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We employ the formalism of the effective field theory of inflation to study the effects of a sudden

change in the speed of sound of the inflationary perturbations. Such an event generates a feature with high

frequency oscillations both in the two- and in the three-point functions of the curvature fluctuations. We

study, at first order in the magnitude of the change of the speed of sound, the dependence of the power

spectrum and of the bispectrum on the duration of the change. In the limit of a very short duration, the

oscillations in the power spectrum persist up to very large momenta and the amplitude of the feature in the

bispectrum diverges while its location moves to increasing momenta.
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I. INTRODUCTION

Inflation, in its simplest realizations, is a period of rather
uneventful quasi-de Sitter expansion of the Universe. As a
consequence, it typically predicts a quasiscale invariant,
featureless spectrum of scalar and tensor metric perturba-
tions. It is however possible that the inflating Universe did
experience some traumatic events that left a permanent
mark on the perturbations we currently observe in the
cosmic microwave background (CMB) radiation.

Various examples of such traumatic events have been
discussed in the past. The simplest possibility is that they
originate from a feature, possibly associated to a phase
transition [1], in the shape of the inflationary potential
[2–6]. Another possibility is that the slowly rolling inflaton
induces an explosive production of quanta of some other
degree of freedom [7–9] that affect the metric perturba-
tions. In general, these phenomena lead to high frequency
oscillations in the primordial power spectrum about the
scales that left the horizon at the time of the event. Several
groups—see for instance [10–12]—have found hints of the
presence of such oscillations in the CMB data.

In the present paper we study a different kind of sudden
event: a change in the speed of sound of the inflaton
perturbations. The speed of sound cs of the inflaton can
be different from the speed of light in models with non-
standard kinetic terms [13], and, in particular, in Dirac-
Born-Infeld (DBI) inflation [14]. It is therefore natural to
ask what observable effects can occur when the speed of
sound suddenly changed during inflation. In the past, this
situation has been considered in [15] and in [16], which
studied the effect of a jump in cs on the two-point function
of the inflaton. Reference [15] did also estimate the effect
of such a jump on the bispectrum.

In our work we provide a detailed study of how a rapid
but not instantaneous change in cs affects both the power

spectrum and the bispectrum of the curvature perturba-
tions. The Lagrangian provided by the effective field the-
ory of the inflaton fluctuations [17] serves our purpose
well, in that it allows us to determine the effect of the
jump in the speed of sound in a model-independent way.
Differently from what happens in most of the literature, we
study the system of [17] without assuming that the back-
ground parameters evolve adiabatically.
Since we work in the context of [17], we are not inter-

ested in the details of the full theory producing the sudden
change in cs, and will not worry about the issue of its
technical naturalness. Let us just note that Ref. [15] dis-
cusses an explicit example where brane inflation leads to a
jump in cs. Reference [16] contains a couple of additional
examples. Here we mention one more possibility: In gen-
eral, the speed of sound in DBI inflation [14] depends on
the expectation value of several fields [18]. The rolling
inflaton can lead, à la [7], to the nonperturbative produc-
tion of matter in the sector determining the value of cs. If
this occurs, then the speed of sound will momentarily
change its value before the nonperturbatively produced
particles dilute away.
Let us now summarize our main results. The background

dynamics producing a change in the speed of sound will
also induce, in general, a change in the slow-roll parame-
ters � and �. In order to disentangle the different effects,
however, we will consider a scenario where � and � are
kept constant and only cs changes. Now, as long as both the
speed of sound and the slow-roll parameters are constant,
the amplitude of the power spectrum is inversely propor-
tional to cs and to �. The spectral index, on the other hand,
depends on � and �, but not on cs. As a consequence, a
sharp jump in cs will induce a jump in the amplitude of the
power spectrum without affecting its tilt. Our analytical
and numerical work will confirm this expectation. This
property might be used to discriminate models with a
sudden change in the inflationary potential from those
with a sudden change in cs. One might even be tempted
to use a sudden change in the speed of sound to explain the
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small amplitude of the observed CMB fluctuations at the
largest multipoles.

Our system depends on two parameters—the change
�cs in the speed of sound and the duration �� of such a
change. As long as �� is not vanishing, the two-point
function shows an oscillating pattern that extends over a
finite range of momenta. The duration of the oscillations
becomes infinite in the limit �� ! 0, in agreement with
the results of [15,16], reflecting a UV artifact that origi-
nates from the discontinuous behavior of cs. The three-
point function or fNL, when evaluated in the equilateral
configuration, also oscillates, with a maximum amplitude
scaling as �cs�

2
0=��

2 at momentum ����1, where �0 is
the (conformal) time when the change in cs occurs (the
amplitude of the bispectrum in the squeezed limit scales as
�csj�0j=��, and agrees with the consistency relation
[19]). Therefore a jump that is rapid enough may cause
large non-Gaussianity at large momenta. The behavior of
the bispectrum turns out to be similar to that produced by a
sudden change in the inflaton potential recently studied in
[6], and future surveys might be able to detect it if the
feature appears at sufficiently large scales.

The plan of the paper is the following. In Sec. II we
apply the gauge invariant formulation of cosmological
perturbations to the setup of [17], and derive a quadratic
action for the gauge invariant variable v describing the
scalar perturbation. Then we model the jump in cs and
solve the equation of motion for v, to obtain the expression
of the power spectrum. In Sec. III we take the decoupling
limit, study its regime of validity and calculate, in this
limit, the equilateral and the squeezed bispectra for our
system. Finally, in Sec. IV we summarize our results and
discuss future prospects.

II. GAUGE INVARIANT FORMULATION AT
QUADRATIC ORDER

A. Action

We employ the effective field theory of inflation pro-
posed by [17]. Since we are interested only in changes in
the speed of sound, we neglect the terms in M3, �M2, and
�M3, etc. of [17] and start with the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� cðtþ �Þ~g00 ��ðtþ �Þ

þ 1

2!
M2ðtþ �Þ4ð1þ ~g00Þ2

�
; (1)

where � is the Goldstone field and

~g 00 ¼ @ðtþ �Þ
@x�

@ðtþ �Þ
@x�

g��: (2)

Using the ADM formalism, we write the metric as
ds2 ¼ �N2dt2 þ �ijðdxi þ NidtÞðdxj þ NjdtÞ, and ex-

pand at first order N¼1þ�, Ni¼@iB, and �ij¼
a2fð1�2c Þ	ijþ2@i@jEg. Then the perturbative

expansion of the action (1) is straightforward. At first
order in perturbations we obtain the following background
equations:

cþ�� 3M2
pH

2 ¼ 0;

c��þM2
pð3H2 þ 2 _HÞ ¼ 0;

(3)

with an overdot implying a differentiation with respect to
the coordinate time t and H ¼ _a=a.
Before we get to the second order, we write � and

B in terms of the other field variables by perturbatively
solving the lapse and shift constraints 	S=	N ¼ 0 and
	S=	Ni ¼ 0:

� ¼ �H��
_c

H
;

�B

a2
¼ �c

a2H
� �

c2s
_c þ� _Eþ �2

c2s
H2�� �

c2s
H _�;

(4)

where we have defined

� � � _H

H2
; 
 � 2M4

2

M2
pH

2
; (5)

and where the speed of sound is given by

c2s � �

�þ

: (6)

With (4) plugged in, the quadratic action depends only on
c , E, and �. The terms in E, however, can be dropped
because they are total derivatives. Finally, we introduce the
gauge invariant variable,

v � zðc þH�Þ; (7)

with

z2 ¼ 2M2
pa

2ð�þ
Þ; (8)

so that the quadratic action, after dropping more total
derivative terms, reads

Sð2Þ ¼ 1

2

Z
d�d3x

�
ðv0Þ2 � c2sð@ivÞ2 þ z00

z
v2

�
; (9)

where � is the conformal time and 0 � d
d� . The resulting

mode equation for the Fourier transform v̂ of v is

v̂ 00 þ
�
c2sk

2 � z00

z

�
v̂ ¼ 0: (10)

B. Modeling the nonadiabatic change of cs

We are interested in the effects of a nonadiabatic change
in cs originating from that of 
, i.e., of M2. We will
consider a small jump in 
 during a short time about
� ¼ �0. Since the overall normalization of the power spec-
trum is inversely proportional to cs, data allow only for a
small jump j�csj � 1 in the speed of sound. For simplicity
we will assume that cs ¼ 1 before the transition. Since for
cs close to unity (i.e., 
 � �) one has cs ’ 1� 


2� , we

parametrize
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ð�Þ
�

¼
8><
>:
0; � < �0;

�2�cs � fð�Þ; �0 < �< �0 þ ��;

�2�cs; � > �0 þ ��;

(11)

with fð�0Þ ¼ 0 and fð�0 þ ��Þ ¼ 1. Here the magnitude
of the jump, �cs, has to be small in order to match
observations, but for a sufficiently short �� the rate of
change can be large enough to open the possibility of an
observable signature. For the sake of simplicity, one may
be tempted to choose f to be linear in �, or even a step
function. However, a discontinuity in cs or its derivatives
can generate UV artifacts that contaminate the relevant
information. For example, if 
 jumps as a step function,
then the feature coming from the sudden transition at
� ¼ �0 persists in all scales k > j�0j�1 already at the
two-point function level [15,16]. With f linear in �, such
that 
 is continuous but 
0 is not, the oscillations in the
power spectrum die off at large k, but the bispectrum is
linearly divergent. It turns out that in order to obtain a
vanishing bispectrum in the UV we must choose 
 to be a
function of class C2.

C. Mode function

In order to solve Eq. (10) we employ the iterative
method of [20], to compute the mode function as a power
series in the small parameter �cs. We will denote by sub-
scripts 1, 2, and 3 the time intervals of before, during, and
after the period of nonadiabatic change in cs, respectively.

Before the transition (� < �0), Eq. (10) becomes

v̂ 00
1 þ

�
k2 � 2þ 3ð2�� �Þ

�2

�
v̂1 ¼ 0; (12)

where � � � €H
2H _H

¼ �� �0
2H �

is the second slow-roll pa-

rameter. Assuming �0 to be negligible, so that � ’ �, the
solution of Eq. (12) with the conventional boundary con-

dition, v̂1ð� ! �1Þ ¼ eik�=
ffiffiffiffiffi
2k

p
, is

v̂ 1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi���

p
2

Hð1Þ
ð3=2Þþ�ð�k�Þ: (13)

Next, we introduce the dimensionless variables x � �k�
(so that 0< x <þ1, x0 � �k�0, and �x � k��) and

s � ffiffiffiffiffi
2k

p
v̂. In terms of these variables Eq. (13) reads

s1ðxÞ ¼ �
ffiffiffiffiffiffiffi
�x

2

r
Hð1Þ

ð3=2Þþ�ðxÞ: (14)

During the transition (�0 < �< �0 þ ��), we write the
mode equation as

d2s2ðxÞ
dx2

þ
�
1� 2þ 3�

x2

�
s2ðxÞ ¼ 2�cspðxÞs2ðxÞ þ � � � ;

(15)

where � � � denotes, from here on, any Oð�2;�c2s ; ��csÞ
correction and

pðxÞ ¼ �fðxÞ þ 1

x

dfðxÞ
dx

� 1

2

d2fðxÞ
dx2

: (16)

Requiring that s2 satisfies the boundary conditions
s2ðx0Þ ¼ s1ðx0Þ and s02ðx0Þ ¼ s01ðx0Þ fixes the homogeneous
solution of (15) to be just s1ðxÞ. Using the standard Green’s
function technique, we obtain

s2ðxÞ ¼ s1ðxÞþ i�cs

�
Z x0

x
dypðyÞs1ðyÞfs�1ðyÞs1ðxÞ� s�1ðxÞs1ðyÞgþ � � � :

(17)

For � > �0 þ ��, the mode equation reads

d2s3ðxÞ
dx2

þ
�

1

1� 2�cs
� 2þ 3�

x2

�
s3ðxÞ ¼ 0; (18)

whose solution is

s3 ¼ �
ffiffiffiffiffiffiffi
�x

2

r �
�Hð1Þ

ð3=2Þþ�

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�cs
p

�

þ �Hð2Þ
ð3=2Þþ�

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�cs
p

��
: (19)

The coefficients � and � are determined by matching
s3 and s2 smoothly at x ¼ x0 ��x: s3ðx0 � �xÞ ¼
s2ðx0 ��xÞ and s03ðx0 � �xÞ ¼ s02ðx0 ��xÞ.

D. Power spectrum

To show concrete results, we choose our f to be the
simplest polynomial in � that gives a C2 interpolation
between fð�0Þ ¼ 0 and fð�0 þ ��Þ ¼ 1:

fð�Þ¼ð���0Þ3f3ð2��2�0�3��Þð���0���Þþ��2g
��5

:

(20)

Omitting the gruesome details of the intermediate steps, we
eventually obtain

1 1 2 3
Log10 k 0

1.15

1.20

1.25

1.30

1.35

Mp
2

H2
k

FIG. 1 (color online). Spectral density for � ¼ 0:01, �cs ¼
�0:005, and �� ¼ �0:01�0. Solid blue line: Eq. (22); dotted
red: IR asymptotics; dashed red: UV asymptotics.
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�¼1� i

2
�csð2x0��xÞþ���; �¼45

2
eið2x0��xÞ�cs

�x4

�
cos�x�

�
1��x2

3

�
sin�x

�x

�
þ���; (21)

giving the power spectrum

P ðkÞ ¼ k3

2�2
lim
x!0

js3ðxÞj2
2kzðxÞ2 ¼

H2

8�2M2
p�

f1� �cs þ 2�ð2� �E � log2kÞ þ � � �gj�� �j2

¼ H2

8�2M2
p�

�
1þ 2�ð2� �E � log2kÞ � �cs

�
1þ 45 coskð2�0 þ ��Þ

�
sink��

3k3��3
þ cosk��

k4��4
� sink��

k5��5

��
þ � � �

�
;

(22)

where �E is the Euler-Mascheroni constant. The asymptotic behavior of the two-point function

P ðkÞ ¼
8><
>:

H2

8�2M2
p�
½1þ 2�ð2� �E � log2kÞ�; jk�0j � 1;

H2

8�2M2
p�
½1� �cs þ 2�ð2� �E � log2kÞ�; jk�0j 	 1;

(23)

agrees, as expected, with the spectral densities for cs ¼ 1
and cs ¼ 1þ �cs þOð�c2sÞ without any sudden
transition.

The feature generated by the nonadiabatic change in
cs shows up in the term proportional to �cs in (22): it
vanishes for small k, as can be seen from the IR
asymptotics. Oscillatory behavior of the amplitude of
�cs appears once we deviate from the IR regime, i.e.,
�k�0 * 1, but it dies off at k� 1=�� due to the
negative powers of k�� in the oscillating terms. A
plot of P ðkÞ for � ¼ 0:01, �cs ¼ �0:005, and �� ¼
�0:01�0 is shown in Fig. 1.

III. DECOUPLING LIMIT AND BISPECTRA

In the previous section we have derived the two-point
function of the perturbations by computing the full gauge
invariant quadratic action with a varying speed of sound. In
order to compute the three-point function of the perturba-
tions, we need to move on to the cubic Lagrangian for this
system. We will use here the fact that a sufficiently rapid
change in the speed of sound will mostly affect the modes
that are deep inside the horizon at � ’ �0. For the analysis
of those modes it is sufficient to study the action (1) in the
decoupling limit.

Let us first check the regime of validity of the quadratic
Lagrangian in the decoupling limit. In this limit, the qua-
dratic part of the Goldstone sector of (1) is

Sð2Þ� ¼
Z

d�d3x
M2

pH 2�

c2s
½�02 � c2sð@i�Þ2 � 3H 2��2�;

(24)

with H � a0=a. Upon canonical normalization of � by

w ¼ H z
a �, we get

Sð2Þ� ¼ 1

2

Z
d�d3x

�
w02 � c2sð@iwÞ2 þ z00

z
w2

�
�
2H �

z0

z
þ �H 2ð3c2s þ 1� 2�Þ

�
w2

�
; (25)

where the second line contains terms that should be ne-
glected in the decoupling limit k 	 ffiffiffi

�
p

H [17].
In particular, in the limit �� � j�0j the most important

difference between (25) and the exact action (9) comes
from the term proportional to z0=z. Therefore the analysis
of the action (24) will be consistent with the exact one of
Sec. II as long as z0=z� �cs=�� & H (where we have
used cs 
 1), i.e.,

j�csj & ��

j�0j : (26)

We expect that the regime of validity of the decoupling
limit at the quadratic level will correspond to that at the
cubic level. In other words, if the cubic Lagrangian in the
decoupling limit turns out to be nonvanishing, then it will
give the dominant contribution to the three-point function
up toOð ffiffiffi

�
p Þ corrections. This procedure has been shown to

give correct results, e.g., in the regime of small speed of
sound [17] and has been invoked for the study of models
with resonant non-Gaussianities [21]. While a formal proof
of the validity of the decoupling approximation for the
cubic Lagrangian is beyond the scope of the present paper,
we believe that the explicit check we have provided for the
quadratic Lagrangian, together with the examples de-
scribed above, supports the use of this approach.
Let us then move on to the cubic action:

Sð3Þ� ¼
Z

d�d3x
M2

p

a
fH 2
0��02 þH 2
�03

�H 2
�0ð@i�Þ2 þOð�H 2Þg
�

Z
d�ð�HintÞ; (27)
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and the bispectrum is given by

hRð ~k1; �ÞRð ~k2; �ÞRð ~k3; �Þi
¼ �iH3

Z �
d�0h½�ð ~k1; �Þ�ð ~k2; �Þ�ð ~k3; �Þ; Hintð�0Þ�i;

(28)

where we have used R ¼ �H�.
Before we go ahead and compute (28), we must make

sure that we trust our perturbative expansion. The most
relevant term in the cubic action is the term proportional to


0, let us denote it by Sð3Þ
0 . Perturbation theory will be valid

if Sð3Þ

0 � Sð2Þ� , with

Sð3Þ

0

Sð2Þ�

� 
0

ð�þ
Þ
�

a
��


��

c2s
�

H�

H
’ 10�5j�csj j�0j��

; (29)

where in the last equality we have used the fact that cs ’ 1,
and where H� ’ 10�5 is the amplitude of the perturba-
tions. Let us also note that ��=j�0j is the duration of the
process in units of Hubble time. We thus find that as long as
��
j�0j 	 10�5j�csj we trust our perturbative expansion.

Since this condition is less stringent than (26), (26) is the
only condition we require for the validity of our analysis.

A. Equilateral case

We are now in position to evaluate the three-point func-
tion. We first consider the equilateral configuration. With

�i ¼ v̂i

Hz , we have

feqNLðkÞ ¼
5M2

pH
4

6�4

k6

P ðkÞ2 ��cs
�
�i

�Z �0þ��

�0

d�

�

�
fð�0�

2 Þ3 �
k2

2
f�0�

2 ð��
2Þ2 þ f0��

2ð�0�
2 Þ2

�

þ
Z 0

�0þ��

d�

�

�
ð�0�

3 Þ3 �
k2

2
�0�

3 ð��
3Þ2

��
� �3ð� ! 0Þ3 þ c:c:

�

¼ 50

81
�cs

�
21

20
þ 2

��5

��
�0��ð3�0 � 4��Þ

k2
þ 8�0 � 7��

k4

�
cos3k�0 þ

�
��ð�0 þ��Þð3�0 þ 7��Þ

k2
� 8�0 þ 15��

k4

�

� cos3kð�0 þ ��Þ �
�
3�20��

2

2k
� 12�20 � 60�0��þ 11��2

6k3
þ 22

3k5

�
sin3k�0

þ
�
3��2ð�0 þ��Þ2

2k
� 12�20 þ 84�0��þ 83��2

6k3
þ 22

3k5

�
sin3kð�0 þ ��Þ

��
: (30)

It can easily be found that the maximum of the feature is

f
eq
NL; max ¼ 1:7j�csj �20

��2

�
1þO

�
��

�0

��
; (31)

and occurs at

kmax ¼ 2:2

��

�
1þO

�
��

�0

��
: (32)

A plot of feqNL for �cs ¼ �0:005 and �� ¼ �0:01�0 is
shown in Fig. 2. The beats appearing in Fig. 2 originate
from the fact that the function 
ð�Þ is not infinitely differ-
entiable. We have checked numerically that the use of a
smooth
ð�Þ / ðtanhð���0

�� Þ þ 1Þ leads to the disappearance

of the beats without modifying the qualitative behavior of
the three-point function. In particular, the scalings (31) and
(32) found above are unaffected [up to an overall Oð1Þ
factor] by the choice of a C2 function 
ð�Þ.
Note that the bispectrum (30) does not vanish in the limit

k ! 1, that is, cs � 1 leads to nonvanishing non-
Gaussianity even in the decoupling limit. The limiting
value agrees with that found in [22,23] for constant cs.

B. Squeezed limit

In the squeezed limit (k1 ¼ k2 ¼ kL 	 k3 ¼ kS), the
contribution to fNL from the 
0��02 interaction is

fsqNLðkL; kSÞ ¼ � 75

4

�cs
��5

�
2

�
�0��

2

3k2L
� �0 � 2��

k4L

�
cos2kL�0 �

�
��2ð�0 þ��Þ

3k2L
� �0 þ 3��

k4L

�
cos2kLð�0 þ ��Þ

þ
�
��ð2�0 ���Þ

2k3L
þ 5

2k5L

�
sin2kL�0 þ

�
��ð2�0 þ 3��Þ

2k3L
� 5

2k5L

�
sin2kLð�0 þ��Þ

�
þO

�
kS
kL

�
: (33)
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Its maximum,

f
sq
NL;max ¼ 1:3j�csj j�0j��

�
1þO

�
��

�0

��
; (34)

occurs at

kmax ¼ 2:5

��

�
1þO

�
��

�0

��
: (35)

Note that it is smaller than that of the equilateral case—as
expected, since the amplification of the � modes occurs
deep into the horizon—by a factor of ��=j�0j. The leading
contributions to fNL from the other interactions are
suppressed by OðkS=kLÞ, and therefore negligible. Using
(33) and (22), one can also check that the consistency
relation of [19]

f
sq
NLðkL; kSÞ ¼ � 5

12

d lnP ðkÞ
d lnk

��������k¼kL

; (36)

holds up to Oð�c2s ; kSkLÞ corrections.

C. General case

Figure 2 shows that the behavior of feqNLðkÞ is given by
high frequency oscillations modulated by an envelope
function. We have checked that the envelope of feqNL can
be written as

Aeq þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beq þ Ceq sinð3k��þ �eqÞ

q
; (37)

with Aeq, Beq, Ceq, and �eq functions of k, �0, and ��.

Since we factored out the high frequency parts, e3k�0 , to
obtain (37), f

eq
NL may be written as

f
eq
NL ¼ Aeq þ sinð3k�0 þ �eqÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beq þ Ceq sinð3k��þ �eqÞ

q
: (38)

In the squeezed limit, we get the similar result with 3k
replaced by 2kL.

The above results can be generalized to arbitrary con-
figurations of k1, k2, and k3. The complete expression for

fNLðk1; k2; k3Þ is too lengthy to be explicitly presented, and
it can be schematically written as

fNLðk1; k2; k3Þ ¼ Aþ sinðK�0 þ �Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C sinðK��þ �Þ

q
; (39)

where K ¼ k1 þ k2 þ k3, and A, B, C, �, and � are slowly
varying functions of k1, k2, k3, �0, and ��. This might be
useful as a template for data analysis. We also checked that
the �� ! 0 limit of (39) took the form of

fNLðk1; k2; k3Þ !
��!0

~Aþ ~B sinðK�0 þ ~�Þ; (40)

which agrees with the Ansatz proposed by, e.g., [24].

IV. DISCUSSION

We have shown that a sudden change in the speed of
sound generates various distinct features in the primordial
spectrum of scalar perturbations.
First, due to the fact that the spectrum of perturbations is

inversely proportional to the speed of sound, the normal-
ization of the two-point function for modes that were deep
inside the horizon before the transition took place is offset
by an amount ’ 1� �cs with respect to that of the modes
that were already far outside the horizon at the same
instant.
Second, the two-point function of the scalar perturba-

tions shows an oscillating pattern of amplitude �cs that
dies off at large k. But oscillations last all the way to
k ! 1 for an infinitely sharp jump—in agreement with
the results of [15,16].
Third, the three-point function (in the equilateral con-

figuration) shows a feature of maximum amplitude
��csð�0=��Þ2 at scales k� ���1. In particular, it is
quadratically divergent at large k in the case of an instan-
taneous transition (�� ¼ 0). An analogous behavior has
been recently found by [6], who have studied a rapid
transition in the inflationary potential and have shown
that the seemingly violent UV divergence in momentum
space corresponds, due to its oscillatory nature, to a much
milder logarithmic divergence in real space.
The three-point correlation function found in the present

paper shares many properties with that found in [6]. As a
consequence, the discussion of the detection prospects for
such a three-point function given in [6] applies to our
scenario as well: if the scale 1=j�0j roughly corresponds
to the current size of the horizon and the duration�� of the
transition is short enough, a feature like (30) or (33) in the
CMB bispectrum might be detectable in the upcoming
surveys.
Let us conclude by emphasizing that the parameter

controlling the speed of sound is just one of the many
parameters appearing in the effective field theoretical de-
scription of the inflationary perturbations [17]. It would be
interesting to investigate whether a sudden change in some

1 2 3 4 5
Log10 k 0

50

50

fNL

FIG. 2 (color online). Equilateral fNL for �cs ¼ �0:005 and
�� ¼ �0:01�0.
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other parameters (e.g., those controlling the behavior of the
tensor modes) would result in novel observable features in
the CMB or in the primordial spectrum of gravitational
waves.
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