since the neutron-star cooling and
photo-emission bounds on KK gravitons rest on the as-
sumption that a population of gravitationally-bound par-
ticles of this sort was generated by the supernova whose
core-collapse produced a given neutron star, any similar
bound on axions would also cease to apply in this regime.
We also note that since the fundamental scale fX is still
roughly an order of magnitude larger than the value of �G

required to satisfy this condition, given the input values of

f̂X and Mc, no theoretical inconsistency results from pos-
iting a confinement scale of this order.
The fact that this coupling-suppression phenomenon is

capable of rendering our model consistent with supernova
bounds despite the large multiplicity of light modes attests
to the importance of this effect in brane/bulk theories. A
more detailed overview of this phenomenon and its physi-
cal implications will be provided in Ref. [32].

VII. DISCUSSION AND CONCLUSIONS

The aim of this paper has been to present an explicit
realization of the dynamical dark-matter framework pre-
sented in Ref. [13]. To that end, we have shown that an
ensemble consisting of the KK excitations of a light, axion-
like field can indeed provide such a realization. Indeed, we
have shown that despite the fact that the masses, decay
widths, and relic abundances of all of these particles are
controlled by only three dimensionful parameters, the en-
semble to which they give rise is simultaneously able to
reproduce the observed value of �CDM and satisfy all
applicable constraints from laboratory experiments, astro-
physics, and cosmology. As such, this model provides a
‘‘proof of concept’’ for dynamical dark matter as a viable
alternative framework for dark-matter physics. In addition,
it also provides a method of addressing the dark-matter
question which does not require the introduction of any
additional stabilizing symmetry.
Many qualifications, extensions, and possible general-

izations of our dynamical dark-matter framework were
discussed at the end of Ref. [13]; here, we shall restrict
our attention to five points which are specific to the bulk-
axion model presented in this paper.
(i) First, in this work, we have made use of the rapid-

turn-on approximation in Eq. (4.8) in calculating the
relic abundances of the a. As discussed in Sec. IV,
this approximation is well motivated, since the
instanton-generated mass term mXðTÞ falls rapidly
with temperature when T * �G. Furthermore, the
primary results of this paper are essentially insensi-
tive to this approximation. This is because the fields
which contribute significantly to�CDM in regions of
parameter space which yield a realistic dark-matter
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relic abundance begin oscillating only well after
mXðTÞ has already settled into its constant, late-
time value. However, the relic abundance of any field
which begins oscillating before mXðTÞ takes this
late-time value will, in general, depend on the details
of how this mass evolves in time. The quantitative
effect on the abundance of a single field has long
been appreciated [22], but in our model, the effects
are more complicated and more subtle because we
have a coupled system of mixed scalars with differ-
ent masses and therefore different oscillation times.
It would be interesting to examine how a more
rigorous treatment of the turn-on of mXðTÞ would
affect �tot and � in situations in which these quan-
tities are sensitive to the time-dependence of this
brane-mass term. Such a study would have important
implications for more general scenarios involving
other kinds of light bulk scalars. Indeed, the rela-
tionship between the size of the brane-mass term for
such scalars and the time at which that brane mass is
dynamically generated may differ significantly from
the relationship which holds for axions.

(ii) Second, as alluded to in Sec. VI, it may be possible to
further test or constrain the parameter space of bulk-
axion models of dynamical dark matter in a number
of ways. We have already mentioned one potential
constraint which derives from limits on high-energy
photons resulting from the decays of axions pro-
duced in supernovae [67]. Other considerations
also merit investigation. For example, a detailed
analysis of the limits imposed by BBN on scenarios
involving multiple decaying fields with different
lifetimes and abundances could provide important
constraints on dynamical dark-matter models in gen-
eral. In addition, other considerations, such as limits
onmass loss and decreases in the dark-matter density
in the halos of dwarf galaxies [68], could also be used
to constrain dynamical dark-matter models. Indeed,
while a number of standard constraints on individual
unstable relic particles in the early universe have
been revisited in a dynamical dark-matter context
[32], it would be interesting to see how other con-
straints would apply in this context as well.

(iii) Third, we note that we have not specified a particu-
lar model of inflation as part of the cosmological
context for ourmodel. Indeed, other than requiring a
low reheating temperature TRH �OðMeVÞ, we
have remained largely agnostic about the details of
the inflationary model, the form of the inflaton
potential, or even the scale HI. For the most part,
our model does not depend on these particulars.
However, certain consistency conditions do place
meaningful restrictions on the set of inflationary
scenarios with which our model is compatible.
One such condition can be derived from the fact

that vacuum fluctuations during inflation generi-
cally give rise to a background value h�2i �
H3

I tI=4�
2 for any scalar � with a mass m� 
 HI,

where tI is the duration of inflation. This implies that
the relationship between the mass  and initial
energy density 	 in Eq. (4.12) in our model is truly
valid only for the lighter a in a given tower—i.e.,

those for which �2A2
f̂

2
X * H3

I tI=4�
2. By contrast,

any heavier a which still satisfy  
 HI receive
the leading contributions to their background values
from vacuum fluctuations during inflation, and thus
effectively acquire an initial abundance 	 �
2H3

I tI. In typical scenarios, we expect HItI �
Ne �Oð60Þ, where Ne is the number of e-foldings
of inflation. The results for �tot derived in Sec. V

therefore remain consistent, provided that f̂2X 	
H2

I . Indeed, since f̂X � 1014–1015 GeV within the
preferred region of parameter space specified in

Eq. (5.11), we see that f̂X 	 HI is certainly not
inconsistent with our model and is in fact even
expected. However, this condition on HI has non-
trivial implications for inflationary models. While a
low scale forHI is certainly not excluded (see, e.g.,
Refs. [39,69]), extremely small values ofHI tend to
be rather nongeneric [70] among typical classes of
inflationary potentials, and thus require either sub-
stantial tuning or careful construction. Indeed, any
consistent inflationary model of this sort must give
rise to density fluctuations on a scale consistent with
constraints from CMB data [2], such as those on the
spectral index ns, and must also satisfy other obser-
vational constraints. The development of explicit
inflationary scenarios of this sort is therefore an
interesting topic for future investigation.

(iv) Fourth, we note that while we have chosen in this
paper to focus on the case in which the ensemble of
fields reproducing �CDM are the KK excitations of
a bulk-axion field, such a field is by no means
unique in possessing the characteristics necessary
to give rise to such an ensemble. Indeed, as dis-
cussed in Ref. [13], much of the analysis presented
here pertains to any light bulk scalar for which a
mass term is dynamically generated via its interac-
tions with brane-localized fields. Furthermore, for a
generic bulk scalar, the relationship between the
time at which this mass term is dynamically gen-
erated and the magnitude of this mass term itself
may differ from that which relates tG and mX for a
bulk axion. As a result, much more freedom may
exist for constructing viable models within the
dynamical dark-matter framework. For example,
light moduli could also, in principle, provide a
viable model of dynamical dark matter.

(v) Finally, we emphasize that the presence of addi-
tional axionlike fields is fairly generic, and perhaps
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even expected, in many theoretically motivated sce-
narios for physics beyond the standard model (see,
e.g., Ref. [25]). Moreover, it has even been argued
that many of these axionlike fields are likely to be
light [66]. Thus, the discovery of a vast ensemble of
axionlike particles could provide important insight
into what physics looks like at high scales. Indeed, if
many of these axions have relatively small masses,
we find ourselves in the intriguing situation in which
most of the matter in the universe is simultaneously
both light and dark.

Our goal in this work has been to provide an existence
proof for dynamical dark matter—i.e., to provide a model
in which lifetimes are balanced against abundances in such
a way that the ensemble of dark-matter particles success-
fully reproduces �CDM while at the same time satisfying
all phenomenological constraints. As we have seen in this
paper, our bulk-axion model indeed passes this test. In one
sense, our model does so in the most interesting way
possible: with y 
 1 (signifying that our tower of axion
KK modes is highly mixed) and with a tower fraction �
which is significantly different from zero. In another sense,
however, this model is fairly conservative: those modes
which contribute most to �

tot turn out to be rather long-
lived, and likewise our numerical result for w within the
preferred region of parameter space turns out to be rather
close to zero. Indeed, at first glance, one might suspect that
these latter properties are in fact generic for dynamical
dark-matter models, or even that such models are therefore
really no different from traditional dark-matter models in
terms of their abundance and stability requirements.

This is not the case, however, for the balancing of life-
times against abundances—which is the hallmark of the
dynamical dark-matter framework—is precisely why this
framework does not require such a degree of stability, much
less the existence of a stabilizing symmetry. While certain
accidental features of our bulk-axion model result in a
preferred region of parameter space which is somewhat
conservative, we emphasize that these features are not
generic even to theories with bulk scalars, much less real-
istic dynamical dark-matter models as a whole. Note, for
example, that a particular relationship exists in bulk-axion
models between the mass  of a given KK mass eigenstate
a, the strength of its effective coupling to SM fields, and
the overall magnitude of its relic abundance� through the

dependence of these quantities on f̂X. Even for other bulk
scalars (e.g., moduli), these relationships do not necessarily
hold. There is therefore no reason to expect dynamical dark-
matter models based around such fields to be as conserva-
tive as the axion model we have presented here.

In this connection, there is an even more important point
that deserves emphasis. In dynamical dark-matter scenar-
ios, we have no single characteristic decay width � nor
abundance �, but rather an entire spectrum of widths �

and abundances �. This therefore begs the fundamental

question: if our ‘‘proof of concept’’ model presented here is
to be viewed as somewhat conservative, how far from the
conservative limit can we go?
At first glance, one might try to answer this question by

attempting to determine, for each time t during the evolu-
tion of the universe, the maximum abundance �maxðtÞ that
a given component in a dark-matter ensemble may have if
it has a lifetime �� t. In other words, given the entirety of
the cosmological constraints from BBN, CMB distortions,
etc., there exists a function �maxð�Þ which describes the
maximum abundance any dark-matter constituent may
have as a function of its decay width. It might therefore
seem that knowledge of this function would uniquely
determine the full range of possibilities inherent in our
dynamical dark-matter framework.
Such an approach to answering our fundamental ques-

tion is, in a sense, already a departure from the usual
manner of approaching dark-matter physics. However,
even the notion of such a function �maxð�Þ relies too
strongly on a single-particle perspective. One of the criti-
cal features of our dynamical dark-matter framework is
that it involves a vast ensemble of dark-matter compo-
nents. Some of these components might decay earlier in
cosmological evolution, while others might decay later. As
a result, the maximum abundance that a given component
may have if it decays on a characteristic time scale � will
itself be directly affected not only by the abundances of all
of the other components with earlier characteristic decay
times �0 < �, but even the components with �0 > �.
Moreover, as we have seen, most phenomenological con-
straints on dark-matter decays are sensitive not merely to
what happens at a specific moment in time, but to the
integrated effects of such decays over a broad range of
time scales. In other words, our dynamical dark-matter
framework teaches us that astrophysical and cosmological
constraints do not lead to a single function �maxð�Þ, but
rather a more subtle set of intertwined constraints on
lifetimes and abundances across our entire dark-matter
ensemble as a whole.
Clearly, this issue has not been studied in any detail in

the literature. However, it is readily apparent that this is
indeed the only proper way in which one should express
constraints on particle decays from a generic dark sector.
Viewed from this perspective, then, the existence of even
one viable dynamical dark-matter model—no matter how
‘‘conservative’’ it might be—gives us strong motivation to
reexamine cosmological and astrophysical constraints
within this framework. Indeed, it is only in this way that
we will be able to fully explore our dynamical dark-matter
framework, and understand its full range of phenomeno-
logical possibilities.
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APPENDIX. EVOLUTION OF A DECAYING
AXION FIELD

For completeness, in this Appendix we provide exact
solutions to Eq. (4.6) for a real-valued function aðtÞ.
These take the form

aðtÞ ¼ cðMÞ


~M�ð; tÞ þ cðUÞ


~U�ð; tÞ; (A1)

where cðMÞ
 and cðUÞ

 are undetermined constants, and

~M�ð; tÞ � e�ðkþ�Þt=2
�
M

�
�ðk þ �Þ

2k
; �; kt

�
þ ektM

�
�ðk � �Þ

2k
; �;�kt

��

~U�ð; tÞ � e�ðkþ�Þt=2
�
U

�
�ðk þ �Þ

2k
; �; kt

�
þ ektU

�
�ðk � �Þ

2k
; �;�kt

��
:

(A2)

In these expressions, k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
 � 42

q
, �was defined in Eq. (4.7),Mða; b; xÞ denotes Kummer’s confluent hypergeometric

function

Mða; b; xÞ ¼ X1
m¼0

ðaÞmxm
ðbÞmm!

; (A3)

where ðxÞn ¼ ðxþ n� 1Þ!=ðx� 1Þ! is the Pochhammer function, and Uða; b; xÞ denotes the Tricomi confluent hyper-
geometric function

Uða; b; xÞ ¼ �ð1� bÞ
�ða� bþ 1ÞMða; b; xÞ þ �ðb� 1Þ

�ðaÞ x1�bMða� bþ 1; 2� b; xÞ: (A4)

It can be verified upon setting � ¼ 0 that Eq. (A1) reduces to the exact form obtained for a tower of stable KK axions in
Ref. [26].

The values of cðMÞ
 and cðUÞ

 in Eq. (A1) are determined by the initial conditions chosen for aðtÞ and _aðtÞ at t ¼ t0,
where t0 is some initial time. Expressed in terms of these initial values, this equation takes the general form

aðtÞ ¼ ½ _aðt0Þ ~U�ð; t0Þ � aðt0Þ _~U�ð; t0Þ� ~M�ð; tÞ � ½ _aðt0Þ ~M�ð; t0Þ � aðt0Þ _~M�ð; t0Þ� ~U�ð; tÞ
_~M�ð; t0Þ ~U�ð; t0Þ � _~U�ð; t0Þ ~M�ð; t0Þ

; (A5)

where the time derivatives of ~M�ð; tÞ and ~U�ð; tÞ have the explicit forms

_~M�ð; tÞ ¼ e�ðkþ�Þt=2ðk � �Þ
�
M

�
�ðk þ �Þ

2k
; �; kt

�
� ektM

�
�ðk � �Þ

2k
þ 1; �þ 1;�kt

��

_~U�ð; tÞ ¼ � 1

2
e�ðkþ�Þt=2

�
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�
U

�
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2k
; �; kt

�
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�
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2k
þ 1; �þ 1; kt

��

� ektðk � �Þ
�
U

�
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2k
; �;�kt

�
þ �U

�
�ðk � �Þ

2k
þ 1; �þ 1;�kt

���
: (A6)

Once again, if we set � ¼ 0 in this expression (which also implies that k ¼ 2i), we recover the result

aðtÞ!�!0 � �ffiffiffi
2

p aðt0Þt5=40 t�1=4½J�5=4ðt0ÞJ1=4ðtÞ þ J5=4ðt0ÞJ�1=4ðtÞ�; (A7)

which agrees with the result obtained in Ref. [26].
In the rapid-turn-on approximation, in whichmXðtÞ takes the Heaviside form specified in Eq. (4.8), the initial conditions

for a and _a at t0 ¼ t take the form given in Eq. (4.9). Upon substituting these initial conditions into Eq. (A5), we find
that during the cosmological epoch in which coherent oscillations of a given a begin, we have

aðtÞ ¼ �f̂XA

_~M�ð; tÞ ~U�ð; tÞ � _~U�ð; tÞ ~M�ð; tÞ
_~M�ð; tÞ ~U�ð; tÞ � _~U�ð; tÞ ~M�ð; tÞ

: (A8)

The value of any a during subsequent epochs can then be obtained iteratively from this relation.
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