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In this paper, we propose a new framework for dark-matter physics. Rather than focus on one or more

stable dark-matter particles, we instead consider a multicomponent framework in which the dark matter of

the universe comprises a vast ensemble of interacting fields with a variety of different masses, mixings,

and abundances. Moreover, rather than impose stability for each field individually, we ensure the

phenomenological viability of such a scenario by requiring that those states with larger masses and

standard-model decay widths have correspondingly smaller relic abundances, and vice versa. In other

words, dark-matter stability is not an absolute requirement in such a framework, but is balanced against

abundance. This leads to a highly dynamical scenario in which cosmological quantities such as �CDM

experience nontrivial time-dependences beyond those associated with the expansion of the universe.

Although it may seem difficult to arrange an ensemble of states which have the required decay widths and

relic abundances, we present one particular example in which this balancing act occurs naturally: an

infinite tower of Kaluza-Klein (KK) states living in the bulk of large extra spacetime dimensions.

Remarkably, this remains true even if the stability of the KK tower itself is entirely unprotected. Thus

theories with large extra dimensions—and by extension, certain limits of string theory—naturally give rise

to dynamical dark matter. Such scenarios also generically give rise to a rich set of collider and

astrophysical phenomena which transcend those usually associated with dark matter.

DOI: 10.1103/PhysRevD.85.083523 PACS numbers: 95.35.+d, 11.25.Wx, 14.80.Rt, 98.80.Cq

I. INTRODUCTION, MOTIVATION,
AND SUMMARY

Situated at the nexus of particle physics, astrophysics,
and cosmology lies one of the most compelling mysteries
that faces physics today: that of unravelling the identity
and properties of dark matter [1]. From measurements of
galactic rotation curves and velocity dispersions to obser-
vations of the gravitational lensing of galaxy clusters and
the detection of specific acoustic peaks of the cosmic
microwave background (CMB), ample circumstantial evi-
dence suggests that most of the matter in the universe does
not interact strongly or electromagnetically. Such matter is
therefore electrically neutral (dark) and presumed nonre-
lativistic (cold). Beyond these properties, however, very
little is known about the nature of dark matter. Fortunately,
the current generation of dark-matter experiments have
unparalleled sensitivities, and new data concerning the
possible direct and indirect detection of dark matter can
be expected soon. This data will therefore go a long way
towards not only resolving this pressing cosmological
mystery, but also constraining the possibilities for physics
beyond the standard model (SM).

Many theoretical proposals for physics beyond the stan-
dard model give rise to suitable dark-matter candidates.

However, most of these dark-matter candidates consist of a
single particle (or a small collection of particles) which are
stable on cosmological time scales as the result of a dis-
crete symmetry. Examples include the lightest supersym-
metric particle (LSP) in supersymmetric theories, and the
lightest Kaluza-Klein particle (LKP) in certain higher-
dimensional theories in which the standard model propa-
gates in the bulk [2]. In the first case, the LSP is stabilized
by the assumption of an R-parity symmetry, while in the
second case the stabilizing symmetry is a so-called ‘‘KK
parity.’’ However, in all cases, the ability of these particles
to serve as dark-matter candidates rests squarely on their
stability. Indeed, any particle which decays into standard-
model states too rapidly is likely to upset traditional big-
bang nucleosynthesis (BBN) and its successful predictions
of light-element abundances. Such decays can also leave
unacceptable imprints in the cosmic microwave back-
ground and diffuse X-ray and gamma-ray backgrounds.
For this reason, stability is often the very first criterion
required for the phenomenological success of a hypotheti-
cal dark-matter candidate.
There is, of course, one important exception to this

argument: a given dark-matter particle need not be stable
if its abundance at the time of its decay is sufficiently small.
A sufficiently small abundance ensures that the disruptive
effects of the decay of such a particle will be minimal, and
that all constraints from BBN, the CMB, etc., will continue
to be satisfied.
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In this paper, we shall consider a new framework for
dark-matter physics which takes advantage of this possi-
bility. Specifically, we shall consider a multicomponent
framework in which the dark matter of the universe com-
prises a vast ensemble of interacting fields with a variety of
different masses, mixings, and abundances. Rather than
impose stability for each field individually (or even for
the ensemble of fields as a whole), we shall ensure the
phenomenological viability of such a scenario by requiring
that those states with larger masses and larger decay widths
into standard-model fields have correspondingly smaller
relic abundances, and vice versa. In other words, dark-
matter stability is not an absolute requirement in such a
framework, but is balanced against abundance. As we shall
demonstrate, this leads to a highly dynamical scenario in
which cosmological quantities such as �CDM experience
nontrivial time-dependences beyond those associated with
the expansion of the universe. We shall therefore refer to
such a scenario as ‘‘dynamical dark matter’’.

In general, it might seem difficult (or at best fine-tuned)
to have an ensemble of states which are not only suitable
candidates for dark matter but in which the abundances and
decay widths are precisely balanced in this manner.
However, it turns out that theories with large extra space-
time dimensions not only naturally provide such ensembles
of states, but do so in a manner which is virtually intrinsic
to their construction. If the standard model is restricted to a
brane floating in a higher-dimensional space, it then im-
mediately follows that any field propagating in the bulk of
this space must be neutral under all standard-model sym-
metries. As a consequence, such bulk fields can have at
most gravitational interactions with the physics on the
brane, and will therefore appear as dark matter from the
perspective of an observer on the brane. Moreover, from
the perspective of this four-dimensional observer, such
bulk fields will appear as an infinite tower of individual
Kaluza-Klein (KK) modes. This, then, would constitute
our dark-matter ensemble.

At first glance, such a scenario for dark matter would
appear to face a major phenomenological hurdle: in the
absence of additional symmetries or ad-hoc assumptions,
an entire Kaluza-Klein tower of bulk states will generally
be unstable: the heavy KK states in such a tower will
generically decay into not only lighter KK bulk states but
also standard-model brane states, and the lighter KK states
will also decay into standard-model brane states. Even the
stability of the lightest modes of the bulk field is not
guaranteed. This instability of the Kaluza-Klein tower
therefore appears to pose a serious threat for the survival
of big-bang nucleosynthesis in its traditional form, and can
similarly disturb the X-ray and gamma-ray backgrounds.

Fortunately, there are two critical features of Kaluza-
Klein towers which can play off against each other in order
to render such a scenario phenomenologically viable. As
one goes higher and higher in a generic KK tower, it is true

that the decay width of the KK states generally increases
with the KK mass. However, it is also true that the cosmo-
logical abundance associated with such states can often
decrease with the KK mass. This is particularly true if we
imagine that these states are cosmologically produced
through misalignment production, as turns out to be par-
ticularly appropriate for such scenarios. As a result, it
might be possible that all KK states which decay before
or during BBN have such small abundances that the de-
structive effects of their decays are insignificant, while at
the same time a significant fraction of the KK tower
survives to the present day and thereby contributes to the
observed total dark-matter abundance. Thus, the surviving
dark matter at the present day would consist of not merely
one or two states, but a significant fraction of an entire
interacting KK tower. Through the existence of such ‘‘dark
towers,’’ theories of large extra spacetime dimensions
therefore provide an ideal realization of our general dy-
namical dark-matter scenario.
In this paper, we shall lay out the general properties of

such a scenario and explore the extent to which such a
scenario is viable. Moreover, we shall attempt to do so in a
completely model-independent way, without making any
assumption concerning the nature of the bulk field in
question. However, it is important to recognize that this
entire approach represents a somewhat unorthodox ap-
proach to dark-matter physics. By balancing the stability
of the different dark-matter components against their abun-
dances across a large or even infinite ensemble, the dark
matter in this scenario is intrinsically dynamical—its dif-
ferent components continue to experience nontrivial mix-
ings and decays throughout their cosmological evolution,
with such dynamical behavior continuing until, during, and
beyond the current epoch. Moreover, because the dark
matter in our scenario has multiple components, its phe-
nomenology cannot be characterized in terms of a single
mass or annihilation cross-section. This can therefore lead
to an entirely new dark-matter phenomenology, profoundly
changing the way in which such dark matter might be
observed and constrained through collider experiments
and astrophysical observations. Indeed, within the specific
context of large extra dimensions, we shall see that one
important new phenomenon that emerges for such dark
matter is the possibility of ‘‘decoherence’’—i.e., the phe-
nomenon in which only a single linear combination of KK
modes couples to brane physics at one instant before
decohering and becoming essentially invisible to the brane
at all subsequent times.
It is also important that this framework not be confused

with recent proposals concerning so-called ‘‘Kaluza-Klein
dark matter’’ [2]. Theories of KK dark matter require that
the entire standard model propagate in the large extra
dimensions [3–5], and that the lowest excited KK mode
of a standard-model field (such as the lowest excited KK
photon or neutrino) be stable as the result of an internal
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geometric symmetry such as KK parity [2,5]. Such theories
of KK dark matter are therefore similar to theories of
supersymmetric dark matter—they are theories of a single,
stable, dark-matter particle. While phenomenologically
consistent, such a point of view is diametrically opposed
to what we are suggesting here. Moreover, in doing away
with the infinite tower of KK states and focusing exclu-
sively on the single lightest KK mode, such ‘‘KK dark
matter’’ theories also do away with that part of the physics
which is intrinsically higher-dimensional. The resulting
scenarios are therefore insensitive to the rich physics that
can emerge from an entire tower of Kaluza-Klein states
acting in unison, with nontrivial masses and mixings gov-
erning their dynamics. Indeed, it is precisely such behavior
that would give a window into the nature of the extra
dimensions from which such states emerge.

By contrast, because our scenario balances a spectrum of
decay lifetimes against a spectrum of relic abundances, our
framework is sensitive to the physics of the entire tower of
KK states and thereby makes use of the full higher-
dimensional ‘‘bulk’’ in a fully higher-dimensional way.
Moreover, since Type I string theories naturally give rise
to closed-string states (such as the graviton, various mod-
uli, and axions) which live in more spacetime dimensions
than the standard-model open-string states which are re-
stricted to live on D-branes, the scenario we shall be
investigating is also extremely natural—and indeed almost
unavoidable—in certain limits of string theory. Our work
can therefore be seen as providing a test of the extent to
which such string theories remain cosmologically viable as
a function of the volume of the extra dimensions transverse
to the standard-model brane. In other words, by studying
dynamical dark matter and its phenomenological viability,
we are not only exploring a new candidate for dark matter
but also providing new phenomenological constraints on
large extra dimensions and certain limits of string theory.

This paper is organized as follows. In Sec. II, we shall
introduce our dynamical dark-matter framework in its most
general form, without making reference to the specific
example of large extra dimensions or KK towers. We shall
discuss how lifetimes and abundances can play off against
each other in such a scenario, and sketch the resulting
contributions to the total dark-matter abundance as they
evolve in time. In Sec. III, we shall then focus on the
example of a generic tower of Kaluza-Klein states emerg-
ing from the bulk of large extra dimensions, and show that
such a tower has all the required properties to be a dy-
namical dark-matter candidate, with abundances and life-
times that satisfy unique mathematical inverse relations.
We shall then proceed, in Sec. IV, to discuss several
laboratory and astrophysical signatures of such a scenario,
focusing on those new features which transcend typical
dark-matter signatures and which might explain why such
dark matter has not yet been observed. Throughout this
paper, our analysis shall be as general as possible without

specifying the precise nature of the bulk field in question.
We shall then conclude in Sec. V with a discussion of
extensions and possible generalizations of our dark-matter
framework.
This paper is the first in a two-part series. The primary

purpose of the present paper is merely to provide a general
theoretical overview of the dynamical dark-matter frame-
work. As a result, we will not choose a particular species of
dark-matter field, neither restricting ourselves to specific
numbers nor subjecting ourselves to specific phenomeno-
logical bounds. Instead, our discussion herewill focus on the
full range of theoretical possibilities afforded by this new
scenario.However, in a companion paper [6]wewill provide
a detailed ‘‘proof of concept’’ by focusing on the particular
case in which the KK bulk field in question is an axion. In
particular, in Ref. [6] we will demonstrate that a bulk axion
field can satisfy all theoretical and numerical constraints
needed to serve as a dynamical dark-matter candidate, and
moreover we will demonstrate that this candidate also sat-
isfies all known cosmological, astrophysical, and collider
bounds on dark matter. Indeed, in making this assertion,
Ref. [6] will borrow heavily from the results of a third
paper [7], a detailed forthcoming phenomenological study
of axions and axionlike particles in higher dimensions. Thus,
taken together, these papers will demonstrate that our dy-
namical dark-matter scenario remains a very real possibility
for explaining the dark matter of the universe.

II. DYNAMICAL DARK MATTER:
GENERAL SCENARIO

In this section we shall begin by discussing our dynami-
cal dark-matter scenario in its most general form, without
reference to specific examples such as those involving
extra spacetime dimensions or KK towers of bulk fields.

A. � versus �: Balancing lifetimes against
abundances

Broadly speaking, upon positing any new scenario for
dark matter, one faces certain immediate constraints which
must be satisfied. These constraints ultimately restrict ei-
ther the abundance of the dark matter, the lifetime of the
dark matter, or the relation between the two.
Let us begin by considering the case of a single dark-

matter particle �. Since this dark-matter particle is
presumed unique, it alone must carry the entire observed
dark-matter abundance: ��¼�CDM�0:23 [8]. However,

given this large abundance, consistency with constraints
coming from big-bang nucleosynthesis, the cosmic micro-
wave background, and diffuse X-ray and gamma-ray back-
grounds together require that � have a lifetime which
meets or exceeds the current age of the universe.
Otherwise, decays of � run the risk of disturbing BBN
and its successful predictions for light-element abundan-
ces. Such early decays also have the potential to distort the
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cosmic microwave background as well as the X-ray and
gamma-ray backgrounds.

However, because of the quantum-mechanical nature of
the decay process, not all dark matter will decay at once.
As a result, the lifetime of � must actually exceed the age
of the universe by at least one or two orders of magnitude
in order to ensure that � has a negligible chance of having
already decayed in the recent past. This likewise implies
that such a particle also has a negligible chance of decaying
either today or tomorrow. Such a particle � is therefore
‘‘hyper-stable.’’ Indeed, this is the case for most if not all
known single-particle dark-matter candidates.

Hyper-stability is the only way in which a single-particle
dark-matter candidate can satisfy the competing con-
straints of having a significant abundance �� ��CDM

while simultaneously avoiding the dangerous effects of
decaying into standard-model particles. This then results
in a dark-matter scenario which is ‘‘frozen’’ in time, with
cosmological quantities such as�� evolving only because

of the expansion of the universe.
However, the primary purpose of this paper is to propose

that there is another way—a ‘‘dynamical’’ way—to satisfy
these competing constraints. First, we recognize that in
some sense, it is somewhat unnatural to consider the dark
matter of the universe as consisting of only a single parti-
cle. After all, the visible matter of the universe constitutes
only a small fraction of the energy density attributed to
dark matter, and yet is teeming with a diversity and com-
plexity, known as the standard model, in which a complex
network of elementary particles is organized according to
their own internal principles. It therefore seems natural to
consider the new opportunities that are open to us by taking
the dark matter to consist of multiple particles as well.

In this paper, we shall therefore imagine that the dark
matter consists of a vast ensemble of particles �i, i ¼
1; 2; . . . ; N with N � 1. The first observation that follows
from this assumption is that none of these particles indi-
vidually needs to have a significant abundance, since they
may still collectively yield the correct total abundance
�CDM. As a special case, for example, we might imagine
that each particle �i shares a common abundance �i ¼
�CDM=N. However, if these particles were also to have
equal lifetimes, then this would not solve our second
constraint—that of protecting the successes of BBN and
minimally impacting the CMB and other diffuse back-
grounds—unless each of these particles is not only stable
but hyper-stable. This is because the net effect of the nearly
simultaneous decays of each of these N particles would be
no different than that of the decay of a single particle
carrying the full abundance �CDM.

However, the fact that we have multiple particles fur-
nishes us with an alternate way to satisfy these constraints:
we can imagine that each of these particles has a signifi-
cantly different lifetime. In general, these particles can also
have different individual abundances. As long as those

particles which have relatively short lifetimes also have
correspondingly small abundances, and as long as those
particles which have relatively large abundances also have
relatively long lifetimes, we can reproduce the correct total
dark-matter abundance�CDM while simultaneously avoid-
ing any damaging effects on BBN, the CMB, etc. In this
way, the existence of a vast ensemble of dark-matter par-
ticles �i opens up the possibility of balancing abundances
against decay widths in a nontrivial way across a multitude
of states.
This, then, is the essence of our dynamical dark-matter

proposal. The fact that we have distributed the total re-
quired dark-matter abundance across many states means
that no particular state is forced to carry a significant
abundance on its own. We thus have the room to give these
states a whole spectrum of lifetimes (or decay widths)
without running afoul of cosmological constraints.
Note that the usual scenario of a single hyper-stable

dark-matter particle is nothing but a special case of this
more general framework: even though our scenario has
N � 1, it still remains possible that one particle (or just
a few particles) could carry the bulk of the abundance
�CDM at the present time. Following the same logic that
applied in the single-particle case, this small subset of
states would then be required to be hyper-stable, and all
of the remaining states would have abundances that are far
too insignificant to be of consequence. However, the novel
features of our scenario emerge in the opposite limit, when
we imagine that none of our dark-matter states individually
carries the bulk of the total relic abundance. Some fraction
of these states then no longer need to be hyper-stable,
leading to a dynamical scenario in which spontaneous
dark-matter decays are occurring prior to, during, and
beyond the current epoch. As a result of this behavior,
cosmological quantities such as �CDM will experience
time-variations which transcend those due to the ordinary
expansion of the universe.

B. Dynamical dark matter: Time-evolution
of individual components

It is possible to outline the salient features of this
scenario somewhat more quantitatively without loss of
generality. For this purpose, we shall describe the history
of the universe as progressing through four distinct eras,
respectively, associated with inflation (vacuum domina-
tion), reheating (RH), radiation domination (RD), and
matter domination (MD). Note that the reheating era is
itself essentially matter-dominated, with the matter in this
case consisting of the oscillating inflaton. Likewise, note
that even though the current epoch is technically a �CDM
universe, approximating this epoch as matter-dominated is
nevertheless a fairly good approximation. For the purposes
of our general discussion, we shall not specify the particu-
lar energy or temperature scales associated with the
transitions between these eras; such scales, especially as
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they relate to inflation and reheating, are likely to be highly
model-dependent. However, regardless of these energy
scales, a quantity whose energy density � and pressure p
are related through a single-parameter equation of state of
the form p ¼ w� will have a relative relic abundance� �
�=�crit that scales as a function of cosmological time t
according to1

��

8>>><
>>>:
tð1�3wÞ=2 RD era

t�2w RH=MD eras

exp½�3Hð1þ wÞt� inflationary era:

(1)

Recall that w ¼ 0 for matter, while w ¼ �1 for vacuum
energy (cosmological constant) and w ¼ �1=3 for radia-
tion and curvature, respectively.

For concreteness, we shall assume that the individual
components of the eventual dark matter in our scenario are
described by scalar fields�i with corresponding massesmi

and widths �i describing their decays into standard-model
states. For simplicity we shall also assume that these
widths �i correspond to processes in which a given dark-
matter component �i decays directly into SM states (i.e.,
�i ! SM) without passing through any other dark-matter
components as intermediate states. In other words, we
shall assume that extra-ensemble decays �i ! SM (with
combined total width �i) dominate over all possible intra-
ensemble decays �i ! �j þ . . . . It turns out that this is a

valid assumption for many realistic scenarios to be dis-
cussed in this paper and in Ref. [6], and in the Appendix we
shall discuss what happens when this assumption is
relaxed.

In a Friedmann-Robertson-Walker (FRW) cosmology
parametrized by a Hubble parameter HðtÞ � t�1 in which
we assume that our dark-matter component fields �i have
negligible spatial variations as well as negligible self-
interactions, these fields will time-evolve according to
the differential equation

€� i þ ½3HðtÞ þ �i� _�i þm2
i �i ¼ 0: (2)

This is the equation for a damped harmonic oscillator, with
critical damping occurring for 3HðtÞ þ �i ¼ 2mi; note that
the single-derivative ‘‘friction’’ term in this equation re-
ceives two separate contributions, one arising from the
cosmological Hubble expansion and the other arising
from the intrinsic decay of �i. As a result, at early times
for which 3HðtÞ þ �i > 2mi, the field�i is overdamped: it
does not oscillate, and consequently its energy density
behaves like vacuum energy (with w ¼ �1). By contrast,

at later times for which 3HðtÞ þ �i < 2mi, the field is
underdamped: it therefore oscillates, and consequently
its energy density scales appropriately for matter (with
w ¼ 0). The condition 3HðtÞ þ �i ¼ 2mi thus describes
the ‘‘turn-on’’ time at which oscillatory behavior begins
and the field begins to act as true matter.
Given these observations, we can now sketch how each

of the abundances �i for each component �i will behave
in our scenario. For concreteness, we shall assume that
these abundances are all initially established at a common
time t0. Moreover, we shall assume that each component
has an initial abundance which decreases as a function of
its mass. While not all production mechanisms have this
property, we shall see in Sec. III that misalignment pro-
duction, in particular, can accomplish this task.
Immediately upon establishment of these abundances,

the states in our ensemble can be separated into two
groups. Those heavier states with masses 3Hðt0Þ þ �i <
2mi will all begin oscillating simultaneously. In other
words, they experience a simultaneous, instantaneous
turn-on. By contrast, the lighter states with 3Hðt0Þ þ �i >
2mi will experience a step-by-step ‘‘staggered’’ turn-on,
with lighter and lighter states crossing the turn-on thresh-
old at later and later times. Indeed, if we approximate
HðtÞ � �=3t where � is a constant within each era, then
a given mode with mass mi will turn on at a time ti �
�=2mi. Thus the lightest states are necessarily the last
to turn on. Indeed, � ¼ 2 for the RH and MD eras, while
� ¼ 3=2 for the RD era.
Finally, once these states are all ‘‘turned on’’ and behave

as matter with w ¼ 0, their abundances �i will evolve as
discussed above until such times t� �i � ��1

i as these
states decay. Specifically, the abundance �i � �i=H

2 as-
sociated with each component �i will evolve according to
the differential equation

_� i þ
�
3H þ 2

_H

H
þ �i

�
�i ¼ 0: (3)

[This equation follows directly from Eq. (2) upon use of

the general expression �i ¼ 1
2 ðm2

i �
2
i þ _�2

i Þ and the virial

theorem m2
i �

2
i ¼ _�2

i , the latter holding for oscillations
whose frequencies are large compared with �i.] Note that
if we ignore the decays of these particles (i.e., if we set
�i ! 0), the solutions to this differential equation are
nothing but the results given in Eq. (1) for w ¼ 0. Upon
decay, however, the corresponding abundance �i drops
rapidly to zero; this occurs when t� �i, and indeed �i *
3H þ 2 _H=H at t� �i. For simplicity, in the rest of this
paper we shall approximate such decays as occurring
promptly and completely at t ¼ �i. However this approxi-
mation will not be critical for any of our conclusions, and
can easily be discarded if needed.
Combining all these features, we can then sketch the

salient features of our scenario as in Fig. 1. In this plot, we
have taken the time at which the initial abundances are

1The results in Eq. (1) follow from the general facts that ��
R�3ð1þwÞ and �crit �H2, where R and H are, respectively, the
scale factor and Hubble parameter. Recall that these latter
quantities have the scaling behaviors ðR;HÞ � ðt1=2; t�1Þ in an
RD era; ðR;HÞ � ðt2=3; t�1Þ in RH or MD eras; and ðR;HÞ �
ðeHt; constantÞ in an inflationary era.
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established to be during the inflationary era, but other time
intervals are also possible. We have also assumed that
�i � 3HðtiÞ when 3HðtiÞ ¼ 2mi, so that the decay widths
�i affect the final decay times �i but not the staggered turn-
on times ti.

Several features which are clear from this sketch help to
define and characterize this scenario. First, we see that at
the present time, there continue to be a plethora of dark-
matter states. Although each of these has an extremely
small abundance (exponentially suppressed on the plot in
Fig. 1), they can collectively produce a sizable, Oð1Þ
abundance which we choose to identify with the observed
dark-matter abundance �CDM � 0:23 [8].

Second, we observe that our dark-matter states are not
governed by the notion of stability: while some are indeed

more stable than others, decays of dark-matter states can
occur throughout the evolution of the universe. This is not
in conflict with observational constraints because of the
extremely small abundances of those states which decay at
critical epochs during the evolution of the universe. In
other words, as discussed above, lifetimes and abundances
are balanced against each other in this scenario.
Third, as a consequence of these features, we see that

nothing is particularly special about the present time in this
framework. Dark-matter states need not be held stable until
any special moment, and the current age of the universe
plays no special role in this scenario. Indeed, as evident
from the sketch in Fig. 1, dark-matter states decay prior to,
during, and after the present era. What results, then, is a
scenario in which the dark matter is not frozen in time at
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FIG. 1. A sketch of our dynamical dark-matter scenario in which the dark matter of the universe comprises a vast ensemble of
individual components with different masses, abundances, and lifetimes. This plot illustrates the evolution of the abundance of each
dark-matter component as a function of time, assuming that all abundances are initially established at a common time (chosen here to
be prior to or during the inflationary era), with values that decrease as a function of the component mass. For all subsequent times,
these abundances scale as vacuum energy until 3HðtÞ ¼ 2mi, after which point they scale as matter. Open circles indicate states which
inflate away, while closed circles indicate states which decay into SM particles with associated lifetimes that decrease with increasing
mass. In our scenario, the lifetimes and abundances are balanced against each other in such a way that there continue to exist a plethora
of dark-matter states which survive at the present time: although each such state has an extremely small abundance �i � 1, they
collectively reproduce �CDM. Nevertheless, because of their extremely small abundances, states which have already decayed into SM
particles leave negligible imprints on the CMB and other observable astrophysical and cosmological backgrounds. An important
feature of this scenario is that it is fully dynamical, with the composition and properties of the dark matter continuing to experience a
nontrivial time evolution before, during, and even after the current epoch.
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the present era, but continues to act as a highly dynamical
component of an ever-evolving universe.

C. Characterizing a given dark-matter configuration:
�tot, �, and weff

In general, there are three quantities which we can use in
order to characterize the configuration of our dark-matter
ensemble at any instant in time, and to track its subsequent
time-evolution. We shall begin by introducing these three
quantities and discussing the relations between them.
Then, we shall discuss several qualitative aspects of their
overall time-evolutions.

1. Fundamental definitions and relations

The first quantity we shall define in order to characterize
the configuration of our dark-matter ensemble is the total
dark-matter abundance:

�tot �
X
i

�i: (4)

Note that we should include in this sum the contributions
from only those components in our ensemble which have
already ‘‘turned on’’ (i.e., have begun oscillating) and
which are therefore already behaving as true matter.
Restricting such contributions in this way ensures that
�tot can truly be associated with a total dark-matter abun-
dance. Of course, all of the components in our ensemble
will eventually ‘‘turn on’’ and behave as dark matter after
enough time has passed. It is for this reason that we shall
continue to refer to each component of our ensemble as a
dark-matter component, regardless of its particular turn-on
time.

The quantity �tot describes the total dark-matter abun-
dance at any instant of time. However, we may also define a
complementary quantity � which describes how this total
abundance is distributed across the different components:

� � 1� �0

�tot

: (5)

Here�0 � maxif�ig is defined to be the largest individual
dark-matter abundance from amongst our ensemble of
dark-matter states. Thus, � measures what fraction of the
total abundance �tot is not carried by a single dominant
component. We see from its definition that � varies within
the range 0 	 � 	 1: values of � near zero signify the
traditional situation in which the total dark-matter abun-
dance is predominantly carried by a single state, while
larger values of � signify departures from this traditional
configuration. In this sense, then, � can also be viewed as
quantifying the degree to which our scenario deviates from
the more traditional dark-matter framework at any instant
in time.

Recall that we have assumed for this discussion that the
more massive components of our ensemble have smaller
initial abundances, and vice versa. Indeed, this assumption

is already reflected in the sketch in Fig. 1. It then follows
that the largest abundance�0 in Eq. (5) will correspond to
the lightest component in our ensemble. However, in the
event of a staggered turn-on, the lightest components in the
ensemble are necessarily the last to turn on. Indeed, prior to
their turn-on times, the abundances of these lightest states
contribute to the total dark-energy abundance rather than to
the total dark-matter abundance. We must therefore be
careful to identify �0 as the abundance associated with
the lightest of those components which have already turned
on. As a result, even the identity of the component whose
abundance is to be identified with �0 can occasionally be
time-dependent.
While both �tot and � characterize the configuration of

our dark-matter ensemble at a given instant in time, one of
the critical features of our dynamical dark-matter scenario
is precisely that it is dynamical—i.e., that these quantities
have nontrivial time-evolutions. Of course, some of this
time-evolution is common to all dark-matter scenarios,
arising due to the Hubble expansion of the universe during
its reheating, radiation-dominated, or matter-dominated
eras. There are, however, additional time-dependent effects
which are unique to our dynamical dark-matter scenario.
For example, one such effect dominates the physics of the
final, matter-dominated era, and arises because the total
dark-matter abundance in our scenario has been distributed
across many individual dark-matter components, each with
a potentially different lifetime. This phenomenon leads to a
slowly falling�tot at late times. Clearly the time-evolution
of�tot during this period is extremely sensitive to not only
the distribution of the abundances �i across the different
dark-matter components within the ensemble, but also the
decay widths �i which govern the times at which these
different components decay.
For this reason, it will be useful to define a quantity

which can meaningfully characterize the aggregate time-
evolution of our ensemble. Moreover, we would like this
quantity to characterize this time-evolution regardless of
the particular cosmological era under study, and likewise
to quantify the extent to which this time-evolution
intrinsically differs from that normally associated with
the cosmological expansion of the universe.
We have already seen in Eq. (1) that the time-dependence

of the abundance �i associated with a single dark-matter
component can be parametrized by its equation-of-state
parameter w. It is therefore natural to ask what ‘‘effective’’
equation-of-state parameter weff might collectively de-
scribe our entire dynamical ensemble of dark-matter com-
ponents. For example, even though each individual dark-
matter component behaves as matter (with w ¼ 0), the
decays of these components at late times (or even their
staggered turn-ons at early times)might conspire to produce
an effective w-value for the entire ensemble which is non-
zero. Such behavior is illustrated in Fig. 2 for decays that
occur during the final matter-dominated era. In all cases and
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in all cosmological eras, the presence of an effective weff

which differs (however slightly) from zero would then
signify a departure from the traditional dark-matter
scenarios.

We can also understand this at a mathematical level. The
fact that each individual dark-matter component has an
abundance which follows the behavior in Eq. (1) with w ¼
0 does not guarantee that their sum �tot must follow the
same behavior. Indeed, the two effects which can alter the
time-evolution of the sum �tot in our scenario are a pos-
sible staggered turn-on at early times, and the individually
decaying dark-matter components at late times. Thus
the time-dependence of �tot need not necessarily follow
Eq. (1) with w ¼ 0.

One possibility, of course, is that �tot will continue to
follow Eq. (1), but with some other effective value weff .
However, even this outcome requires that our individual
dark-matter components exhibit certain relationships
between their abundances and lifetimes which need not
actually hold for our dark-matter ensemble. Therefore, in
general, we expect that �tot might exhibit a time-
dependence which does not resemble that given in
Eq. (1) for any constant weff . Or, to phrase this somewhat
differently, we expect that in general, our effective
equation-of-state parameter weff might itself be time-
dependent. We therefore seek to define a function weffðtÞ
which parametrizes a time-dependent equation of state for
our dynamical dark-matter ensemble as a whole.

In order to define such an effective functionweffðtÞ, let us
first recall that the traditional parameterw is fundamentally
defined through the relation p ¼ w� where p and � are,
respectively, the pressure and energy density of the ‘‘fluid’’
in question. Of course, in an FRW universe with radius R,
the conservation law for energy density dE ¼ �pdV

yields the relation dðR3�Þ ¼ �pdðR3Þ, from which it im-
mediately follows that ðpþ �ÞdR3=R3 ¼ �d� or
3ðpþ �Þd logR ¼ �d�. Recognizing pþ � ¼ ð1þ wÞ�
and d logR ¼ Hdt where H is the Hubble parameter, we
thus have

3Hð1þ wÞ ¼ �d log�

dt
: (6)

This is a completely general relation which makes no
assumptions about the time-(in)dependence of w. We
may therefore take this to be our fundamental definition
for weffðtÞ—i.e.,

weffðtÞ � �
�
1

3H

d log�tot

dt
þ 1

�

¼

8>>><
>>>:
� 1

2

�
d log�tot

d logt

�
forRH=MD eras

� 2
3

�
d log�tot

d logt

�
þ 1

3 forRD era.

(7)

Note that while our derivation has thus far been completely
general, we have specialized to specific cosmological eras
in passing to the final expressions in Eq. (7). Specifically,
we have written �tot ¼ �tot�crit and taken 3H � �=twhere
� ¼ 2 (RH=MD), � ¼ 3=2 (RD).
The final expressions in Eq. (7) are easy to interpret

physically, since the double-logarithmic derivatives which
appear in these expressions are nothing but the slopes in the
sketches in Figs. 1 and 2. However, the important point of
this derivation has been to demonstrate that weff defined as
in Eq. (7) continues to have a direct interpretation as a true
equation-of-state parameter relating energy density and
pressure, even when weff is time-dependent. No other
definition of weff would have had this property.
The results in Eq. (7) provide a relation betweenweff and

�totðtÞ. However, it is also possible to derive a similar
relation between weff and �. Assuming that we restrict
our attention to periods of time after all staggered turn-
ons are complete (so that the identity of the dark-matter
component associated with�0 is fixed), it trivially follows
from the definition of � in Eq. (5) that

d logð1� �Þ
d logt

¼
8><
>:
�
�
d log�tot

d logt

�
RH=MD eras

�
�
d log�tot

d logt

�
þ 1

2 RD era:
(8)

Using the results in Eq. (7), we therefore find that

weffðtÞ ¼

8>>><
>>>:

1
2

�
d logð1��Þ

d logt

�
RH=MD eras

2
3

�
d logð1��Þ

d logt

�
RD era:

(9)

It therefore follows that decreasing � corresponds to posi-
tive weff , and vice versa. As a self-consistency check, we

total abundance tot

matter−
dominated

individual
states
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individual component abundances
(each with w=0)

lo
g

(a
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log(time)

effective total abundance  (w>0)

FIG. 2. A sketch of the total dark-matter abundance in our
scenario during the final, matter-dominated era. Even though
each dark-matter component individually has w ¼ 0, the spec-
trum of lifetimes and abundances of these components conspire
to produce a time-dependent total dark-matter abundance �tot

which corresponds to an effective equation of state with w> 0.
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also observe that the standard paradigm—which has � ¼ 0
for all times—has weff ¼ 0 for all times as well.

2. �tot, �, and weff: Qualitative
time-dependent behaviors

Having defined the three quantities f�tot; �; weffg that
we will use in order to characterize a general configuration
of our dark-matter ensemble, we now seek to understand
the time-dependence that will be generically exhibited by
these quantities across the different cosmological eras. As
we shall see, several qualitative observations can be made
even without further assumptions concerning the individ-
ual abundances and decay widths within our ensemble.

Given the sketch in Fig. 1, it is perhaps easiest to under-
stand the qualitative behavior of�tot as a function of time.
There is, of course, the time-dependence for �tot which
can be associated with the regular Hubble expansion of the
universe and which causes �tot to increase during the
radiation-dominated era. This aspect of the time-
dependence is generally common to all dark-matter sce-
narios. However, as discussed above, there are two addi-
tional effects which are specifically associated with our
dynamical dark-matter scenario and which cause �tot to
experience a further time-dependence. The first of these is
the possibility of a staggered turn-on across the different
dark-matter components in our ensemble—i.e., the possi-
bility that some components will remain longer than others
in a state in which their abundances�i grow rapidly as�t2

but contribute to the total dark-energy abundance rather
than to�tot. This feature, when present, will thus generally
cause �tot to experience a more gradual growth (but also a
greater eventual maximum value) than would otherwise
occur in a more traditional dark-matter scenario. However,
at later stages of the cosmological evolution (particularly
during the final, matter-dominated era), we see that our
different dark-matter components have a broad spectrum of
lifetimes and decay widths. This causes �tot to experience
a slow stepwise decline before finally reaching zero upon
the decay of the last-surviving dark-matter component
within the ensemble.

Similar qualitative arguments also apply to the time-
evolution of �. An initial value of � is implicitly deter-
mined once the abundances for each of the dark-matter
components are established. Of course, if this occurs dur-
ing an inflationary period, it is possible that certain more
massive components will have inflated away by the time
the inflationary period ends. If this is the case, then we may
regard the ‘‘initial’’ value of � to be the value of � at the
end of the inflationary period.

In general, after that point, the evolution of � can
experience as many as three distinct phases. Let t1 denote
the time at which the last (lightest) dark-matter component
has turned on, and let t2 denote the time at which the
most massive dark-matter component decays. Assuming
t2 > t1, there are therefore three distinct time intervals
which become relevant.

During t1 	 t 	 t2, each of the individual dark-matter
abundances experiences a common overall time-dependent
scaling behavior as the universe evolves. As a result, the
ratio between the abundances of these components remains
fixed. In other words, � remains frozen during this period
(even though �tot may continue to vary).
For t > t2, by contrast, it is clear that the decays of the

more massive dark-matter components have the cumula-
tive effect of decreasing �tot without altering �0. What
results, then, is a step-by-step, threshold-by-threshold de-
cline in the value of �. This process continues until only a
single dark-matter component survives and � reaches zero.
By assumption, in our scenario this will not happen until
the distant future, at t ¼ ��1

1 � tnow where �1 is the decay
width of the second-lightest dark-matter component.
However, during the period t < t1, a staggered turn-on

for the individual dark-matter components can also gener-
ally induce a nontrivial time-evolution for �. Indeed,
each time a new lightest dark-matter component turns
on, its abundance �0

0 suddenly contributes to the total

dark-matter abundance �tot. This abundance �0
0 also

displaces the previous largest individual abundance �0.
We therefore find that with each such successive turn-on, �
experiences a shift in its value:

� � 1� �0

�tot

! �0 � 1� �0
0

�tot þ�0
0

: (10)

By assumption, �0
0 >�0. However, it is easy to see from

Eq. (10) that �0 <� only if �0
0 >�0=�. Since 0	�	1,

we see that this condition is guaranteed to be satisfied only
if � ¼ 1, and guaranteed not to be satisfied only if � ¼ 0.
In all other cases, this condition may or may not be
satisfied, and this will cause � to either decrease or in-
crease, respectively. We also observe that in a very rough
sense,� tends to stabilize and avoid either the � ¼ 1 or the
� ¼ 0 extremes: as � ! 1, it becomes easier and easier to
satisfy the constraint that drives� lower, while as� ! 0, it
becomes easier and easier to satisfy the constraint that
pushes � higher. Indeed, if we imagine that each new
abundance �0

0 somehow has a random value greater than

the previous �0, we can envision an ‘‘oscillatory’’ behav-
ior in which � varies between its two limits. Unfortunately,
we cannot be more specific about this behavior without
knowing something further about the individual abundan-
ces that exist during such a staggered turn-on phase.
We therefore conclude that � will take an initial value

once the abundances are established, and that this value can
then undergo a nontrivial time dependence if there is an
initial period during which a staggered turn-on occurs.
After the staggered turn-on is complete, � will remain
frozen until late times when our individual dark-matter
components begin to decay. This will then cause � to fall
monotonically, ultimately vanishing when only the single
longest-lived dark-matter component remains. However, it
is regarded to be a fundamental property of our scenario
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that � is nevertheless presumed to be significantly different
from zero at the present time.

Finally, we turn to the behavior of weff as a function of
time. However, given the relations in Eq. (9), it is relatively
straightforward to map out the rough time-dependence of
weff . During the staggered turn-on phase (i.e., t < t1), we
have seen that � may either increase or decrease; this
implies that weff may be either negative or positive.
Moreover, the fact that � tends to stabilize during this
period, avoiding its extreme values at � ¼ 0 or � ¼ 1,
implies thatweff will likewise tend to stabilize around zero,
with positive values ofweff ultimately followed by negative
values, and vice versa. As indicated above, however, this
assumes that each new abundance �0

0 that turns on has a

value which is greater than the previous �0 but is other-
wise somewhat random.

During the period t1 	 t 	 t2, by contrast, the behavior
of weff is far simpler to describe: we simply have weff ¼ 0.
This is completely in accord with our observation that �
stays frozen during this period, and that our dynamical
ensemble is behaving as ordinary dark-matter during this
period (except with a nonzero value of �). Finally, for the
period t > t2 after our individual dark-matter components
have begun to decay, we have argued that � is monotoni-
cally decreasing. This implies that weff is strictly positive
during this period, a feature which is illustrated in Fig. 2
and which again serves as a cosmological ‘‘smoking gun’’
for our dynamical dark-matter scenario.

D. A signature of dynamical dark matter:
Time-evolution of �tot, �, and weff during

the final matter-dominated epoch

As just discussed, one of the most important signatures
of our dynamical dark-matter framework is the fact that the
total dark-matter abundance �tot is a time-evolving quan-
tity—even during the current matter-dominated epoch.
Within such a framework, it is therefore only to be
regarded as an accident that this quantity happens
to reproduce a specific observed value �CDM � 0:23 at
the present time.

With only a few additional assumptions, it turns out that
we can explicitly calculate the time-evolution of the total
dark-matter abundance�tot during this epoch. We can also
explicitly calculate the time-dependence of �, and the
resulting equation of stateweffðtÞ. In the rest of this section,
we shall therefore concentrate on the final matter-
dominated epoch. Indeed, this is the epoch during which
a nontrivial time-evolution for �tot arises only because of
the decays of the individual dark-matter components
within our ensemble.

Within this era, each dark-matter component �i has a
relative abundance �i which remains constant until it
decays at a time t� �i � ��1

i . Taking this decay to be
nearly instantaneous, we can thus write

�iðtÞ ¼ �i�ð�i � tÞ; (11)

whereupon we see that

d�totðtÞ
dt

¼ X
i

�i

d

dt
�ð�i � tÞ ¼ �X

i

�i�ð�i � tÞ (12)

where we have defined �totðtÞ � P
i�iðtÞ and used the

relation d�ðxÞ=dx ¼ �ðxÞ where �ðxÞ is the Dirac
�-function. In the limit that we truly have a large number
of dark-matter states, we can imagine that the spectra of
decay widths �i and decay times �i � ��1

i are nearly
continuous, with continuous variables � and �. With this
approximation, we can view �i as a continuous function
�ð�Þ and convert the sum over states to an integral, i.e.,X

i

)
Z

d�n�ð�Þ (13)

where n�ð�Þ is the density of dark-matter states per unit of
�, expressed as a function of �. Equation (12) then becomes

d�totðtÞ
dt

¼�
Z
d��ð�Þn�ð�Þ�ð��tÞ¼��ðtÞn�ðtÞ: (14)

In general, the quantities nð�Þ and�ð�Þ are unspecified,
their properties depending on the particular dark-matter
scenario under study and the specific features of our dark-
matter ensemble. However, it will prove convenient to
parametrize these quantities in terms of their scaling be-
haviors as functions of �:

�ð�Þ � A��; n�ð�Þ � B�	 (15)

with overall (generally dimensionful) coefficients ðA; BÞ
and scaling exponents ð�;	Þ. Since the abundances of
states in our scenario generally have an inverse relation
to their decay widths, we expect that �< 0. Note that n� in
Eq. (15) is the density of states per unit of �, whereupon it
follows that

n� ¼ n�

��������
d�

d�

��������¼ �2n�: (16)

We thus find that�ð�Þn�ð�Þ � AB��þ	þ2, or equivalently
�ð�Þn�ð�Þ�AB����	�2. Use of Eq. (14) then leads to the
result

d�totðtÞ
dt

¼ �ABt���	�2: (17)

Imposing the condition that �tot ¼ �CDM at the present
time t ¼ tnow and assuming that �þ 	 � �1 then leads to
the solution

�totðtÞ¼�CDMþ AB

�þ	þ1
ðt���	�1� t���	�1

now Þ: (18)

For �þ 	 ¼ �1, by contrast, we have the solution

�totðtÞ ¼ �CDM � AB log

�
t

tnow

�
: (19)

Under the assumptions in Eq. (15), the results in
Eqs. (18) and (19) are completely general in a matter-
dominated era. Moreover, it is clear from Eqs. (18) and (19)
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that in all cases,�tot decreaseswith time. This is precisely as
expected, since all of the time dependence of �tot in a
matter-dominated era arises due to the decays of the indi-
vidual dark-matter components within the ensemble. Notice
that some of these functional forms for�tot actually predict
that �totðtÞ will eventually hit zero; this is also not unex-
pected, since this corresponds to the final decay of the last
remaining dark-matter component in the ensemble.
Needless to say, we should not consider any of these
�totðtÞ functions beyond the times when they might hit
zero. Nevertheless, as long as our dark-matter ensemble
obeys the scaling laws in Eq. (15), the functions given in
Eqs. (18) and (19) correctly describe the behavior of the
corresponding total dark-matter abundances�totðtÞ.

Given the results in Eqs. (18) and (19) as well as the
definition in Eq. (7) for a matter-dominated era, we can
also obtain a solution for the time-dependent equation-of-
state parameter weffðtÞ associated with our ensemble of
decaying dark-matter states. For x � �þ 	 � �1, we
find

weffðtÞ ¼ ð1þ xÞw

2w
 þ ð1þ x� 2w
Þðt=tnowÞ1þx

(20)

where

w
 � weffðtnowÞ ¼ AB

2�CDMt
1þx
now

: (21)

Note that for w
 � 1, this result is fairly well-
approximated by

weffðtÞ � w

�

t

tnow

��x�1
: (22)

By contrast, for x ¼ �1, we instead obtain

weffðtÞ ¼ w

1� 2w
 logðt=tnowÞ (23)

where

w
 � weffðtnowÞ ¼ AB

2�CDM

: (24)

The behavior of the results in Eqs. (20) and (23) depends
critically on the relationship between x and w
. For 1þ
x < 2w
, we find that weff always increases monotonically
as a function of t before reaching w
 at t ¼ tnow. By
contrast, for 1þ x > 2w
, this function decreases mono-
tonically before reaching w
 at t ¼ tnow. Finally, for
1þ x ¼ 2w
, we have the exact result that weffðtÞ ¼ w

for all t. This (admittedly fine-tuned) case illustrates that it
is possible to achieve a time-independent equation-of-state
parameter weff ¼ w
 under the assumptions in Eq. (15),
and moreover that this value of w
 can be tuned to any
positive value desired. This is indeed the situation illus-
trated in Fig. 2, which is plotted for �< 0 and 	> 0.

The above qualitative descriptions indicate the history of
weffðtÞ prior to the present day. However, in general, this

same increasing or decreasing behavior continues for t >
tnow (i.e., through and beyond the current epoch), with one
important caveat: for 1þ x < 2w
, we see that weffðtÞ not
only continues to increase, but eventually hits a pole.
However, such poles represent the locations at which the
corresponding �tot-functions have zeroes. These poles are
therefore unphysical, signalling the decay of the last com-
ponent within our dynamical dark-matter ensemble, and
we can restrict our analysis of these functions to times
preceding these critical values.
If our dynamical dark-matter scenario is to be in rough

agreement with cosmological observations, we expect that
w
 today should be fairly small (since traditional dark
‘‘matter’’ has w ¼ 0). We also expect that the function
weffðtÞ should not have experienced strong variations
within the recent past. This suggests that situations with
x <�1 are likely to be phenomenologically preferred over
those with x � �1, since having x <�1 ensures that 0 	
weffðtÞ 	 w
 for all t < tnow. Indeed, the more negative x
becomes, the closer to vanishing weffðtÞ remains before
finally reaching w
 at t ¼ tnow. However, depending on
the detailed properties of the particular realization of our
dynamical dark-matter scenario under study, values of x
near�1 or slightly above may also be phenomenologically
acceptable.
Finally, we may also use these results to solve for � as a

function of time. For x � �þ 	 � �1, we find

�ðtÞ ¼ 2w
 þ ½�
ð1þ xÞ � 2w
�ðt=tnowÞ1þx

2w
 þ ½1þ x� 2w
�ðt=tnowÞ1þx
(25)

where w
 is given in Eq. (21) and where

�
 � �ðtnowÞ ¼ 1� �0

�CDM

: (26)

Likewise, for x ¼ �1, we have

�ðtÞ ¼ �
 � 2w
 logðt=tnowÞ
1� 2w
 logðt=tnowÞ (27)

where w
 is given in Eq. (24). It is not surprising that �,
unlike weff , depends on two independent dimensionless
quantities w
 and �
, since the very definition for �
introduces a new quantity �0 which had not previously
appeared.
Note that all time-dependence for �ðtÞ cancels, with

�ðtÞ � �
 for all x, if either w
 ! 0 or �
 ! 1. This
makes sense, since in the first case �tot does not change
while in the second case �0 ! 0. These are the only two
ways in which � can remain constant. In all other cases,
however, �ðtÞ is always a decreasing function of time, as
expected. We also see from Eqs. (25) and (27) that �ðtÞ !
1 for all x � �1 as t=tnow ! 0. Indeed, this holds regard-
less of the values of w
 or �
.
While these characteristics successfully conform to our

expectations concerning the behavior of�ðtÞ, there are some
features that the functional forms inEqs. (25) and (27) do not
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accurately capture. For example, if xþ 1< 2w
=�
, these
functions predict that �ðtÞ will eventually become negative
beyond a certain late time. Moreover, while these functions
resemble those forweff in that they properly capture the pole
that resultswhen�tot ! 0, they do not necessarily approach
� ! 0 before hitting this pole.

The reason behind these failures is easy to understand.
Unlike�tot andweff , the quantity� has a special character-
istic not shared by the others: it is sensitive not only to�tot,
but also to�0. Features such as having� reach zero but not
become negative are extremely sensitive to the value of�0

and the fact that �tot must exactly hit �0 after all but the
lightest dark-matter component have decayed. Indeed,
these features are extremely sensitive to the fine-tuned
and ultimately discrete nature of the lightest dark-matter
components, and this is precisely the sort of information
that our scaling assumptions in Eq. (15) are incapable of
modelling. Thus, while we may view the functions in
Eqs. (25) and (27) as being reasonably accurate for most
portions of the cosmological evolution in the matter-
dominated era, we should not maintain this expectation
beyond a certain time when all but a few dark-matter
components have decayed.

To summarize, then, in this section we have presented a
dynamical multicomponent dark-matter scenario in which
individual component abundances and lifetimes are bal-
anced and distributed across the components in such a way
that constraints from BBN and other backgrounds are
potentially satisfied. An important part of this scenario is
the proposition that both � and weff are different from zero
at the present time, the former significantly so, and that
components of the dark matter are actively decaying prior
to, during, and beyond the current epoch. As a result,
cosmological quantities such as �tot experience a time-
evolution which transcends that due to the ordinary expan-
sion of the universe.

III. DYNAMICAL DARK MATTER MEETS THE
INCREDIBLE BULK

Thus far, we have done little more than present a new
framework for dark-matter physics. In particular, we have
not yet demonstrated that an ensemble of dark-matter
states can easily be assembled in which the individual
component abundances are naturally balanced against life-
times in a well-motivated way. In this section, however, we
shall demonstrate that an infinite tower of Kaluza-Klein
states propagating in the bulk of large extra spacetime
dimensions naturally constitutes an ensemble of states
with the desired properties. As we shall see, this occurs
because KK towers obey a special ‘‘balancing’’ constraint
which relates the lifetimes of individual KK modes to their
abundances. Specifically, we shall demonstrate that the KK
modes within a generic KK tower exhibit abundances �i

and SM decay widths �i which obey an inverse relation of
the form anticipated in Eq. (15), i.e.,

�i�
��
i � constant (28)

for some �< 0. This constraint ultimately emerges as a
consequence of the nontrivial interplay between physics in
the bulk and physics on the brane.

A. General setup

For simplicity, we shall consider our spacetime to take
the form M4 � S1=Z2, where M4 denotes ordinary four-
dimensional Minkowski spacetime and S1=Z2 denotes a
line segment which is realized as aZ2 orbifold of a circle of
radius R. We shall take zM � ðx
; yÞ to denote the coor-
dinates on this spacetime, with the Z2 orbifold action
identified as y ! �y, and imagine that the standard model
is restricted to a brane at the fixed point y ¼ 0. We are
therefore considering a ‘‘toy’’ ADD-like scenario [9] with
a single flat extra dimension. Despite the simplicity of this
toy model, we are making no assumptions at this stage
about relevant mass scales or the full number of extra
spacetime dimensions that might actually exist in a more
fully realized scenario. Indeed, we believe that most of the
desired properties that emerge from this scenario are likely
to be retained if we imagine that our spacetime contains
additional extra dimensions, or is warped [10] rather than
flat.
In such a scenario, all fields that propagate in the bulk

are necessarily singlets with respect to all standard-model
gauge forces. As a result, such fields can have at most
highly suppressed (e.g., gravitational) interactions with the
standard-model fields, and thus appear as dark-matter can-
didates. Such fields might include the graviton, axion, and
other moduli fields. For simplicity, we shall consider the
case in which the bulk field is a five-dimensional scalar�,
but we shall make no further assumptions about its
properties.
Neglecting gravity, and with c i generically denoting the

standard-model fields, we see that such a scenario therefore
has an action of the form

S ¼
Z

d4xdy½Lbulkð�Þ þ �ðyÞLbraneðc i;�Þ�: (29)

In general, we may assume that our five-dimensional bulk
action takes the form

L bulk ¼ 1

2
@M�


@M�� 1

2
M2j�j2 (30)

where @M denotes a five-dimensional derivative and where
M is an unspecified bulk mass. In certain cases, specific
symmetries may restrict us to the case withM ¼ 0, but we
shall leave M general until further notice.
Likewise, the brane action will generically consist of

two contributions—the usual standard-model action LSM,
and an action Lint which arises due to the interactions
between � and the standard-model fields:

L brane ¼ LSM þLint: (31)
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In general, there are two types of interactions which will
concern us. The first class of interactions result in explicit
couplings between � and the standard-model fields, and
will ultimately be responsible for allowing� to decay into
standard-model states. We shall discuss such interactions
in Sec. III B. There is, however, another possible type of
interaction term which can also appear withinLint: this is a
possible ‘‘brane mass’’ for � itself, i.e.,

L int  � 1

2
m2j�j2: (32)

Such a brane mass can emerge as an effective operator
arising due to perturbative or nonperturbative dynamics
wholly restricted to the brane. Note that this brane-mass
term must not be confused with the primordial bulk mass
that appears in Eq. (30); rather, this term has its origins
within the physics on the brane itself, and appears as part of
Lbrane within Eq. (29) rather than Lbulk.

These minimal assumptions are already sufficient to
permit us to understand the nature of the resulting
Kaluza-Klein spectrum for�. Indeed, the following results
are similar to those previously obtained in Ref. [11]. As
appropriate for compactification on the line segment
S1=Z2, we can decompose our five-dimensional field �
in terms of an infinite tower of four-dimensional modes�k,

�ðx
; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p X1
k¼0

rk�kðx
Þ cos
�
ky

R

�
; (33)

the normalization factors

rk �
�
1 for k ¼ 0ffiffiffi
2

p
for k > 0

(34)

are designed to ensure that each mode�k has a canonically
normalized kinetic term in the resulting four-dimensional
theory. We then find that

S¼
Z
d4xdy

�
1

2
@M�


@M��1

2
M2j�j2�1

2
�ðyÞm2�2

�

¼
Z
d4x

�
1

2

X1
k¼0

@
�


k@


�k�1

2

X1
k;‘¼0

M2
k‘�k�



‘

�
(35)

where the Kaluza-Klein ðmassÞ2 matrix is given by

M 2
k‘ ¼

�
k‘

R2
þM2

�
�k‘ þ rkr‘m

2: (36)

Given these results, we see that this mass matrix would
have been diagonal were it not for the brane-mass term.
This in turn implies that the KK mass eigenstates ��

necessarily differ from the KK-momentum eigenstates
�k—i.e., there is a nontrivial mixing that is induced as a
result of the KK mass. This mixing turns out to be critical
for our analysis. In general, we may characterize the degree
of mixing in terms of the dimensionless parameter

y � 1

mR
: (37)

For y � 1 the mass matrix is essentially diagonal; this is
what trivially occurs, for example, in the four-dimensional
R ! 0 limit in which the excited KK modes decouple. By
contrast, in the opposite limit y � 1, the mixing is essen-
tially maximal across all of the eigenmodes.
It is possible to describe the solutions for the eigenvalues

�2 of the ðmassÞ2 matrix in closed form, and thereby obtain
explicit expressions for the corresponding mass eigen-
states. The eigenvalues turn out to be the solutions to the
transcendental equation

�m2R cotð�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p
: (38)

If m were zero (i.e., no brane mass), the solutions to this
equation would be nothing but the expected eigenvalues

�2
n ¼ M2 þ n2

R2
; n 2 Z; (39)

and more generally this remains approximately true when
m � 1=R, i.e., when y � 1. What is perhaps surprising,
however, is that the presence of a nonzero brane mass does
not result in a further additive shift in this mass spectrum
for the KK tower (as does the bulk mass term), but instead
distorts the lower mass eigenstates in the tower so that they
approximately follow the alternate spectrum

�2
n ¼ M2 þ ðnþ 1

2Þ2
R2

; n 2 Z: (40)

Remarkably, this is precisely the spectrum which wewould
normally associate with a five-dimensional field � which
is taken to be antiperiodic (rather than periodic) around the
extra-dimensional circle prior to orbifolding! Indeed, for
general values of y, the solutions �n of Eq. (38) tend to
follow the spectrum in Eq. (40) for n � �=y2, while they
follow the spectrum in Eq. (39) for n � �=y2 and
smoothly transition between the two spectra for intermedi-
ate values n� �=y2. As we have discussed above, this
unusual behavior is the consequence of the nontrivial inter-
play between brane and bulk physics, and may have appli-
cations beyond its appearance here.
For each mass eigenvalue �, we can also solve for the

corresponding mass eigenstate j��i as a linear combina-
tion of the KK-momentum eigenstates j�ki. We find the
exact result [11]

j��i ¼ A�

X1
k¼0

rk ~�
2

~�2 � k2y2
j�ki (41)

where we have defined the dimensionless eigenvalues

~� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p
=m (42)

and where
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A� �
ffiffiffi
2

p
~�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=y2 þ ~�2

q : (43)

Given these results, it is straightforward to convert between
the mass-eigenstate basis j��i and the KK-momentum
basis j�ki. It turns out that there are two specific groups
of matrix elements involved in this conversion which will
be of particular interest to us. The first involves the KK
zero-mode �k¼0, for which we have the matrix elements

h��j�k¼0i ¼ A�: (44)

However, the second concerns the projection of the five-
dimensional bulk field�ðyÞ onto the standard-model brane
at y ¼ 0, i.e.,

�0 � �ðyÞjy¼0 ¼
X1
k¼0

rk�k: (45)

For this projection field, we likewise have the matrix
elements

h��j�0i ¼ A�

X1
k¼0

r2k
~�2

~�2 � k2y2
¼ �~�2

y
cot

�
�~�

y

�
A� ¼ ~�2A�

(46)

where we have made use of Eq. (38) in the final equality.

In Fig. 3, we plot the values of A� and ~�2A� as functions

of ~� and y. We see that A� falls with increasing ~�, while
~�2A� increases with increasing ~� and ultimately reaches an

asymptote ~�2A� ! ffiffiffi
2

p
as ~� ! 1. Moreover, we see that

larger and larger values of � are needed to reach this
asymptote as y decreases.

B. Balancing � versus �

We now address the central feature underpinning
dynamical dark matter: the balance between the SM decay
widths �� associated with each KKmass eigenstate and the
corresponding cosmological abundances ��. As we shall
show, an inverse relation of the form anticipated in Eq. (28)
naturally emerges across the entire KK tower.

1. Abundances ��

We begin by focusing on the different cosmological
mode abundances �� that can arise in such a scenario.
During the course of the evolution of the universe, there

are many production mechanisms through which the differ-
ent KK states might come to be populated and thereby
acquire nonzero abundances. One such method, for ex-
ample, is thermal production; another relies on purely
geometric effects (e.g., topological defects such as cosmic
strings and domain walls) and the decays associated with
them. However, there is also a third production mechanism
which exists in cases where the bulk mass M happens to
vanish: this is so-called ‘‘misalignment production’’.
In many string-theoretic contexts, bulk fields often do

have vanishing bulk masses. Such fields often include
gravitational and/or geometric moduli fields; they also
include various axionlike fields. Moreover, as we shall
demonstrate, the predictions of misalignment production
are rather straightforward to calculate, and are fairly ge-
neric for bulk fields as a whole. We shall therefore take
M ¼ 0 in what follows, and restrict our attention to abun-
dances established through misalignment production.
It is easy to understand the physical underpinnings of

misalignment production within the framework of dynami-
cal dark matter. Prior to the brane dynamics that establishes
the brane mass m, the fact that M ¼ 0 implies that our
theory exhibits a five-dimensional shift symmetry � !
�þ c, where c is a constant. As a result, any value for
h�i is equally likely to occur:

h�i ¼ f3=2� (47)

where  is a random Oð1Þ dimensionless coefficient and
where f� is a mass scale (or decay constant) associated
with the five-dimensional� field in the bulk. Decomposed
into KK eigenstates via Eq. (33), this nonzero vev for the
five-dimensional field � implies a nonzero vev for the KK
zero mode:

h�0i ¼ f̂�; h�ki ¼ 0 for all k > 0 (48)

where

f̂ � � ffiffiffiffiffiffiffiffiffiffi
2�R

p
f3=2� : (49)

FIG. 3 (color online). Values of A� (falling curves) and ~�2A�

(rising curves), plotted as functions of the mass eigenvalues
~�=y ¼ �R for y ¼ � (black), y ¼ ffiffiffiffi

�
p

(blue), and y ¼ 1 (red).
For each y, there are only a discrete set of corresponding allowed
eigenvalues ~� (indicated with solid dots); note that the quantity
~�=y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p
R takes values closer to Zþ 1=2 near the

bottom of each tower and shifts to values closer to Z as �
increases. In each case, we see that A� falls with increasing ~�,
while ~�2A� increases with increasing ~� and ultimately reaches
an asymptote ~�2A� ! ffiffiffi

2
p

as ~� ! 1.
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Note that all of the higher KK modes �k with k > 0 must
have vanishing vevs as a result of the five-dimensional shift
symmetry.

This is the situation that exists prior to (i.e., at energies
higher than those associated with) the brane dynamics that
establishes the brane mass m. However, once this brane
mass is established, we must shift to the mass-eigenstate
basis, whereupon we see from Eq. (44) that Eq. (48) now
takes the form

h��i ¼ A�f̂� for all �: (50)

Thus, we see that all of the mass eigenstates will generally
have nonzero values. Of course, the fact that these vevs are
all related through the coefficients A� is a reflection of our
original five-dimensional shift symmetry in the bulk.

The dynamics that establishes the brane mass m also
leads to a nonzero energy density � associated with the
configuration in Eq. (50). In general, the four-dimensional
energy density �� associated with each mode �� is given
by �� ¼ 1

2�
2h��i2. Given Eq. (50), we thus have

�� ¼ 1

2
2�2A2

�f̂
2
�: (51)

Of course, at any moment in the evolution of the universe,
the critical energy density is given by

�crit ¼ 3M2
PH

2 (52)

where MP � ð8�GNÞ�1=2 is the reduced Planck scale and
where H is the Hubble parameter. The initial abundance
�� � ��=�crit associated with the �� mode is thus given
by

�ð0Þ
� ¼ 2

6
~�2A2

�

�
mf̂�
MPH

�
2
: (53)

This is, in fact, a completely general result.
We shall let t0 denote the time at which this initial

abundance is established by the brane dynamics. Thus

��ðt0Þ ¼ �ð0Þ
� . The next question, however, is to determine

the corresponding value of��ðtnowÞ. In order to do this, we
see from Fig. 1 that we must make some assumptions about
whether t0 is situated during the reheating, radiation-
dominated, or matter-dominated eras, and whether the
�� mode experiences an instantaneous turn-on at t0 or a
staggered turn-on at a time t� > t0. There are therefore six
different cases to consider.

For simplicity we shall assume that for the modes ��

which are part of a staggered turn-on, the corresponding
turn-on time t� occurs at the threshold 3Hðt�Þ ¼ 2�. (Of
course, if t� 	 t0, then such modes turn on only at t0.) We
shall also assume that all modes in a given tower actually
turn on during the same era as t0, so that our turn-on
‘‘cascade’’ down the tower does not cross a boundary
between two different eras. Finally, we shall assume
that within each era, HðtÞ takes the approximate form

HðtÞ ¼ �=3t where � ¼ 2 for the reheating and matter-
dominated eras and � ¼ 3=2 during the radiation-
dominated era. This implies that t� ¼ �=2�. Note that
this approximate form for HðtÞ is generally valid at rela-
tively late times within each era, and we shall disregard all
Oð1Þ ‘‘threshold’’ effects associated with the boundaries
between different eras. Thus, we shall implicitly take�� to
be a continuous function of t, as sketched in Fig. 1, and we

shall therefore disregard all ~�-independentOð1Þ numerical
coefficients in those expressions for ��ðtnowÞ which
follow.
Clearly, if t0 occurs during the final matter-dominated

era (i.e., if t0 > tMRE), then modes which turn on instanta-
neously (i.e., modes with t� 	 t0) will have abundances

��ðtnowÞ � X��
ð0Þ
� � ~�2A2

�X�

�
f̂�
MP

�
2ðmt0Þ2 (54)

where X� denotes the expected damping factor due to dark-
matter decays:

X� � e���ðtnow�t0Þ: (55)

By contrast, for those modes which experience a staggered
turn-on (i.e., modes with t� > t0), this result becomes

��ðtnowÞ � X��
ð0Þ
�

�
t�
t0

�
2 � A2

�X�

�
f̂�
MP

�
2

(56)

where we have substituted the result t� � 1=� in passing to
the final expression.
By contrast, for t0 within the radiation-dominated era

(i.e., tRH & t0 & tMRE), these two cases are instead given
by

��ðtnowÞ � X��
ð0Þ
�

�
tMRE

t0

�
1=2

� ~�2A2
�X�

�
f̂�
MP

�
2ðmt0Þ3=2ðmtMREÞ1=2 (57)

and

��ðtnowÞ � X��
ð0Þ
�

�
t�
t0

�
2
�
tMRE

t�

�
1=2

� ~�1=2A2
�X�

�
f̂�
MP

�
2ðmtMREÞ1=2: (58)

Finally, for t0 within the reheating era (i.e., t0 & tRH),
these two cases are instead given by

��ðtnowÞ � X��
ð0Þ
�

�
tMRE

tRH

�
1=2

� ~�2A2
�X�

�
f̂�
MP

�
2ðmt0Þ2

�
tMRE

tRH

�
1=2

(59)

and
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��ðtnowÞ � X��
ð0Þ
�

�
t�
t0

�
2
�
tMRE

tRH

�
1=2

� A2
�X�

�
f̂�
MP

�
2
�
tMRE

tRH

�
1=2

: (60)

Interestingly, of all six cases, this is the only one which
yields a result for ��ðtnowÞ which is parametrically inde-
pendent of the scale m.

It is also instructive to examine the manner in which

these results scale with ~�. Surveying Eqs. (54) through (60),

we see that the dependence of �� on ~� follows only three
different patterns, depending on the specific turn-on behav-
ior experienced by the KK mode in question and the era
during which it takes place:

�� �

8>>><
>>>:

~�2A2
� instantaneous

~�1=2A2
� staggered ðRD eraÞ

A2
� staggered ðRH=MD erasÞ:

(61)

Under the assumption of misalignment production, this
result is exact and completely general. However, given
the definition in Eq. (43), we may approximate

A� �
8<
:
1=~� for ~� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2=y2
p

1=~�2 for ~� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=y2

p
:

(62)

In the future, we shall refer to these two approximation

regimes as the small-~� and large-~� regimes; note that while

there always exists a large-~� regime, the existence of a

small-~� regime depends on the value of y. We then find that

the results in Eq. (61) lead to the large-~� scaling behaviors

�� �

8>>><
>>>:

~��2 instantaneous

~��7=2 staggered ðRD eraÞ
~��4 staggered ðRH=MD erasÞ

(63)

as well as the small-~� behaviors

�� �
8><
>:
constant instantaneous

~��3=2 staggered ðRD eraÞ
~��2 staggered ðRH=MD erasÞ:

(64)

Indeed, the only �-dependence which is not included in
these results is that which appears through the decay widths
in the X�-factors in Eqs. (54) through (60). However, these
X� factors only express the physics of the eventual dark-
matter decay processes; they play no role in determining the
mode abundances that exist prior to decay, which is our
main interest in this discussion. As a result, we shall dis-
regard these X� factors in what follows, understanding that
our analysis is primarily appropriate for the period that
exists prior to the onset of decays of the KK states with
significant abundances. (Indeed, the final period of KK
decays will be discussed in Sec. III B 3 after we have

analyzed the behavior of the decay widths �� in
Sec. III B 2.)
Given the individual abundances �� in Eqs. (54)

through (60), we can now calculate the values of both
�tot and � that exist prior to the onset of significant KK
decays. Recall that �tot is nothing but the sum over all of
the individual abundances ��, while � describes how that
total abundance is distributed across the different modes.
Indeed, we see from Eq. (63) that the lightest of the KK
modes will always carry the greatest abundance. It then
follows from its definition in Eq. (5) that � indicates what
fraction of the total abundance is carried by the excited
states in the KK tower. For this reason we shall occasion-
ally refer to � as the ‘‘tower fraction.’’
Let us first consider �tot. At first glance, it might seem

algebraically cumbersome to tally these individual mode
abundances ��, since they each have a different
�-dependence given in Eq. (61) and we would need to
sum over all of the eigenvalue solutions to the transcen-
dental equation in Eq. (38). However, it turns out that the
resulting spectrum of �-eigenvalues satisfies two critical
identities [11]:

X
�

A2
� ¼ 1;

X
�

~�2A2
� ¼ 1: (65)

These identities ultimately stem from the unitary nature of
the mapping between the KK-momentum basis and the
mass-eigenstate basis. Thus, unless our KK tower experi-
ences a staggered turn-on during the radiation-dominated
era, summing over the individual abundances in Eq. (61) is
particularly simple.
What is truly remarkable about the identities in Eq. (65)

is that they hold for all values of y. They are thus indepen-
dent of the degree of nondiagonality exhibited by the KK
mass matrix, and independent of the degree to which the
corresponding KK modes are mixed. As a result, if we

assume that f̂�, t0, and m are all y-independent, it then

follows that �tot will be y-independent as well! Although
dialing the value of y (i.e., adjusting the radius of the extra
spacetime dimension) might change the distribution of
abundances across the infinite tower of KK states, the total
abundance remains essentially fixed.
We stress that this result holds only for those cases in

which the KK abundances are established either instanta-
neously, or through a staggered turn-on which takes place
during the reheating or matter-dominated eras. By contrast,
if these KK abundances are established through a staggered
turn-on during the radiation-dominated era, the total abun-

dance �tot today will be proportional to
P

�
~�1=2A2

�. This
quantity is not y-independent, but rather has the
y-dependence shown in Fig. 4. As a result, our preferred

choices for parametric quantities such as f̂�, t0, and m

would need to be altered in order to compensate for this
effect.
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The results in Eq. (61) also allow us to calculate the
tower fraction � prior to the onset of significant KK
decays. Indeed, the three different patterns for �� in
Eq. (61) imply three different distributions for the abun-
dances across the different mass eigenstates in the KK
tower. Therefore, if we additionally assume that all of the
states in a given tower simultaneously fall into one of these
three cases, there will be three corresponding possible
behaviors for the ‘‘tower fraction’’ � defined in Eq. (5),
viewed as a function of the nondiagonality parameter y.
These results are shown in Fig. 5, and we see that � indeed
spans a range of Oð1Þ values, as desired. These results are
also highly y-dependent, illustrating that while adjusting y
changes the total abundance only in certain restricted
circumstances, it changes the distribution of these abun-
dances quite substantially in all cases.

It is easy to understand the overall features exhibited in
Fig. 5. As y ! 1, we enter the four-dimensional limit in
which virtually no abundance is carried by the excited KK
modes. As a result, these modes become completely irrele-
vant to the dark-matter problem, and � ! 0. By contrast,
as y ! 0, our KK states experience maximal mixing, as a
result of which the corresponding value of � is maximized.
Since �n � ðnþ 1

2Þ=R for all n in this limit, we can easily

calculate these maximum values of �, obtaining the result
that �max ¼ 1 in the case of instantaneous turn-on, while
for the case of staggered turn-on during a reheating or
matter-dominated era we have

�max¼1�4

�X1
n¼0

1

ðnþ1=2Þ2
��1¼1� 8

�2
�0:189; (66)

and for the case of staggered turn-on during a radiation-
dominated era we have

�max ¼ 1� 2
ffiffiffi
2

p �X1
n¼0

1

ðnþ 1=2Þ3=2
��1

¼ 1� 2
ffiffiffi
2

p

ð2 ffiffiffi
2

p � 1Þ�ð3=2Þ � 0:408 (67)

where � denotes the Riemann zeta-function. All three of
these limiting values are evident in Fig. 5.

2. Decay widths ��

Next, we turn to the decay widths �� which can be
expected in such a scenario.
Up to this point, we have assumed nothing more than

that the bulk field in our setup has a vanishing bulk mass
M ¼ 0 and a nonvanishing brane mass m � 0. As we have
seen, this has proven sufficient to allow us to determine not
only the Kaluza-Klein ‘‘spectroscopy’’ of our dark towers
but also the corresponding cosmological mode abundances
that emerge from misalignment production. In some sense,
it is remarkable that these results rely on such minimal
assumptions; indeed, this happy fact explains why our
results thus far are extremely general and can be expected
to hold for all bulk fields for which M ¼ 0 and m � 0.
However, in order to discuss the decay widths of these

KK modes into standard-model states, we shall require
further information concerning the couplings between the
five-dimensional bulk field � and the four-dimensional

FIG. 4. The quantity
P

�
~�1=2A2

�, plotted as a function of y.
Note that the total dark-matter abundance �tot prior to the onset
of significant KK decays is proportional to this quantity if the
individual KK abundances are initially established through a
staggered turn-on during the radiation-dominated era. As a
result, this curve also illustrates the y-dependence of �tot in
this case. By contrast, for all other cases, the total abundance
�tot is y-independent.

FIG. 5. The tower fraction � after all dark-matter modes have
‘‘turned on’’ and entered the present matter-dominated epoch,
plotted as a function of y for three different regimes of misalign-
ment production: (a) instantaneous turn-on, in which case �� �
~�2A2

�; (b) staggered turn-on during a radiation-dominated era, in

which case �� � ~�1=2A2
�; and (c) staggered turn-on during a

reheating or matter-dominated era, in which case �� � A2
�. In

each case we see that � ! 0 as y ! 1, while � approaches a
fixed maximum value �max as y ! 0.
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standard-model states. In other words, we shall require
further information concerning the interaction terms that
might appear within Lint in Eq. (31) and thereby become
part of our four-dimensional effective Lagrangian. Of
course, it is most dangerous for the consistency and
phenomenological viability of our dynamical dark-matter
scenario if these decay widths are too large. Our conserva-
tive approach to this problem will therefore be to consider
the worst possible scenario and determine how large these
decay widths might be. Since the largest decay widths will
generally arise from the operators of lowest possible di-
mension within Lint, the first step in our analysis is there-
fore to determine what forms such operators might take.

Imposing Lorentz invariance and invariance under all
standard-model gauge symmetries, we find that our options
are fairly limited. The separate brane/bulk structure of this
dark-matter setup requires that our bulk dark-matter field
� be a singlet under all standard-model gauge symmetries.
This implies that any combinations of brane fields to which
� couples must be gauge invariant by themselves.
Moreover, in order to restrict ourselves to operators of
lowest possible dimensionality, we shall consider operators
which are at most linear in�. We shall also assume for this
discussion that � is real. Letting c denote a generic
standard-model fermion and F
� denote a generic

standard-model field strength for any gauge group, we
then find that the operators of lowest possible dimension-
ality come in two groups. If � is CP-even, the lowest-
dimension operators which may appear in Lint take the
form

1

f3=2�

� �c�
@
c ;
1

f3=2�

�F
�F

� (68)

where f� is the five-dimensional mass scale associated
with � which originally appeared in Eq. (47). By contrast,
if� is CP-odd, the lowest-dimension operators which may
appear in Lint take the form

1

f3=2�

ð@
�Þ �c�
�5c ;
1

f3=2�

�F
�
~F
� (69)

where ~F
� � �
���F��. These groups of operators then,

respectively, give rise to the four-dimensional couplings

1

f̂�
�0 �c�
@
c ;

1

f̂�
�0F
�F


� (70)

and

1

f̂�
ð@
�0Þ �c�
�5c ;

1

f̂�
�0F
�

~F
� (71)

where�0, as defined in Eq. (45), is the projection of� onto

the Standard-Model brane, and where f̂� is defined in

Eq. (49).

This list exhausts the possible dimension-five operators.
It is encouraging that we see among this list of possible
operators the standard moduli and axion couplings—
indeed, in the CP-even case we can even regard the linear

prefactor �0=f̂� as the leading term of an exponential

prefactor expð�0=f̂�Þ, and thereby recognize the standard

dilaton coupling in string theory. Thus, this list of operators
includes most of our cases of phenomenological interest.
At first glance, it might seem that operators of even lower
dimension could be constructed—e.g., � �c c and
� �c�5c . However, such operators are not gauge invariant
because all of the fermions c in the standard model are
chiral. Likewise, dimension-four operators such as
j�j2jHj2 are also forbidden as they would violate the shift
symmetry under which � ! �þ constant.
Although kinematic effects favor the di-photon decay

mode �0 ! ��, the four-dimensional couplings in
Eqs. (70) and (71) all lead to SM decay rates of the same
parametric order. Standard calculations then lead to an
overall decay width

�� � �3

f̂2�
h��j�0i2 ¼ �3

f̂2�
ð~�2A�Þ2 (72)

where we have substituted Eq. (46) in the final step. Use of

Eqs. (62) then leads to the large-~� behavior �� � ~�3 as

well as the small-~� behavior �� � ~�5.
Before concluding our discussion of the decay widths, it

is important to note that there will generally exist many
competing decay modes for our KK states which do not
exclusively involve standard-model particles as end-
products. One example includes intraensemble decays
(i.e., decays within the KK tower, from heavier KK states
to lighter KK states); indeed, this possibility will be dis-
cussed in general terms in the Appendix. Also, in cases
involving multiple fields in the bulk, it is possible for bulk
KK states of one species to decay to bulk states of another
species.
While such decays can be important on a number of

cosmological and phenomenological levels, they generally
do not significantly diminish the abundance of what might
be termed ‘‘dark matter’’ or increase the corresponding
abundance of what might be termed ‘‘visible matter.’’
Moreover, it is often the case that such decays are signifi-
cantly suppressed relative to the KK decays that proceed
directly to standard-model brane states. Such suppressions
can occur for a variety of reasons, some of which depend
on the fact that physics in the bulk is often governed
directly by (and therefore suppressed by) the gravitational
Planck scale, and some of which are the consequences of
extra restrictive symmetries which exist purely in the bulk
and which therefore do not apply to decays of bulk fields
into brane fields. Of course, a detailed analysis of this
question requires specifying a particular bulk field, along
with a complete Lagrangian for the theory including its
gravitational interactions. While such an analysis is beyond
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the scope of this theoretical overview, an analysis of this
sort does appear in Refs. [6,7] where it is shown that such
decays are indeed greatly suppressed in a specific realistic
model of dynamical dark matter. This result therefore
confirms our general expectations in one specific example.

We have therefore assumed in this paper that the primary
decay mode for each KK bulk mode is directly into a
standard-model brane state. However, as discussed in the
Appendix, our dynamical dark-matter scenario can easily
be generalized to accommodate more complex decay chan-
nels if this should ultimately prove appropriate in a given
situation.

3. Balancing lifetimes against abundances

Having calculated the spectrum of abundances �� and
the spectrum of decay widths �� across our KK tower, we
can now see exactly how KK towers manage to balance
lifetimes against abundances. Combining the results in
Eqs. (63) and (72), we find that for large � our KK towers
indeed always obey a balancing equation of the form
anticipated in Eq. (28):

instantaneous: ���
2=3
� � constant

staggered ðRD eraÞ: ���
7=6
� � constant

staggered ðRH=MD erasÞ: ���
4=3
� � constant:

(73)

Indeed, this asymptotic behavior holds for ~� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=y2

p
. Thus, we see that our KK towers succeed in

balancing lifetimes against abundances in a robust fashion,
regardless of the particular type of ‘‘turn-on’’ they experi-
ence and regardless of the cosmological era during which
this ‘‘turn-on’’ takes place.

While Eq. (73) describes the crucial asymptotic behav-
ior at the ‘‘top’’ of the KK tower, a similar set of relations
describes the ‘‘bottom’’ of each KK tower. Combining

the small-~� behavior in Eq. (64) with the small-~� result

�� � ~�5 leads to the relations

instantaneous: �� � constant

staggered ðRD eraÞ: ���
3=10
� � constant

staggered ðRH=MD erasÞ: ���
2=5
� � constant

(74)

for ~� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=y2

p
. We stress, however, that this behav-

ior is relevant only at the bottom of a KK tower, and only
for relatively small y. Indeed, regardless of the value of y,
the behavior of the abundances and decay widths always
eventually shifts to satisfy the relations in Eq. (73) as we
pass to higher and higher modes in a given KK tower.

Given these results for the abundances �� and decay
widths ��, we can now calculate the general ð�;	Þ scaling
coefficients that appear in Eq. (15). These results also
enable us to deduce an effective equation of state for our
ensemble of decaying dark-matter KK components. The

values of �, of course, are directly evident from Eq. (73)

for large ~� and from Eq. (74) for small ~�. Likewise, since
the states in our KK tower are nearly equally spaced
throughout the tower, we know that the density of states
per unit � is essentially �-independent: n� � �0. Per unit

of �, this translates into n� � n�jd�=d�j�1 � �ð1�xÞ=x for
�� �x. We thus have 	 ¼ �2=3 for large �, and 	 ¼
�4=5 for small �.
We therefore conclude that for large �, a general KK

tower has the scaling coefficients

ð�;	Þ ¼

8>>><
>>>:
ð�2=3;�2=3Þ instantaneous

ð�7=6;�2=3Þ staggered ðRD eraÞ
ð�4=3;�2=3Þ staggered ðRH=MD erasÞ:

(75)

By contrast, for small ~�, these results are modified to
become

ð�;	Þ ¼

8>>><
>>>:
ð0;�4=5Þ instantaneous

ð�3=10;�4=5Þ staggered ðRD eraÞ
ð�2=5;�4=5Þ staggered ðRH=MD erasÞ:

(76)

Given these ð�;	Þ scaling coefficients, we can also
calculate the effective equation-of-state function weffðtÞ
which describes the collective effects of the decays of the
individual modes along the KK tower. Indeed, as we have
seen in Sec. II, the behavior of this functionweffðtÞ depends
critically on the value of the sum x � �þ 	. However,
given the results in Eqs. (75) and (76), we can easily
tabulate the values of x for the different cases under study,
obtaining the results shown in Table I. As we see from
Table I, most of the x-values for a general KK tower tend to
cluster near x & �1. This is remarkable, since we have
already shown in Sec. II that this is precisely the range for
x which is preferred phenomenologically. We thus see that
a KK tower indeed serves as an excellent realization of
dynamical dark matter.
One feature which emerges from Table I is that regard-

less of the turn-on behavior of the individual modes, the

value of x generally decreases as we pass from the large-~�

regime to the small-~� regime. This generally corresponds

TABLE I. Values of the equation-of-state parameter x � �þ
	 for different portions of a general KK tower with different
‘‘turn-on’’ phenomenologies. We observe that KK towers natu-
rally give rise to values x & �1, which is precisely the range
favored phenomenologically.

Large ~� Small ~�

Instantaneous �4=3 �4=5
Staggered (RD era) �11=6 �11=10
Staggered (RH=MD eras) �2 �6=5
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to passing from early times (during which the decays of the
heavier KK modes dominate the physics) to later times
(during which only the lighter KK modes are still present).
Indeed, this transition typically occurs for values of

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=y2

p
which decrease as a function of y.

Thus, we do not expect to see the small-~� behavior emerge
strongly except for later times in small-y scenarios.

Needless to say, all of the above conclusions are predi-
cated on approximations which model the KK tower ac-
cording to certain power-law scaling behaviors. It is
therefore natural to wonder how robust these conclusions
actually are when compared with the results of a complete
numerical calculation which uses the exact numerical val-

ues for the eigenvalues ~� across the entire KK tower and
which avoids any approximations for the coefficients A�

which appear in the KK mode abundances and decay
widths. However, it is straightforward to perform such a
calculation. In Fig. 6, we plot a rescaled version of the total
dark-matter abundance�tot as a function of time during its
final decay-dominated period, assuming (as in Sec. II) that
these decays occur during the present matter-dominated
cosmological era. Each panel in Fig. 6 corresponds to one
of the three different cases that describe how the individual
abundances in the KK tower might have been established;
indeed, following the results in Eq. (61), this ‘‘rescaled’’

�tot is defined in each case as
P

�
~�kA2

�X� with k ¼ 2 (first
panel of Fig. 6), k ¼ 1=2 (second panel), and k ¼ 0 (third
panel). Moreover, in making these plots, we have assumed
that each KK state decays instantaneously at t ¼ �� � ��1

�

so that the contributions from individual states will be
readily discernible. This is tantamount to approximating

X� in Eq. (55) as X�ðtÞ � �ð��1
� � tÞ. Finally, in order to

compare curves with different values of y, an overall
normalization for the time axis for each curve has been
chosen such that the time t is expressed in units of ��1

0 ,

where �0 is the decay width of the lightest KK mass
eigenstate. As a result the curves in Fig. 6 share a common
location at which �tot ultimately vanishes in each case,
signifying the eventual decay of the final, lightest state in
the KK tower.
Although the total dark-matter abundance �tot ulti-

mately vanishes at logð�0tÞ ¼ 0 for all curves, we see
that the overall time-evolution of �tot as we approach
this vanishing point is highly y-dependent. As y ! 1,
we see that �tot remains constant until it experiences a
single, sudden, complete decay; this of course corresponds
to the traditional scenario of a single dark-matter particle.
By contrast, for smaller values of y, we see that multiple
modes with different decay widths carry the total dark-
matter abundance �tot; as a result, the resulting transition
of �tot from its maximum value to zero is more gentle. In
all cases the quantity 1� � indicates the relative size of
this final ‘‘last step’’ down to�tot ¼ 0; note that the results
for � implicitly shown here in terms of the relative final
step size are consistent with those shown in Fig. 5.
Likewise, the initial values of�tot also confirm our expec-
tations discussed earlier: the instantaneous and staggered
(RH/MD) cases have initial values at �tot ¼ 1, in accor-
dance with Eq. (65) for all y, while the initial values shown
on the second panel are y-dependent and correspond to the
values shown in Fig. 4.
Using the results for �totðtÞ shown in Fig. 6, we can

now proceed to calculate the corresponding tower

FIG. 6. The (rescaled) total dark-matter abundance�tot, plotted as a function of time for each of the three cases relevant for a general
KK tower. In each panel, the uppermost curve corresponds to y ¼ 10 and the successively lower curves correspond to y ¼ 3, y ¼ 1,
y ¼ 0:5, and y ¼ 0:1. In order to compare curves with different values of y, we have plotted log10ð�0tÞ on the horizontal time axis,
where �0 is the decay width of the lightest KK mass eigenstate associated with each curve. This ensures that the curves share a
common horizontal location at which�tot vanishes in each case, signifying the decay of the final, lightest state in the KK tower. We see
from these results that overall shape of the time-dependence of �tot is highly y-dependent: the y ! 1 limit corresponds to the usual
scenario of a single dark-matter particle (with �tot remaining essentially constant until this particle decays), while smaller values of y
correspond to situations in which �tot is distributed across multiple KK modes with different decay widths. It is this property which
leads to a time-dependent �tot and thus a nontrivial effective equation of state for the dark KK tower.
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fractions�ðtÞ. The results are shown in Fig. 7. As expected,
we see that � increases with decreasing y. Moreover, we
can now see directly that the maximum value of � shown
for each curve is consistent with the results of Fig. 5.

Using the results for�totðtÞ shown in Fig. 6, we can also
proceed to calculate the corresponding equation-of-state
function weffðtÞ which follows from the definition in
Eq. (7). Equivalently, we can use the results for �ðtÞ shown
in Fig. 7 along with the definition in Eq. (9). In either case,
the results are shown in Fig. 8. In passing from Figs. 6 and 7
to Fig. 8, we have calculated logarithmic slopes numerically
for each successive KK decay event and then plotted a
continuous function. It is clear that the results in Fig. 8 are
in complete agreement with our general expectations for
weff from Sec. II: in each case we observe the general

tendency that weff ! 0 as t ! 0, and likewise in all but
one case weff approaches a pole at t ¼ ��1

0 (corresponding

to the fact that �tot hits zero upon the decay of the final,
lightest dark-matter mode in the KK tower).
These results are also in agreement with our expecta-

tions based on the KK scaling coefficients in Table I. As
y decreases, we see the emergence of a definite shift in
the behavior of weffðtÞ as we transition from early times

to later times. This corresponds to the shift from large-~�

behavior to small-~� behavior in Table I. Indeed, in the
case of an ‘‘instantaneous’’ turn-on, we even observe
that our function weffðtÞ develops a slight maximum for
smaller values of y, shifting from increasing behavior to
slightly decreasing behavior. This change in the slope of
weffðtÞ for this particular situation is directly correlated

FIG. 7. The tower fraction �, plotted as a function of time for each of the three cases relevant for a general KK tower. In each panel,
the lowest curve corresponds to y ¼ 10 (not visible in the center and right panels) and the successively higher curves correspond to
y ¼ 3, y ¼ 1, y ¼ 0:5, and y ¼ 0:1. Thus, these values for � directly correspond to the values of �tot plotted in Fig. 6. In general, we
observe that � increases with decreasing y, and that the maximum value of � shown for each curve is consistent with the results of
Fig. 5.

FIG. 8. The effective dark-matter equation-of-state-parameter weff , plotted as a function of time for each of the three cases relevant
for a general KK tower. In each panel, the lowest curve corresponds to y ¼ 10 and the successively higher curves correspond to y ¼ 3,
y ¼ 1, y ¼ 0:5, and y ¼ 0:1. Thus, these values for weff directly correspond to the values of �tot plotted in Fig. 6, or equivalently the
values of � plotted in Fig. 7. In all cases, we see that weff ! 0 as t ! 0. Note that although the values of �tot were plotted in Fig. 6
only up to an overall rescaling factor, the values of weff plotted here are insensitive to this rescaling and are thus meaningful on an
absolute scale. We thus see that weff never exceeds 0.1 for a general KK tower, and is generally much smaller.
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with the fact that the value of x in Table I shifts from
x <�1 to x >�1. We see from both Table I and Fig. 8
that this is the only case in which such interesting
behavior occurs.

At first glance, it might seem surprising that we are able
to obtain effective equation-of-state functions weffðtÞ
which depend on x, but which are otherwise universal
when plotted versus �0t. Indeed, weffðtÞ depends on a
number of parameters: not just the dimensionless expo-
nents � and 	 in Eq. (15), but also dimensionful quantities
such as the leading coefficients A and B in Eq. (15) as well
as physical parameters such as�CDM which are involved in
setting a boundary condition for �tot. Indeed, all of these
parameters appear in our approximate results for �totðtÞ in
Eqs. (18) and (19). However, the important point is that
while �tot depends on all of these dimensionful quantities
somewhat independently, weffðtÞ depends on them in only
one particular combination. This was already apparent in
Eqs. (20) and (23), where the combination in question was
nothing but w
 � weffðtnowÞ.

Of course, the results for weffðtÞ in Eqs. (20) and (23)
were, respectively, derived from the results for �totðtÞ in
Eqs. (18) and (19), and these in turn were realized by
taking our boundary condition to be �totðtnowÞ ¼ �CDM.
However, we can equivalently write our boundary condi-
tion in the form �totð1=�0Þ ¼ 0, where we are assuming
that each KK mode with mass � decays promptly at t ¼
�� � ��1

� , with �0 denoting the width of the lightest mass
eigenmode. Following the same algebraic manipulations as
in Sec. II then leads to equations of state which are written
in terms of �0 rather than w
:

weffðtÞ ¼
8<
:

1
2 ðxþ 1Þ½1� ð�0tÞxþ1��1 for x � �1

1
2 ð�0tÞ�1 for x ¼ �1

(77)

where x � �þ 	. Thus, when expressed in terms of the
dimensionless time variable �0t as in Fig. 8, our
weffðtÞ-functions are indeed universal, depending only on x.

It is important to bear in mind that in this section we
have made only minimal assumptions concerning the pre-
cise nature of this KK tower or the identity of the fields it
represents. We therefore expect that all of the features we
have discussed in this section will hold quite generally,
regardless of the identity of the particular field(s) which
happen to populate the bulk and constitute the KK tower.

IV. DYNAMICAL DARK MATTER:
NOVEL SIGNATURES AND

PHENOMENOLOGICAL CONSTRAINTS

Having described the general theoretical structure of our
dynamical dark-matter framework, we now present several
additional features of this framework which are likely to be
of importance in enabling this framework to satisfy phe-
nomenological constraints. As in other sections, our dis-
cussion here will be restricted to broad, model-independent

themes, and we shall present a detailed phenomenological
analysis of one specific dynamical dark-matter scenario in
Refs. [6,7].
It turns out that there are three phenomenological fea-

tures which are unique to dynamical darkmatter, and which
under certain circumstances might be taken as signatures
(or even ‘‘smoking guns’’) of the overall framework.
(i) No well-defined dark-matter mass or cross-section:

First, since the dark-matter ‘‘candidate’’ within the
dynamical dark-matter framework is not a single
particle, but rather an ensemble of particles, it does
not have a specific mass or cross-section associated
with it. This represents a marked difference relative
to most other dark-matter proposals, and implies that
the kinematics associated with the production and
decay of dynamical dark matter is likely to be quite
different from that associated with more traditional
single-component dark matter. This could have dra-
matic consequences for collider phenomenology
(and potentially for direct detection), and may also
have a number of cosmological implications.

(ii) Coupling suppression for light modes: Second, it is
almost inevitable that the eventual phenomenologi-
cal success or failure of specific dynamical dark-
matter scenarios involving large extra dimensions
will ultimately rest in part on the couplings between
the dynamical dark matter in the bulk and the
standard-model states on the brane. Such couplings
are of critical importance because they govern the
degree to which this dark matter might be ‘‘visible’’
to the standard model. From intuitions based on
studies of KK graviton dynamics, one might suspect
that all mass eigenstates in the bulk would couple to
the brane with equal strength. However, it turns out
that the opposite is true for theories with a brane
mass: while the most of the couplings between the
fields on the brane and the mass eigenstates in the
bulk are indeed uniform, the couplings between the
brane and the lightest mass eigenstates in the bulk
are significantly suppressed. We have already seen
this behavior in Fig. 3, where we plot the coupling

matrix element h��j�0i ¼ ~�2A2
� as a function of �:

although this coupling always reaches an asymp-
totic value for sufficiently large �, this coupling is
significantly suppressed for small �. Indeed, the
magnitude of this suppression can be controlled by
varying the nondiagonality parameter y.
This suppression feature is of immense phenome-
nological importance, since the couplings of the
lightest dark-matter eigenstates to the brane are
precisely those which are the most dangerous for
the viability of our dynamical dark-matter frame-
work. Thus, this suppression feature can be very
important in relaxing numerous phenomenological
bounds on dynamical dark matter, and thereby
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constitutes an unexpected additional effect which
can help dynamical dark matter stay dark despite its
multitude of states.

(iii) Decoherence: Finally, there is an additional feature
associated with dynamical dark matter in large
extra dimensions which can play an important
role in its phenomenology: this is the phenomenon
of decoherence [11]. As we have seen in Sec. III,
only one particular linear combination of bulk
dark-matter modes �n can couple to the brane:
this is the linear combination �0. However, once
�0 is created through an interaction with the brane,
it rapidly decoheres as it propagates because it is
not a mass eigenstate.
One way to understand this decoherence involves
simple quantum mechanics: because �0 consists of
a huge number of different mass eigenstates, and
because the masses of these eigenstates are gener-
ally not related to each other through rational multi-
plicative factors, the different mass eigenstates fall
out of phase with each other under time-evolution
and will not reconstitute �0 within finite time.
Thus, they cannot couple to the brane at later times,
and essentially become ‘‘invisible’’ as far as phys-
ics on the brane is concerned. Another (quantum
field-theoretic) way to describe the same phenome-
non is simply that the amplitude associated with
any process that involves the production and sub-
sequent detection of dark matter on the brane will
have multiple individual contributions, each asso-
ciated with the propagation of an intermediate state
consisting of an individual dark-matter component.
However, because these individual components
have different masses, their corresponding ampli-
tudes accrue different phases. These amplitudes
therefore destructively interfere within the calcula-
tion of any cross-section sum.
This decoherence phenomenon can have important
phenomenological consequences. Indeed, decoher-
ence generically induces a suppression of the cross-
section for any process involving virtual dark-
matter particles by a factor of N, where N is the
number of such particles being exchanged. This,
then, is yet another mechanism which helps dy-
namical dark matter stay dark. We emphasize that
this feature is not specifically extra-dimensional; it
applies to any dark-matter framework in which the
dark matter has many components of different
masses, and in which only a specific linear combi-
nation of those components can couple to standard-
model states.

Needless to say, dynamical dark matter must ultimately
be subjected to all of the phenomenological bounds and
constraints that apply to more traditional dark-matter
candidates. However, because dynamical dark matter

consists of a vast ensemble of individual states which
are not necessarily stable on cosmological time scales,
many of these constraints take unusual forms in this
context. We shall therefore now provide a quick overview
of the different classes of laboratory, astrophysical, and
cosmological constraints which apply to dark matter in
general, and then indicate the forms they can be expected
to take within the context of dynamical dark matter. Once
again, we emphasize that our goal here is merely to
provide a model-independent theoretical overview in
which we restrict ourselves to addressing a single ques-
tion: for each class of constraints that apply to theories of
dark matter, what combinations of parameters are
bounded in the traditional framework and how do these
combinations translate into our dynamical dark-matter
framework? Explicit details concerning a particular
dynamical dark-matter scenario can be found in
Refs. [6,7].
Broadly speaking, there are four classes of constraints

which apply to any candidate theory of dark matter.
(i) First, there are general constraints on the relic dark-

matter abundance and on the dark-matter equation of
state. The constraints on the dark-matter abundance
�totðtÞ are similar to those which apply in traditional
dark-matter scenarios: �totðtnowÞ must match the
observed dark-matter relic abundance �CDM; the
dark-matter ensemble must not cause the universe
to become matter-dominated too early; etc.
However, our scenario differs from traditional
dark-matter scenarios in that it gives rise to an
equation-of state-parameterweff which can be differ-
ent from zero and which generally exhibits a non-
trivial time dependence. Astrophysical and
cosmological considerations therefore imply addi-
tional constraints on our equation-of-state function
weffðtÞ, or equivalently on the scaling coefficients
ð�;	Þ.

(ii) Second, there are constraints on dark matter which
derive from physical processes in which dark matter
is produced through its interactions with standard-
model particles but not subsequently detected. For
example, there are collider constraints on processes
in which dark-matter particles manifest themselves
as missing energy. Furthermore, if the dark-matter
candidates in question are sufficiently light, addi-
tional constraints can be derived from limits on
dark-matter production by astrophysical sources.
For example, dark-matter particles produced in stars
and supernovae can carry away energy from these
sources very efficiently. This can lead to observable
effects on stellar lifetimes, energy-loss rates from
supernovae, etc. Indeed, observational limits on the
magnitudes of these effects imply stringent bounds
on any light particle whose interactions with the
standard-model fields are highly suppressed.
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To see how such considerations constrain the pa-
rameters of a generic dark-matter model, let us
consider a traditional single-component scenario
in which the dark-matter candidate resides in a
hidden sector. The dominant interaction between
the dark sector and the standard model in such
scenarios occurs through nonrenormalizable opera-
torsOn of mass dimension n, suppressed by inverse
powers of some large mass scale � associated with
the cutoff of the theory. For example,�might be an
effective Planck scaleMP in the case of dark-matter
candidates associated with gravity, or a particle
mass MR in the case of candidates such as a right-
handed neutrino, or a dynamical scale such as the
Peccei-Quinn scale fPQ in the case of axions. The

cross section for dark-matter production will there-

fore be suppressed by a factor of �2ð4�nÞ, and con-
straints in this class thus ultimately become
constraints on �.
For example, in the specific dynamical dark-matter
scenario presented in Sec. III, the leading operators
have mass-dimension five, and� is equated with the

suppression scale f̂�. Thus, constraints in this class

ultimately become bounds on 1=f̂2�. Or, phrased

directly in terms of the decay widths and abundan-
ces which are the bedrock of our scenario, these
constraints yield bounds on

P
��

�3��, where the
sum over mass eigenstates includes only those states
which are kinematically relevant for the process in
question.
We conclude, then, that constraints of this type tend
to place bounds on the particular combinationP

��
�3��. However, this quantity is significantly

affected by the coupling-suppression effect dis-
cussed above. As a result, such bounds can often
turn out to be considerably weaker that one might
imagine at first glance.

(iii) Third, there are constraints that arise from situations
in which dark matter is produced through its inter-
actions with standard-model particles and is then
subsequently detected (either directly or indirectly)
via those same interactions. Here we have in mind
not only astrophysical production with subsequent
detection on earth, but also any process involving
virtual dark-matter particles. Which physical pro-
cesses of this sort serve to constrain a particular
dark-matter particle are extremely model-specific.
Axions and other similar particles, for example, are
constrained primarily by helioscope searches,
microwave-cavity experiments, etc.; other particles
are more stringently constrained by collider limits,
and so forth. Nevertheless, a few generic observa-
tions can be made.
If we assume, as above, that the dark matter resides
in a hidden sector, it then follows that the cross

sections for processes of this sort are proportional

to �4ð4�nÞ. Thus, once again, limits on such cross
sections ultimately become bounds on �. For
example, in the specific dynamical dark-matter sce-
nario presented in Sec. III, they become bounds on

1=f̂4�, or equivalently on the quantity ð
P

��
�3��Þ2.

In terms of overall mass scales, we might approxi-
mate this quantity as

P
��

�6�2
�, but we must also

bear in mind that the cross-terms within such prod-
ucts can be significant. Indeed, these are precisely
the situations in which the decoherence phenome-
non discussed above can play a role. Thus, these
constraints might also turn out to be significantly
weaker than they might at first sight appear.

(iv) Finally, there are constraints on dark-matter decays
and annihilations. As far as decays are concerned,
we have in mind constraints such as those from big-
bang nucleosynthesis, measurements of the cosmic
microwave background, observations of the diffuse
X-ray and gamma-ray backgrounds, etc. The basic
idea behind all of these constraints is that the de-
cays of a cosmological population of dark-matter
particles can result in measurable deviations from
the standard cosmology at times t * 1 s, or leave
(unobserved) imprints on these backgrounds. In
situations in which dark-matter annihilation cross
sections are sufficiently large, various additional
limits (such as those from typical indirect-detection
methods) would also apply.
Let us focus on those constraints related to dark-
matter decays, as these are generic to dynamical
dark-matter scenarios. (By contrast, constraints re-
lated to dark-matter annihilation tend to be some-
what model-dependent, and indeed often do not
apply.) Roughly speaking, in a traditional single-
component dark-matter scenario, such dark-matter
decay constraints tend to place bounds on the prod-
uct����, where�� and �� are the abundance and

decay width of our dark-matter field �, suitably
evaluated during the appropriate cosmological pe-
riod. In a dynamical dark-matter framework, by
contrast, this now becomes a constraint on

h�i � X
�

���� (78)

where again our abundances and widths are to be
evaluated during the cosmological epoch during
which decays can contribute to the effect in ques-
tion (the disruption of BBN, distortions of the
CMB, etc.). It is important to note that this depen-
dence on time effectively truncates the range of the
above sum to those states whose lifetimes fall
roughly within the time scale associated with that
epoch. Put another way, only those states whose
masses lie within certain characteristic ranges
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contribute to the sum. Of course, at a mathematical
level, the behavior of this sum ultimately depends
critically on the balancing relations that happen to
hold across the entire dark-matter ensemble. Note
that these arguments will be addressed more rigor-
ously in Refs. [6,7].

Finally, for completeness, we also mention two further
classes of constraints which must also be borne in mind.
Unlike the previous constraints, these are substantially
more model-dependent.

(i) First, there can be phenomenological bounds that
accompany (and are therefore specific to) particular
realizations of dynamical dark matter. For example,
we have seen that an infinite tower of Kaluza-Klein
states furnishes an excellent realization of dynamical
dark matter. However, the extra-dimension brane/
bulk framework brings with it a whole host of addi-
tional bounds and constraints, some of which come
from the fact that we are now attempting to do
standard physics within such a context (e.g., the
need for a late-time-reheating (LTR) cosmology
[9]), and others of which place bounds on the context
itself (e.g., Eötvös-type or Cavendish-type ‘‘fifth-
force’’ experiments which restrict the allowed sizes
of the extra dimensions). Such constraints are clearly
highly model-dependent, and frequently they are
also wholly independent of the general dynamical
dark-matter framework.

(ii) Finally, there can also be constraints that arise sim-
ply for reasons of theoretical self-consistency. For
example, if we assume (as we have done here) that
our initial dark-matter abundances are determined
through misalignment production, then we must
insist that misalignment production indeed domi-
nates over other production mechanisms such as
thermal production. This, of course, yields a non-
trivial constraint on the parameters of the model.
Likewise, the assumption that dynamical dark mat-
ter in the bulk decays preferentially to standard-
model states on the brane, rather than to other
dynamical dark-matter states in the bulk, implies
yet another self-consistency requirement. Once
again, however, constraints in this class tend to be
highly model-dependent and therefore do not rep-
resent generic constraints on the dynamical dark-
matter framework.

This is clearly a fairly long list of constraints, and one
must not minimize the impact that they can have in ruling
out specific dark-matter proposals. In Refs. [6,7], however,
we shall study one particular realization of dynamical dark
matter, and we shall exhaustively work through all of the
constraints relevant for this particular realization. We shall
find that for this particular scenario, our dynamical dark-
matter framework indeed survives all known laboratory,
astrophysical, and cosmological constraints. This will

thereby furnish us with an ‘‘existence proof’’ that dynami-
cal dark-matter can indeed be a viable, alternative
framework for addressing the central questions in dark-
matter physics.
Finally, we remark that for some purposes it may also be

interesting to consider the phenomenology associated with
our overall dark-matter framework when the individual
component decay widths �i are extremely small. Of
course, in the actual limit �i ! 0 we know that �tot

approaches a constant in the final, matter-dominated era;
likewise, weff ! 0. In this respect, this limit of our frame-
work begins to resemble a traditional non-dynamical dark-
matter framework, thereby allowing us to evade many of
the most stringent phenomenological constraints coming
from dark-matter decays in the early universe. However,
even in this limit, our framework nevertheless continues to
retain those distinctive features which stem from its under-
lying multicomponent nature. For example, we can still
have � � 0. We also still have the possibility of staggered
turn-ons as well as the possibility of coupling suppression
for light modes. We even continue to have decoherence,
even though many of the processes for which decoherence
is most phenomenologically relevant will already tend to
be suppressed in the �i ! 0 limit. And perhaps most
importantly, the dark matter in our framework will con-
tinue to evade simple characterization in terms of a single
well-defined mass or cross-section.
Needless to say, we are not particularly interested in the

limit �i ! 0. Indeed, we regard the dynamical aspects of
our dark-matter framework to be among its most intriguing
features and key signatures. However, the freedom to tune
the values of �i relative to the other dimensional parame-
ters in our framework is important from a theoretical
standpoint because it illustrates that our overall dark-
matter framework possesses a means of ‘‘dialing’’ the scale
associated with its dynamical aspects relative to those
associated with its multicomponent aspects. This is par-
ticularly relevant because the dynamical aspects of our
framework are often ultimately subject to an entirely dif-
ferent set of phenomenological bounds and constraints
than those governing its multicomponent aspects. Thus,
the freedom to independently adjust the scales associated
with these different aspects of our dark-matter framework
gives this framework an added flexibility when it comes to
satisfying many of the phenomenological bounds dis-
cussed above.
Of course, within the particular higher-dimensional

brane/bulk context discussed in Sec. III, this freedom
may initially appear to be lacking: a single five-
dimensional mass scale f� governs not only the magni-
tudes of the abundances of individual dark-matter compo-
nents but also the magnitudes of their corresponding decay
widths. Indeed, in particular, realizations of this frame-
work, even the brane mass m can be tied to f�, and we
shall see an explicit example of this in Ref. [6]. However,
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there is in principle no reason why the mass scale f� which
appears in Eq. (47) and which ultimately sets the scale for
dark-matter abundances needs to be the same as the mass
scale f� which appears in Eqs. (68) and (69) and which
ultimately sets the scale for decay widths. Indeed, identi-
fying these two quantities is merely a minimal assumption
about the energy scales in our higher-dimensional theory,
and we can easily envision more complex scenarios in
which these two mass scales are significantly different.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a new framework for
dark-matter physics which we call ‘‘dynamical dark mat-
ter.’’ Unlike most approaches to the dark-matter problem
which hypothesize the existence of a single, stable, dark-
matter particle, our dynamical dark-matter framework may
be characterized by the fact that the requirement of stabil-
ity is replaced by a delicate balancing between cosmologi-
cal abundances and lifetimes across a vast ensemble of
individual dark-matter components. This setup therefore
collectively produces a time-varying cosmological dark-
matter abundance, and decays of the different dark-matter
components can occur continually throughout the evolu-
tion of the universe.

Although our framework is quite general and need not be
tied to a specific set of particles or theoretical models, we
have shown that one natural realization of this scenario
consists of a tower of KK states corresponding to a single
higher-dimensional field propagating in the bulk of large
extra spacetime dimensions. Indeed, as we have shown, the
states in such a ‘‘dark tower’’ naturally obey inverse bal-
ancing equations that relate their abundances and decay
widths in just the right manner. Remarkably, this remains
true even if the stability of the KK tower itself is entirely
unprotected. Our dynamical dark-matter scenario is there-
fore well-motivated both in field theory and string theory,
and can even be used to constrain the cosmological viabil-
ity of certain limits of string theory. We have also seen that
within this context, dynamical dark matter generically
gives rise to certain phenomena such as coupling suppres-
sion and decoherence which may help to explain why dark
matter is dark and thus far unobserved. Such phenomena
transcend those usually associated with traditional single-
component dark matter, and may in some sense be viewed
as unique signatures for a dark-matter framwork such as
ours which rests on the existence of a large multitude of
individual dark-matter components.

Needless to say, there are many possible generalizations
of our basic dynamical dark-matter framework. Some of
these apply to dynamical dark matter in general, while
others are more specific to realizations involving extra
dimensions. For example, insofar as our general dark-
matter ensemble is concerned, there are several natural
extensions which can be contemplated.

(i) Not all components within the ensemble need
be scalars. Higher-spin fields may also be consid-
ered. We may even demand that our ensemble be
supersymmetric, although there would be no obvious
need for R-parity within such supersymmetric
extensions as far as dark-matter considerations are
concerned.

(ii) In this paper, we have examined the case of rela-
tively simple dimension-five couplings between the
components in the ensemble and the fields of the
standard model. However, different scenarios may
involve different coupling structures, and thus dif-
ferent models will lead to their own distinctive
phenomenologies.

(iii) Continuing along these lines, we have assumed in
this paper that all of the components of our dy-
namical dark-matter ensemble are neutral under the
standard-model gauge symmetries. While this
choice is particularly convenient, allowing the pos-
sibility of specific realizations of our scenario in
higher-dimensional brane/bulk Kaluza-Klein theo-
ries, there is nothing intrinsic to the dynamical
dark-matter framework that requires this to be the
case. In particular, some or all of the components of
our dark-matter ensemble could have Oð1Þ SUð2Þ
weak interactions with the standard model. This
would, of course, undoubtedly tighten many of
the phenomenological constraints on such scenar-
ios; likewise, scattering processes involving such
dark-matter components are also generally likely to
play an important role and would need to be in-
cluded in the analysis along the lines discussed in
the Appendix. However, as long as the lifetimes of
the ensemble components are sufficiently balanced
against their abundances, the basic features of our
framework will remain intact.

(iv) In this paper, we have considered all decays of our
ensemble components to be essentially instanta-
neous. However, such decays really have an expo-
nential time-dependence. The fact that these decays
have different widths can thus lead to further non-
trivial effects on the time-dependence of the total
dark-matter abundance associatedwith the ensemble.

(v) The primary decay mode for a given dark-matter
component within our ensemble need not always be
directly into standard-model states. In particular, it
is also possible to consider decays from heavier
ensemble components into lighter ensemble compo-
nents. Note that in this sense, we are viewing the
ensemble as consisting of all states which are neu-
tral under standard-model symmetries, including
fields which reside in what might in more traditional
contexts be considered a hidden sector. Such intra-
ensemble decays could significantly alter the sorts
of balancing equations which might arise across our
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dynamical ensemble, and as we shall discuss in the
Appendix, they can thereby modify the time-
dependence associated with �tot, �, and weff .

(vi) Misalignment production need not be the only
mechanism through which the abundances of our
individual components are initially established.
Many other mechanisms (e.g., thermal production,
decays arising from topological defects, etc.) also
provide ways of populating the different compo-
nents, and can likewise lead to different resulting
phenomenologies for dynamical dark matter. In
particular, it would be very interesting (and relevant
for our overall framework) to see whether the cor-
rect sorts of balancing relations might arise for
situations in which our different ensemble compo-
nents are populated in the manner of a standard
WIMP—i.e., by thermal freeze-out.

(vii) At many points in this paper, we have made as-
sumptions that simplify our analysis. For example,
in Sec. II we have assumed that t1, the time by
which our staggered turn-on has ended, is less than
t2, the time at which significant dark-matter decays
commence. Likewise, we have assumed for much
of our analysis of abundances in Sec. III that a
staggered turn-on, if it occurs, takes place entirely
within a single epoch (either RH, RD, or MD).
While such assumptions prove useful for analyzing
the effects of different features of our framework
individually, there is nothing intrinsic to the dy-
namical dark-matter framework which requires
that these features be separated in this way, and
numerous extensions and combinations of these
features are possible.

(viii) Although we have discussed several different sig-
natures which are unique to dynamical dark mat-
ter, it is likely that our discussion has only begun
to scratch the surface. It would be interesting to
investigate what other kinds of signatures are also
possible within this framework.

(ix) Finally, our discussion in this paper has assumed a
standard FRW cosmology. However, it would be
interesting to repeat this analysis for a �CDM
cosmology (and also for versions thereof with low
reheat temperatures, as appropriate for theories
with large extra dimensions). Indeed, within such
cosmologies, quantities such as �tot will experi-
ence additional types of time-dependence beyond
those considered here.

Likewise, within the specific framework of large extra
dimensions in which our dynamical ensemble of dark-
matter components is represented by an infinite tower of
Kaluza-Klein states, there are also numerous generaliza-
tions and extensions which may be contemplated.

(i) We may consider situations involving multiple spe-
cies of bulk fields. For example, the bulk can be a

crowded place, consisting of a whole plethora of
particles which are neutral under all standard-model
gauge symmetries: these include gravitons and
gravitini, axions and other axionlike particles,
string-theory moduli, right-handed neutrinos, and
so forth. From the point of view of physics on the
brane, all of these states can be considered ‘‘dark
matter,’’ and their contributions to quantities such as
�tot must all be considered within the overall dy-
namical dark-matter framework.

(ii) We also need not restrict ourselves to a single extra
spacetime dimension. Multiple extra dimensions are
also possible.

(iii) Likewise, our extra dimensions need not neces-
sarily be flat. Warped extra dimensions will give
rise to an entirely different KK spectroscopy, and as
a result the phenomenology of dynamical dark
matter within such contexts is likely to be signifi-
cantly different from what has been presented here.

The above represent ideas for generalizing our overall
dynamical dark-matter scenario. However, it may also be
possible to use this kind of dynamical framework in order
to address questions that go beyond dark matter per se.
While some of these are relatively straightforward, others
are indeed quite speculative.
(i) One of the key features of dynamical dark matter is

that quantities such as�tot are dynamical (i.e., time-
dependent) in this framework—even during the cur-
rent matter-dominated epoch during which the dark-
matter abundance is normally thought to be roughly
constant. It is therefore possible that such a dynamic
approach could serve as a starting point towards
addressing the cosmic coincidence problem.

(ii) Further along these lines, it might also be possible to
address the cosmological constant within a similar
framework. For example, the energy density asso-
ciated with each scalar field �i prior to its ‘‘turn-
on’’ behaves as dark energy rather than dark matter.
Thus in this respect the cosmological constant in our
framework is time-dependent as well, and this sort
of dynamic cosmological constant might even per-
sist into the current epoch if there continue to exist
light scalar modes which have not yet turned on. In
this case, the process of dark-matter decays would
necessarily overlap with the process of a staggered
turn-on, and one might be able to develop a consis-
tent theory in which a vast ensemble of states gives
rise to both dynamical dark matter and dynamical
dark energy.

(iii) The framework of dynamical dark matter might
also provide a new means of placing phenomeno-
logical bounds on string theory (and, in particular,
on candidate string models). After all, string mod-
els are typically rife with bulk fields—even if their
extra dimensions are compactified at or near the
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traditional Planck scale. Some of these fields (such
as moduli) are model-dependent: they depend on
the particular kind of compactification geometry
employed in the construction of the candidate
string model and their masses depend on the par-
ticular stabilization mechanisms, if any, which have
been employed. By contrast, some of these fields
are generically model-independent: these include
all fields associated with the (super)gravity multi-
plet, such as the graviton, dilaton, other higher-
form fields, and their possible superpartners.
Indeed, if the standard model is restricted to a stack
of D-branes within a given string construction, the
corresponding ‘‘bulk fields’’ include all string
states which do not couple to those branes.
While these fields are typically required for the
self-consistency of the string, those that are mass-
less require stabilization. Indeed, this is nothing but
the standard moduli problem. However, depending
on the specific cosmological properties of these
fields, it is also true that their abundances must
necessarily be considered as contributing either to
the total dark energy or the total dark matter of the
universe—even after they are stabilized. An analy-
sis of their cosmological effects is then likely to run
along the lines we have presented here, and the
cosmological viability of the underlying candidate
string model thus necessarily becomes an issue to
be studied within a dynamical dark-matter (or dy-
namical dark-energy) framework. Indeed, in such
cases our dark-matter ensemble could potentially
include not only string KK modes, but also
(a subset of) string oscillator modes and string
winding modes.

(iv) One central feature of our dynamical dark-matter
scenario is the phenomenon in which an ensemble
of decaying ‘‘stuff’’ with one equation of state
collectively simulates stuff with a different equa-
tion of state. For example, in the specific dynamical
dark-matter scenario presented here, an ensemble
of decaying dark-matter states (i.e., each with
w ¼ 0) collectively simulates an effective equation
of state with weff > 0. This notion of using a vast
ensemble of states with one equation of state to
simulate another is, we believe, worthy of explora-
tion in its own right, independently of the specific
uses for dark-matter physics that we have presented
here.

(v) Further along the above lines, it is natural to ask
whether we could construct an ensemble of individ-
ual components of stuff with negativew. The decays
of these components within the ensemble would
therefore act to increase the effective value of w,
and perhaps even simulate w ¼ 0. In other words, it
is possible that dark matter might not even need to

be comprised of matter! In some sense, this is the
converse of the scenario we have presented here, in
which individual matter components collectively
produce a value for weff which, though not too
different from zero, is still nonzero. Indeed, both
scenarios may represent equally legitimate ap-
proaches to the dark-matter problem.

(vi) Pursuing these lines still further, one can even
speculate as to whether an ensemble of decaying
dark-energy components (each with w ¼ �1)
could simulate dark matter (with w ¼ 0). Indeed,
such individual dark-energy components need be
nothing more complicated than a set of scalar fields
�i which decay (potentially into a hidden sector)
prior to turning on. Such an approach might then
‘‘unify’’ dark energy and dark matter as simulta-
neously stemming from a primordial ensemble of
scalar fields.

(vii) Along entirely different lines, there is another
phenomenon inherent in our dynamical dark-
matter framework which is potentially interesting
in its own right: this is the phenomenon (discussed
in Sec. III) in which a KK tower appears to have
periodic modings for its heavier modes, but anti-
periodic modings for its lighter modes. As we have
seen in Sec. III, this result emerges rather generi-
cally, requiring only a bulk field that somehow
accrues a nonzero brane mass. This phenomenon
is extremely interesting, because one normally
associates the modings of a given field with its
boundary conditions around noncontractible loops
in a topologically nontrivial space, or equivalently
with the magnitudes of the fluxes which might
penetrate those loops. This phenomenon therefore
seems to suggest a mechanism by which such
modings or fluxes might become effectively
energy-dependent.

(viii) Finally, the general phenomenon of decoherence
is interesting in its own right. This might be ex-
tremely relevant for axion invisibility (see, e.g.,
the discussion in Ref. [11]), and is also likely to be
of more general applicability. Indeed, this might
provide an interesting approach to the moduli
problem in string theory, and explain why moduli
such as the dilaton are not observed.

We see, then, that our dynamical dark-matter framework
appears to be pregnant with numerous possibilities for
extension and generalization. However, even as a frame-
work for dark-matter physics, we caution that our
presentation here has been limited to only the broadest
model-independent theoretical aspects and features. In
particular, it still remains to choose a specific realization
of this scenario in terms of a particular species of bulk field,
and examine the phenomenological consequences of such
a choice in complete detail. In other words, it still remains
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to build an actual model of dark matter within this frame-
work. However, this is precisely what we shall do in
Refs. [6,7], and we shall verify there that our specific
models satisfy all known collider, astrophysical, and cos-
mological constraints. We thus conclude that the dynami-
cal dark-matter framework can indeed serve as a viable
alternative to the standard paradigm of a single, stable,
dark-matter particle, and that dynamical dark matter there-
fore has a legitimate place alongside other approaches to
dark-matter physics.
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APPENDIX: INTRA-ENSEMBLE DECAYS

Throughout this paper, we have implicitly assumed that
each component of our dark-matter ensemble preferen-
tially decays directly into one or more standard-model
states rather than into another, lighter component within
the ensemble. In other words, we have been assuming that
the decays associated with the widths �i take the direct
extra-ensemble form �i ! SM, and that such direct de-
cays dominate over all possible intraensemble decays
which might produce other dark-matter components
among their end-products. However, it is easy to generalize
our overall framework to include cases in which this
assumption is relaxed.

Towards this end, it proves useful to start by rewriting
Eq. (3) in a more useful form. Recall that �i � �i=�crit,
where �i is the energy density associated with our oscillat-
ing �i field and where �crit � 3M2

PH
2, where MP is

the reduced Planck mass. Equation (3) can therefore be
rewritten as

_� i þ ð3H þ �iÞ�i ¼ 0: (A1)

However, because this energy density �i is entirely asso-
ciated with the coherent oscillations of the (zero-
momentum modes of the) scalar �i field, it is possible to
repackage this energy density in terms of an effective
number density ni � �i=mi. We then find

_n i þ ð3H þ �iÞni ¼ 0: (A2)

Indeed, Eq. (A2) describes the evolution of the number
densities associated with each of the oscillating compo-
nents in our ensemble under the assumption that the only
decays available for these components are direct decays
into standard-model states, i.e., �i ! SM, with widths �i.

Let us now consider what happens if we introduce an
additional set of intraensemble decays of the form

�i !
X
j

Nð�Þ
ij �j þ Xð�Þ: (A3)

Here the �-index labels the specific decay channel, and

Nð�Þ
ij are non-negative integers describing the multiplicities

of the �j particles produced in this decay channel (each of

which may be assumed to have mj < mi). Likewise, X
ð�Þ

collectively represents any fields outside our dark-matter
ensemble (potentially including standard-model fields)
which may also happen to be produced in this decay

process. We shall let �ð�Þ
i denote the width associated

with the decay in Eq. (A3).
The inclusion of such additional decay channels into our

discussion leads to two additional effects on the time-
evolution of the number densities ni. First, there will be
an additional decline in ni due to the new decay channels
for �i which are now available. However, there is also the
possibility of an increase in ni due to the production of �i

particles from the decays of presumably heavier compo-
nents �j within the ensemble. Indeed, we find that

Eq. (A2) is now replaced with the coupled system of
differential equations

_n iþ
�
3Hþ�iþ

X
�

�ð�Þ
i

�
ni¼

X
j

�X
�

Nð�Þ
ji �ð�Þ

j

�
nj: (A4)

In general, the solutions to Eq. (A4) can exhibit a
number of striking behaviors. Not only can there be direct
decays into Standard-Model states, as before, but there can
also be cascade decays that take place entirely within the
dark-matter ensemble, from heavier states down to lighter
states. Indeed, a given state can also decay directly into
Standard-Model states at any point along the cascade. As a
result, a particularly rich and subtle phenomenology can
easily ensue depending on the relations between �i and

�ð�Þ
i , with different portions of the ensemble exhibiting

different particle-decay patterns in a manner reminiscent
of the vacuum-decay patterns studied in Ref. [12]. The
corresponding values of ni can then alternatively rise and
fall as time evolves.
The possibility of such dark-to-dark intraensemble de-

cays also allows even more striking features to emerge. For
example, once a given heavy state �i ‘‘turns on’’, it can
potentially decay to lighter states �k which, because of
their relative lightness, have not yet turned on. Thus, in this
way, we see that a given component �k within our en-
semble can simultaneously contribute to dark matter
(in the form of daughter particles from the decays of
heavier dark-matter components �i); to ‘‘dark radiation’’
(if the momenta of these �k daughter particles are large
compared to their masses); and to dark energy (in the form
of the energy still trapped in the overdamped field �k).
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Given the result in Eq. (A4), it might seem at first
glance to be a straightforward exercise to obtain a corre-
sponding set of coupled differential equations for the
energy densities �i and the abundances �i. Indeed, all
that would seem to be necessary would be to start with Eq.
(A4) in place of Eq. (A2) and essentially reverse the
process that led from Eq. (A1) to Eq. (A2). However, in
going from Eq. (A1) to Eq. (A2) we needed to assume that
all of the energy density �i was in the form of coherent
zero-momentum mode oscillations of the field �i, and this
will no longer be true when intraensemble decays are
possible. Indeed, the daughters �i which are produced
through such intraensemble decays are literal particles—
they have their own momenta and energies which are
governed by the kinematics of the specific intraensemble
decays which produced them. As a result, while it is still
valid to discuss the time-evolution of a total number den-
sity ni as in Eq. (A4), we cannot simply identify �i ¼ mini
in order to obtain a corresponding set of equations for the
energy densities �i or abundances �i.

In order to handle this calculation correctly, it is first
necessary to express the relations in Eq. (A4) in terms of
the phase-space distributions fiðj ~pij; tÞ [or equivalently
fiðEi; tÞ, simply denoted fi] associated with each field
�i. This will essentially yield a Boltzmann equation which
describes the time-evolution of these distributions. To do
this, we observe that in general we may write

ni ¼
Z d3 ~pi

ð2�Þ3 fi

�i ¼ 1

2Ei

Z
½d�að1� faÞ�½d�bð1� fbÞ� � � � jMj2;

(A5)

where �i is the width for a generic decay of the form �i !
aþ bþ . . . , where M is the corresponding matrix ele-
ment (including an implicit Dirac �-function to enforce
momentum conservation), where the momentum-
integration measures are given by d� � gd3 ~p=½ð2�Þ32E�
with g signifying the number of associated degrees of
freedom, and where the � signs are chosen positive for
bosons and negative for fermions. The left side of Eq. (A4)
then takes the form

Z d3 ~pi

ð2�Þ3
�
_fi þ

�
3H þ �i þ

X
�

�ð�Þ
i

�
fi

�
(A6)

and the right side of Eq. (A4) takes the form

X
j;�

Nð�Þ
ji

Z
½d�jfj�

�Y
k�i

½d�kð1þ fkÞ�N
ð�Þ
jk

�

� ½d�ið1þ fiÞ�N
ð�Þ
ji ½d�Xð1� fXÞ�jMj2 (A7)

where M is the matrix element for the decay �j !P
kN

ð�Þ
jk �k þ Xð�Þ. Equating the d3 ~pi integrands in

Eqs. (A6) and (A7) then yields the result

_fi þ
�
3H þ �i þ

X
�

�ð�Þ
i

�
fi

¼ 1þ fi
2Ei

X
j;�

Nð�Þ
ji

Z
½d�jfj�

�Y
k�i

½d�kð1þ fkÞ�N
ð�Þ
jk

�

� ½d�ið1þ fiÞ�N
ð�Þ
ji �1½d�Xð1� fXÞ�jMj2 (A8)

where we have recognized that although there are in prin-

ciple Nð�Þ
ji different ways of identifying an integrand with

respect to d3 ~pi within Eq. (A7), each yields the same result
and therefore any choice will suffice.
Equation (A8) is a set of coupled differential equations

for the phase-space distributions fi. Indeed, while �i is

independent of the fi, the quantity �ð�Þ
i has a hidden

dependence on all fj for whichN
ð�Þ
ij � 0. However, despite

the complexity of this system of equations, our remaining
task is conceptually easy: we simply begin with the dis-
tributions

fiðj ~pij; t0Þ ¼ 4�3mið�ð0Þ
i Þ2�3ð ~piÞ (A9)

at the time t0 when our abundances are initially established,
and then use the results in Eq. (A8) in order to evolve these
distributions forward in time. Indeed, the initial distribu-
tions in Eq. (A9) reflect nothing more than the assertion
that the original state of our ensemble consists of fields �i

whose zero-momentum modes are displaced by some

amount �ð0Þ
i from their minima in field space, with a

resulting energy density given by �i � 1
2m

2
i ð�ð0Þ

i Þ2. While

the time-evolution of the effective number densities ni can
then be obtained from Eq. (A8) by integrating this equation
with respect to the measure

R
d3 ~pi=ð2�Þ2 [thereby repro-

ducing Eq. (A4)], the time-evolution of the corresponding
energy densities �i can be obtained from Eq. (A8)
by integrating Eq. (A8) with respect to the alternative

measure
R½d3 ~pi=ð2�Þ3�Ei ¼

R½d3 ~pi=ð2�Þ3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pij2 þm2

i

q
.

This, then, provides us with the desired coupled differential
equations for the energy densities �i, from which it is then
trivial to obtain the corresponding equations for the abun-
dances �i.
Needless to say, there are many caveats which must be

borne in mind when applying this formalism. First, in
general we must require that such intraensemble decays
not produce daughter particles with great momenta, for
then our dark matter would not be sufficiently cold.
Likewise, although we have included the possibility of
intraensemble decays in the above analysis, we have dis-
regarded the possible contributions from scattering pro-
cesses which also potentially involve our ensemble
components. Indeed, this is generally an excellent approxi-
mation for gravitons, moduli, axions, and other fields
which are very weakly coupled. We have also disregarded
the effects of inverse decays.
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