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Recently, a supersymmetric model of dark energy coupled to cold dark matter, the supersymmetron, has

been proposed. In the absence of cold dark matter, the supersymmetron field converges to a super-

symmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the

supersymmetron evolves to a matter-dependent minimum where its energy density does not vanish and

could lead to the present acceleration of the Universe. The supersymmetron generates a short-ranged fifth

force which evades gravitational tests. It could lead to observable signatures on structure formation due to

a very strong coupling to dark matter. We investigate the cosmological evolution of the field, focusing on

the linear perturbations and the spherical collapse and find that observable modifications in structure

formation can indeed exist. Unfortunately, we find that when the growth rate of perturbations is in

agreement with observations, an additional cosmological constant is required to account for dark energy.

In this case, effects on large-scale structures are still present at the nonlinear level which are investigated

using the spherical collapse approach.
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I. INTRODUCTION

Dark energy, the component responsible for the late time
acceleration of our Universe, is currently well described by a
cosmological constant in the lambda cold dark matter
(�CDM) concordance model. �CDM has been very suc-
cessful in explaining a large range of observations probing a
vast range in length scales, but from a theoretical point of
view the model suffers from the fine-tuning problem and the
coincidence problem [1]. This has led to more general mod-
els for dark energy. Scalar fieldmodels havebeenparticularly
popular over the last decade, and are predicted to exist in
many theories of high energy physics, like string theory and
supergravity (see e.g. [2,3] and references therein).

However, many of the dark energy models that have
been constructed so far suffer from problems akin to the
ones they are trying to solve or introduce new issues
themselves. At best, they can be treated as low energy field
theories valid well below the electron mass, corresponding
to the very late phase of the Universe. Hence, these models
need to be embedded in a better defined theory whose
ultraviolet behavior is under control. So far, no such com-
plete scenario has been constructed. Dark energy models
also seem to require the existence of a very light scalar field
whose coupling to matter leads to a long-ranged fifth force
whose presence is at odds with current gravitational tests.
Screening mechanisms [4–10] have been invoked in order
to alleviate this problem. Axionlike particles with deriva-
tive couplings to matter are also possible candidates [11].

On the other hand, it could well be that the dark sector of
the Universe, composed of the still undiscovered cold dark
matter and dark energy (DE), could be described by a
globally supersymmetric theory [12–14]. In such a case,
the vanishingly small amount of dark energy which is
necessary to generate the acceleration of the Universe
could result from a small cosmological breaking of super-
symmetry due to the nonzero CDM energy density. Such a
scenario would naturally lead to a close relationship be-
tween the dark energy and the CDM energy densities. Of
course, one should also ensure that corrections to the
globally supersymmetric scalar potential coming from
the soft supersymmetry breaking in the minimal super-
symmetric standard model sector do not spoil the CDM-
DE correspondence and the properties of the scalar
potential in the late time Universe.
Recently [15], such a supersymmetric model of dark

energy coupled to cold dark matter, the supersymmetron,
was proposed by two of us. In the absence of cold dark
matter, the supersymmetron converges to a supersymmet-
ric minimum with a vanishing cosmological constant.
When cold dark matter is present, the supersymmetron
evolves to a matter-dependent minimum where its energy
density does not vanish and can contribute to the dark
energy budget of the Universe.
The supersymmetron generates a short-ranged fifth force

between the CDM and the DE which evades gravitational
tests, but could lead to observable signatures on structure
formation as found in similar modified gravity theories
[16–23].
In this paper, we analyze the cosmological evolution

of the supersymmetron at the background level and the
evolution of dark matter perturbations in the linear and
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nonlinear regime. The nonlinear regime is studied by using
spherical collapse. Because of the highly nonlinear behav-
ior of the field during the spherical collapse, we are able to
extract constraints on the model parameters, which are then
used to constrain the background cosmology. The spherical
collapse model has been previously used in models with a
simple Yukawa-type modification of gravity, in the so-
called fðRÞ=chameleon models [24–27], in brane-world
cosmologies [28], and in models which allow for dark
energy fluctuations [29–40]. We find that a cosmological
constant (CC) must be included in the model and that linear
perturbations do not deviate from their �CDM counter-
parts. On the other hand, nonlinear effects are significant
on astrophysical scales.

The outline of this paper is as follows. In Sec. II, we
present the supersymmetric formulation of the model, in
Sec. III we derive static solutions to the field equation, and
then in Sec. IV we study the cosmological evolution of the
supersymmetron including the cosmological background
evolution, linear perturbations, and the spherical collapse.
In Sec. V, we revisit the original mass scales of the model
before summarizing and concluding in Sec. VI.

II. THE SUPERSYMMETRON

A. Supersymmetric formulation

In globally supersymmetric models of the scalar sector,
models are specified by their Kahler potential and the
superpotential. With these two functions, we can construct
the scalar potential and the kinetic term for the fields. For
the supersymmetron, we have

Kð�; ��;��; ���Þ ¼ j�þj2 þ j��j2 þ�2
1

2

���������
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��������
2�
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where � is the dark energy superfield, �� is the CDM
particles, and �i are some (for now) unspecified mass
scales.

The kinetic term follows from

L kin ¼ K� ��ð@�Þ2 ¼ �ð�Þ2
2
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and the scalar potential is given by the F-term

VF ¼ K� ��j@�Wj2 ¼
���������2 þM2þn=2
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��������
2

; (6)

where n ¼ 2ð�� �Þ and the mass scales M and � are
given by

�4 ¼
�
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Taking � ¼ j�jei�, the scalar potential is seen to be mini-

mized for eðin�=2Þ ¼ �1. The angular field � is stabilized at
this minimum with a mass which is always much greater
than the gravitino mass [15] implying that

VF ¼
�
�2 �M2þn=2

�n=2

�
2
: (9)

In the rest of this paper, we will write � instead of j�j for
simplicity. The potential is minimized, with vanishing
potential energy, for � ¼ �min where

�min ¼
�
M

�

�ð4=nÞ
M: (10)

Because of the coupling between � and �� in the super-
potential, the fermionic CDM particles acquire a scalar
field dependent mass

mfð�Þ ¼ m

�
1þ g�

m

�
: (11)

When the fermionic CDM develops a nonvanishing num-
ber density nCDM ¼ hcþc�i in the early Universe, we get
a new contribution to the scalar potential

Veff ¼ VF þ g�

m
�CDM; �CDM ¼ mnCDM (12)

which lifts the supersymmetric minimum and produces a
nonzero dark energy component which can lead to the
acceleration of our Universe.

B. Effective four-dimensional model

The effective theory for the sypersymmetron can be
viewed as a scalar-tensor theory where CDM particles
follow geodesics of the rescaled metric ~g�� ¼ g��Að�Þ
where

Að�Þ ¼ 1þ g�

m
: (13)

The effective four-dimensional action describing the dy-
namics of the supersymmetron is given by

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
M2

pl �
�ð�Þ2
2

ð@�Þ2 � VFð�Þ
�

þ SCDMðA2ð�Þg��; c Þ; (14)

where g is the determinant of the metric g��,M
2
pl � 1

8	G is

the reduced Planck mass, and SCDM is the dark matter
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action. If a coupling to baryons is included, the large mass
of the supersymmetron field will ensure that this field
would be practically invisible in local experiments.

C. Reparametrization of the model parameters

In this subsection, we rewrite the original mass scales of
the model in terms of some more intuitive physical quan-
tities which will simplify our analysis.

The coupling of the supersymmetron to dark matter
Að�Þ can be written

Að�Þ ¼ 1þ x

�
�

�min

�
; (15)

where

x � g�min

m
(16)

is a dimensionless parameter which parametrizes the cou-
pling strength of the supersymmetron to matter.

We further introduce the density

�1 � n�4

x
(17)

and

�1 � �0
CDMð1þ z1Þ3 (18)

which is the CDM density (and the corresponding redshift)
when the field � reaches the vicinity of the supersymmet-
ric minimum �min.

When studying the cosmological dynamics of the
model, it is convenient to introduce the canonically nor-
malized field ’ via

d’ ¼ �ð�Þd� ! ’ð�Þ ¼ �1

�
�

�1

�
�
: (19)

In terms of ’, the potential and coupling becomes

VFð’Þ ¼ �4

�
1�

�
’min

’

�ðn=2�Þ�2
; (20)

Að’Þ ¼ 1þ x

�
’

’min

�ð1=�Þ
; (21)

where ’min ¼ ’ð�minÞ. The mass of the supersymmetron
after having converged to the supersymmetric minimum is
given by

m21 ¼ �1xn
2�2’2

min

: (22)

A constraint on m1 can be obtained by requiring that the
effects of supergravity corrections to the potential of the
supersymmetron are irrelevant. Let us assume that super-
symmetry is broken at the supergravity level in a sponta-
neous way. There are two main sources of corrections to
the scalar potential coming from

eK=m
2
Plm2

3=2m
2
Pl � Km2

3=2 (23)

and

K� ��jD�Wj2 � jK�j2m2
3=2

�2ð�Þ : (24)

These corrections lead to a contribution to the scalar
potential


V �m2
3=2’

2: (25)

This contribution to the scalar potential increases with �
and does not modify the cosmological dynamics provided
it is much smaller than the matter term in the effective
potential 
Vð�minÞ � x�1 which leads to

’2
min �

x�1
m2

3=2

: (26)

Using (22), we find that the mass in the late time Universe
is constrained by

m1 � m3=2; (27)

where m3=2 is the gravitino mass and is typically much

larger than 1 eV [41]. We will therefore require

m1 � Oð1Þ eV (28)

which is our first constraint. Of course, supersymmetry
breaking in the observable sector of the standard model,
i.e. amongst the standard model particles, leads to a cos-
mological constant which is independent of the supersym-
metron sector. In the following, we will see that a small
cosmological constant is required in the supersymmetron
scenario whose origin may come from, in part, the super-
symmetry breaking scale in the observable sector. The
three physical parameters f�1; x; m1g together with the
two indices fn;�g completely characterize the effective
model. In the end, we will go back and compare our results
with the original mass scales.

D. Supersymmetron dynamics

The field equation for ’ follows from a variation of
Eq. (14) with respect to ’ and reads

h’ ¼ Veff;’; (29)

where the effective potential is given by

Veffð’Þ ¼ VFð’Þ þ ðAð’Þ � 1Þ�CDM: (30)

The minimum ’� of the effective potential is determined

by

�
’min

’�

�ðnþ1Þ=� �
�
’min

’�

�ðnþ2Þ=2� ¼ �CDM

�1
(31)
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and has the approximate solution

’�
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>:
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�CDM � �1:
(32)

A nonzero dark matter condensate is seen to lower the
minimum from the supersymmetric minimum. The en-
ergy density associated with the supersymmetron is

Veffð’�Þ ’
8><
>:

x�CDMð1þnÞ
n
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1=ðnþ1Þ
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x�CDM �CDM & �1
(33)

which for small n and �CDM � �1 behaves like a cos-
mological constant, but evolves as CDM after the field
has converged to the supersymmetric minimum. This
means that if the supersymmetron accounted for all
dark energy, then acceleration would be a transient
phenomenon.

The mass of the field, m2
’ � Veff;’’, is given by

m2
’ ¼ m21
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When the field follows the minimum of the effective
potential, this expression simplifies to

m2
�

m21
’
8><
>:
1 �CDM & �1
2ðnþ1Þ

n

�
�CDM

�1

�ðnþ2�Þ=ðnþ1Þ
�CDM � �1:

(35)

We see that the mass is always greater than the value at the
supersymmetric minimum and from the constraint Eq. (28)
the mass is therefore always greater than a few eV’s.

The conformal coupling Eq. (15) leads to a fifth force
(see e.g. [42,43]) between dark matter particles, which in
the nonrelativistic limit (and per unit mass) is given by

~F ’ ¼ d logAð’Þ
d’

~r’: (36)

This fifth force will have an impact on structure formation
which is investigated in the following sections.

III. STATIC CONFIGURATIONS

In this section, we derive the static spherical symmetric
solutions for the supersymmetron, which we then use later
on when studying the spherical collapse.

In a static spherical symmetric metric with weak gravi-
tational fields, the field equation Eq. (29) reads

d2’

dr2
þ 2

r

d’

dr
¼ VF;’ þ A;’�: (37)

We consider a spherical body of dark matter (a halo) with
radius R and a top-hat density profile

� ¼
�
�c r < R

�b r > R
(38)

and impose the standard boundary conditions

d’ðr ! 0Þ
dr

¼ d’ðr ! 1Þ
dr

¼ 0; (39)

’ðr ! 1Þ ¼ ’b ¼ ’�ð�bÞ: (40)

The mass at the minimum inside (outside) the body is
denoted by mc (mb).
Outside the halo, we can linearize the field equation

around the background value ’b with the solution

’ðrÞ ¼ ’b � BR

r
e�mbðr�RÞ r > R (41)

and where the constant B is determined by matching to the
interior solution. The interior solutions are calculated be-
low for several different cases.

A. Point-particle solutions

We first look at the point-particle solution, which can be
found by first deriving the solution for fixed R and then
taking the limit R ! 0 with M ¼ 4	

3 R3�c fixed.

In this limit, we expect the solution inside the body to be
a very small perturbation of the background solution and
we can assume mbR � 1. A second-order Taylor expan-
sion in r gives us the solution

’ ¼ ’ð0Þ þ A;’b
�cr

2

6
r < R: (42)

Matching to the exterior solution at r ¼ R gives

’ð0Þ ¼ ’b �
A;’b

�cR
2

2
; (43)

BR ¼ A;’b
M

4	
: (44)

Taking the limit R ! 0 and using Eq. (36), we find that the
gravity plus fifth-force potential is given by

VðrÞ ¼ GM

r
ð1þ 2ðA;’b

MplÞ2e�m’rÞ (45)

which is the same as the prediction from linear perturbation
theory1 as we will see later on. Contrary to chameleons
where this type of solution holds at linear scales, here the

1By taking the Fourier transform of Eq. (69), we recover
Eq. (45), see e.g. [44].
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large mass of the supersymmetron means that this solution
only applies for microscopic bodies.

B. Small overdensity

Now, we turn to the case where the size of the over-
density has to be taken into account. Note that we cannot
make the approximation mbR � 1 as the mass of the
supersymmetron is generally very large

1

mb

<
1

m1
� 1

eV
� 10�6 m: (46)

Since we are interested in astrophysical-sized overden-
sities, R ¼ OðMpcÞ, we will always have mbR � 1.

We take ’ ¼ ’0 þ 
’ and Taylor expand the field
equation inside the body around ’0 � ’ðr ¼ 0Þ:
d2
’

dr2
þ 2

r

d
’

dr
¼ Veff

;’0
þm2

0
’; m2
0 � Veff

;’’0
(47)

which gives the solution

’ ¼ ’0 þ
Veff
;’0

m2
0

�
sinhðm0rÞ

m0r
� 1

�
r < R: (48)

Matching at r ¼ R and using m0R, mbR � 1 to simplify
the analysis, we find

’0 ’ ’b �
Veff
;’0

m2
0

�
sinhðm0RÞ

m0R
þ coshðm0RÞ

mbR

�
; (49)

B ’ ’b � ’0

1þ mb

mc

’ ’b � ’0

2
: (50)

We assume that ’0 is just a small perturbation in the
background: ’0 ¼ ’b � 
’, and expand the above ex-
pression to first order in 
’. This leads to


’ ’ ð�c � �bÞA;’b

m2
b

(51)

and

B ¼ ð�c � �bÞA;’b

2m2
b

: (52)

This gives a total force, F ¼ Geff�M
R2 on a shell close to the

edge of the overdensity where�
Geff

G

�
¼ 1þ 6ðA;’b

MplÞ2
ðmbRÞ (53)

which is suppressed compared to the point-particle solu-
tion. This solution is only valid when


’ ’ ð�c � �bÞA;’b

m2
b

� ’b: (54)

Putting �c ¼ ð1þ�Þ�b and using
�bA;’b

’b
�m2

b, we see that

this condition reduces to

� � 1 (55)

i.e. a very small overdensity.

C. Large overdensity

For large overdensities, we expect screening
and we therefore look for chameleonlike solutions
[9,10,42,45–48]. That is, we assume that the field is very
close to the minimum, ’c ¼ ’�ð�cÞ, of the effective po-

tential inside the body and the only variations of the field
are in a thin shell close to the surface. Linearizing the field
equation about ’c leads to the solution

’ðrÞ ¼ ’c þ C
sinhðmcrÞ

mcr
r < R: (56)

Because of the form of the field equation for general
� � 1, we cannot solve the equation in the thin shell, but
we will assume that this solution is valid all the way to
r ¼ R. This will be the case if the shell is very thin as found
in chameleon theories [43,47,48], and as we will see below
this is the case for the supersymmetron when the density
contrast of our overdensity is large. In fact, we find that the
supersymmetron is very similar in behavior to strongly
coupled chameleons as studied in [47].
Matching the two solutions at r ¼ R, we obtain

B ’ ð’b � ’cÞ (57)

i.e. the solution found is the critical solution where the field
almost does not change inside the body. We can rewrite this
equation in the standard chameleon form by introducing
the equivalent thin-shell factor

�R

R
� ð’b � ’cÞ

6�’c
�cM

2
pl

; �’c
¼ A;’c

Mpl; (58)

where�c ¼ G�M
R ¼ ð�c��bÞR2

6M2
pl

is the Newtonian potential of

the overdensity. The total force on a spherical shell close to

the surface is now F ¼ Geff�M
R2 where

�
Geff

G

�
¼ 1þ 2�2

’c

�
3�R

R

�
� ð1þmbRÞ: (59)

This solution is valid as long as the quadratic term in the
Taylor expansion of Veff;’ around ’c is suppressed com-

pared to the linear term at r ¼ R. This condition turns into

mb

mc

�
’b

’c

�
� 1 ! � � 1: (60)

We have not found an explicit solution for �� 1, but if we
take � ! 0 in Eq. (59) we recover Eq. (53). Thus, the two
approximations agree for �� 1 and we will therefore use
equation Eq. (59) as an approximation for the fifth force for
all �.
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For a body of fixed size R, the effective gravitational
constant is seen to decrease with increasing �c demonstrat-
ing the chameleonlike behavior and thus we recover the
Newtonian regime for virialized halos, see Fig. 4.

IV. COSMOLOGICAL SUPERSYMMETRON

In this section, we discuss the cosmological evolution of
the supersymmetron at the background level, the linear
perturbations, and the spherical collapse.

A. Background cosmology

The background evolution of the supersymmetron in a
flat Friedmann-Lemaitre-Robertson-Walker metric

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ (61)

is determined by the Friedman equation which in the late
Universe reads

3M2
plH

2 ¼ �b þ �CDM þ �DE; (62)

where �b is the baryon density, �CDM the dark matter
density, and �DE is the dark energy density. In the follow-
ing, we will ignore the baryons and treat all matter as
CDM. The CDM energy density is conserved implying that

_� CDM þ 3H�CDM ¼ 0: (63)

The DE density is given by the sum of the energy density in
the supersymmetron and a CC

�DE ¼ �CC þ �’; (64)

where �’ ¼ _’2

2 þ VF þ ðAð’Þ � 1Þ�CDM. We will later see

that a nonzero CC is required to have a viable cosmology.
This CC may come from supersymmetry breaking [15].

The field equation Eq. (29) in the Friedmann-Lemaitre-
Robertson-Walker metric Eq. (61) becomes

€’þ 3H _’þ Veff;’ ¼ 0: (65)

The mass of the field is constrained by Eq. (28) which
means that m’ � H in the late Universe. The minimum

’� is therefore an attractor which the field follows. Along

this attractor, the kinetic term is negligible as _’2

2Veff
��

H
m’

�
2 � 1. In Fig. 1, we show the cosmological evolution

of ’� and m’ with redshift.

When the supersymmetron follows the attractor, we
have

�’ ’
8><
>:
x�CDM

ðnþ1Þ
n

�
�1

�CDM

�
1=ðnþ1Þ

�CDM � �1

x�CDM �CDM & �1:
(66)

The equation of state along the attractor is given by

!’ ¼ p’

�’

’ � VF

Veff

’
�� 1

nþ1 �CDM � �1
0 �CDM � �1:

(67)

To have acceleration of the Universe without a CC, we
need to impose z1 > 0 and n < 2. When the field con-
verges to the supersymmetric minimum, p’ ’ �VF ! 0
and the acceleration stops. To have agreement with obser-
vations, we need a nonzero CC, as was pointed out in [15].
With the inclusion of a CC, the dark energy equation of
state is modified

!DE ¼ p’ � �CC

�’ þ �CC

’
�!’ �’ � �CC

�1 �’ � �CC:
(68)

In Fig. 2, we show the dark energy equation of state as

function of redshift and f � �’

�’þ�CC
: the fraction of dark

energy in the supersymmetron to the total dark energy
density today.
To find out how large a contribution the supersymmetron

we can have in the energy budget of our Universe, we will
first look at the linear perturbations to get a constraint on
the model parameters and then apply these constraints to
the background cosmology.

FIG. 1. The cosmological evolution of ’� (above) and m’

(below) as function of redshift. The dashed line shows the
analytical approximation Eq. (32) (above) and Eq. (35) (below).
The supersymmetron parameters are z1 ¼ 1:0, � ¼ 1, and
n ¼ 0:5. x and m1 do not have any influence on the evolution
of the minimum and do therefore not need to be specified here.
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B. Linear perturbations

The coupling of the supersymmetron Eq. (15) to dark
matter leads to a fifth force which will influence the growth
of the linear perturbations and structure formation in gen-
eral. The similarity of the model with chameleons yields
that in high-density regions the fifth force will be screened
as shown in Sec. III.

The growth of the dark matter perturbations 
 ¼ 
�CDM

�CDM

for subhorizon scales are determined by (see e.g.
[45,49–51])

€
þ 2H _
 ¼ 3

2
H2�CDMðaÞ


�
GeffðkÞ

G

�
lin
; (69)

where the effective gravitational constant is given by

�
GeffðkÞ

G

�
lin

¼ 1þ 2ððlogAÞ;’MplÞ2
1þ a2m2

’

k2

	 1þ 2ðA;’MplÞ2
m2

’

k2

a2
;

(70)

where the last equality comes from the fact that the
supersymmetron is very heavy compared to astrophys-
ical scales and where we have assumed Að’Þ � 1 � 1
[see Eq. (73)].

In order to have signatures on the linear perturbations,
we need the coupling strength to satisfy 2ðA;’MplÞ2 � 1,

i.e. the supersymmetron must be very strongly coupled. It
has been argued [52,53] that an adiabatic instability exists
in the regime, a point we will return to when discussing the
nonlinear evolution in the next section.

At early times, �CDM � �1, we find�
GeffðkÞ

G

�
lin

	 1þ
�

6

ðnþ 1Þ�0
CDM

�

� x104
�

k=a

0:1h Mpc�1

�
2 �

�
1þ z1
1þ z

�
3=ðnþ1Þ

(71)

and as the field converges to the supersymmetric minimum
we obtain�
GeffðkÞ

G

�
lin

	 1þ
�

12

n�0
CDM

�
� x104

ð1þ z1Þ3
�

k=a

0:1h Mpc�1

�
2
:

(72)

In both cases, we see that a comoving scale of k=a ¼
Oð0:1h Mpc�1Þ (a linear scale in general relativity) will
experience a very large correction if x � 1 is not satisfied.
With x � 1, we also have

Að’Þ � 1 ¼ x

�
’

’min

�ð1=�Þ
< x � 1 (73)

justifying our claim.
To get a constraint on the model parameters, we define

kmod via �
Geffðkmod; z ¼ 0Þ �G

G

�
lin

� 1 (74)

and impose kmod > 0:1h Mpc�1 in order for the growth of
perturbations to be in agreement with �CDM at large
scales. With this definition, we can get a constraint on
the energy density in the supersymmetron to the total
dark energy today. By using Eqs. (74) and (66), we find

�’

�’ þ�CC

¼

8>>><
>>>:

ðnþ1Þ2�2
CDM

10�4

6ð1��CDMÞ

�
0:1h=Mpc

kmod

�
2

�0
CDM � �1

n�2
CDM

10�4ð1þz1Þ3
12ð1��CDMÞ

�
0:1h=Mpc

kmod

�
2

�0
CDM & �1:

(75)

If �0
CDM � �1, the energy density in the supersymmetron

today is negligible compared to the CC. In the other regime
�0
CDM & �1, we find

�’

�’ þ�CC
< 10�4ð1þ z1Þ3 (76)

and we must require z1 > 10 if the supersymmetron is to
account for a significant part of the dark energy budget.
However, the dominating contribution to dark energy must
be the CC as otherwise the equation of state Eq. (68) reads
!DE 	 0 today and hence no acceleration. Thus, is both
cases we find that a pure CC is required to account for dark
energy.
Returning to the linear perturbations, we see that the

linear effective gravitational constant is increasing as we

FIG. 2. The equation of state for the supersymmetron as func-

tion of redshift for four different values of f ¼ �’

�’þ�CC
: the

fraction of dark energy in the supersymmetron to the total dark
energy density today. The horizontal dotted line shows the
analytical approximation !’ ¼ � 1

nþ1 . The supersymmetron

parameters are z1 ¼ 1:0, � ¼ 1, n ¼ 0:5 and x is fixed to
give the desired f in each case.
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go to smaller scales (large k). For k > kmod, the super-
symmetron fifth force is dominating over gravity at the
linear level and to have a viable theory we need a large
kmod. At nonlinear scales, we expect a chameleonlike effect
to kick in and screen the fifth force. We will study the
nonlinear effects by looking at the spherical collapse.

C. Spherical collapse

In this section, we look at the collapse of a spherical top-
hat overdensity taking the supersymmetron fifth force into
account. This will allow us to extract constraints on the
model parameters by requiring the model to agree with
�CDM on large scales.

The equation of motion of a spherical shell at the edge of
the top-hat overdensity in a scalar-tensor theory with a fifth
force was derived in [24]. The final form of the equation
can be understood from a simple Newtonian argument. In
the derivation below, we neglect the CC energy density
because the Newtonian picture does not assign any energy
density to pressure and therefore a Newtonian derivation
cannot yield the correct contribution (which involves con-
tributions from pressure) from the CC without some ad hoc
assumptions.

The total energy of a collapsing spherical shell of matter
is given by

E

mshell
¼ 1

2
_r2 �GM<r

r
þ Vð’Þ; (77)

where Vð’Þ is the fifth-force potential. Neglecting shell
crossing so that the total energy is conserved and using
_E ¼ 0, we get Newton’s law for the shell

mshell €r ¼ �ðFgravityðrÞ þ F’ðrÞÞ (78)

which can be written

€rðtÞ
rðtÞ ¼ � 1

6

�CDM

M2
pl

�
1þ F’ðrÞ

FgravityðrÞ
�

¼ � 1

6

�CDM

M2
pl

�
GeffðrÞ
G

�
sph

: (79)

The term on the right-hand side of Eq. (79) agrees with the
matter term found from a full derivation including pressure
and gives the result

€rðtÞ
rðtÞ ¼ 1

3

�DE

M2
pl

� 1

6

�CDM

M2
pl

�
GeffðrÞ
G

�
sph

: (80)

In the following, the DE density is taken to be a pure CC
and the effective gravitational constant is derived in
Sec. III, see Eq. (59). For a small overdensity of size r,
we can write Eq. (53) as

�
GeffðrÞ
G

�
sph

	 1þ
�

4

n�0
CDM

�
� x1036

ð1þ z1Þ3
�
Mpc=h

r

�

�
�
m1
eV

�
�

�
�1
�CDM

�ð2�2�Þ=ðnþ1Þ
(81)

when �CDM & �1 and

�
GeffðrÞ
G

�
sph

	 1þ
�

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp

�0
CDM

�
� x1036

ð1þ z1Þ3

�
�
Mpc=h

r

�
�

�
m1
eV

�

�
�

�1
�CDM

�ð4�2�þnÞ=2ðnþ1Þ
(82)

for �CDM � �1. Note that the effective gravitational con-
stant in the spherical collapse is much larger than the
corresponding linear value. For a large-scale overdensity
today, Mpc=h & r, to agree with �CDM we must require

x & 10�36

�
eV

m1

�
� 10�36: (83)

For such a small value of x, by looking at Eqs. (71) and (72)
we see that the linear perturbations will be indistinguish-
able from �CDM. This also means that the adiabatic
instability that might exist in these models is avoided at
the linear level.
By changing coordinates to y ¼ r

aR where R ¼ ri
ai
, we

can write Eq. (80) in the form

y00 þ
�
2� 3

2
�mðNÞ

�
y0

þ�mðNÞ
2

ðy�3 � 1Þy
�
GeffðaRyÞ

G

�
sph

¼ 0; (84)

where a prime denotes a derivative with respect to N ¼
logðaÞ.
The density contrast � ¼ �CDM

��CDM
� 1 of the collapsing

sphere can be obtained from � ¼ y�3 � 1 and the mass

from M 	 4	R3

3 ��0
CDM. Early on, we have y 	 1� �

3 as the

overdensity follows the expansion, and by linearizing this
equation we obtain the equation for the linear evolution of
the density contrast

�00 þ
�
2� 3

2
�mðNÞ

�
�0 � 3

2
�mðNÞ�

�
GeffðrÞ
G

�
lin

¼ 0;

(85)

where

�
GeffðrÞ
G

�
lin

¼ 1þ 2ðA;’MplÞ2ð1þmbrÞe�mbr (86)

which is the same equation as for the linear perturbations
Eq. (69) in real space. As mentioned before,
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�
GeffðrÞ �G

G

�
lin

�
�
GeffðrÞ �G

G

�
sph

& Oð1Þ (87)

on linear scales and the linear equation reduces to that of
�CDM. This also shows that nonlinear effects are very
dominant in this model.

The initial conditions for the numerical implementation
are taken to be the same as for �CDM:

yi ¼ 1��i

3
; y0i ¼

�i

3
; �0

i ¼ �i: (88)

In Fig. 3, we show the evolution of the radius of an over-
density at different scales. Smaller overdensities collapse
earlier as the fifth force is more dominant.

In Fig. 4, we plot the evolution of the effective gravita-
tional constant for the same case as Fig. 3. As the density
contrast of the collapsing sphere increases, the chameleon
mechanism kicks in and effectively shields the fifth force.

Too see more clearly the effect of the fifth force on the
formation of halos, we calculate the linearly extrapolated
density contrast for collapse today as function of the virial
mass of the halo compared to the �CDM prediction 
c 	
1:67, see Fig. 5. Low-mass halos are seen to require a
smaller linear density contrast than that of �CDM in order
to collapse due to the fifth force.

With the linear collapse threshold 
c, we can predict the
halo mass function. In the standard Press-Schechter ap-
proach, one assumes that all regions with 
 > 
c in the
linear extrapolated density field collapse to form halos. The
fraction of mass within halos with a given mass is deter-
mined by the variance of the linear density field smoothed
over that scale. We adopt the Sheth-Tormen (ST) prescrip-
tion [54] for the halo mass function. The ST description for
the comoving number density of halos per logarithmic
mass interval in the virial mass M is given by

nlogM ¼ dn

d logM
¼ ��

M
fð�Þ d�

d logM
; (89)

where the peak threshold

� ¼ 
cðMÞ
�ðMÞ (90)

and

�fð�Þ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

	
a�2

s �
1þ 1

ða�2Þp
�
e�ða�2=2Þ: (91)

We adopt the standard parameters a ¼ 0:75 and p ¼ 0:3 in
the following for whichC ¼ 0:322.�ðMÞ is the variance of
the linear density field convolved with a top-hat of radius R
(M ¼ 4	

3 ��R3),

FIG. 4. The strength of the fifth force at the surface of the
spherical overdensity during the collapse as a function of the
scale factor a for R ¼ ri

ai
¼ 0:1, 1, 10, 100 Mpc=h (from top to

bottom). The parameters are the same as in Fig. 1.

FIG. 3. rðaÞ as a function of the scale factor a for R ¼ ri
ai
¼

0:1, 1, 10, 100 Mpc=h (from left to right) compared with the
behavior for r in usual �CDM (solid line). The initial density
contrast is the same in all runs and is fixed such as to give
collapse today for �CDM. The supersymmetron parameters are
z1 ¼ 0:0, � ¼ n ¼ 1, x ¼ 10�43, and m1 ¼ 105 eV.

FIG. 5. The �CDM-lineary-extrapolated critical density con-
trast for collapse for the supersymmetron as a function of the
halo mass. The dashed line shows the �CDM prediction

c 	 1:67. The supersymmetron parameters are z1 ¼ 0:0,
� ¼ n ¼ 1, x ¼ 10�43, and m1 ¼ 105 eV.
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�ðRÞ2 ¼
Z k3

2	2
PLðkÞjWðkRÞj2 dk

k
; (92)

where PLðkÞ is the linear power spectrum, which for
the supersymmetron is that of �CDM, and WðxÞ ¼ 3

x3
�

ðsinðxÞ � x cosðxÞÞ is the Fourier transform of the top-hat
window function. The power-spectrum is normalized to
�8 � �ðR ¼ 8 Mpc=hÞ. We have chosen �8 ¼ 0:8 in our
analysis.

The virial theorem gives us the condition for virializa-
tion of a halo. This condition reads 2T þW ¼ 0,

where T ¼ 3
10M

_R2 is the kinetic energy and W ¼
�R

d3x�mðxÞ ~x 
 ~r� is the potential energy. In the pres-
ence of a fifth force, the potential � ¼ �N þ Að’�mÞ is
the sum of the gravitational potential and the fifth-force
potential. In the spherical symmetric case, we have

W ¼ WN �
Z R

0
4	r3�m

dAð’Þ
dr

dr; (93)

where WN ¼ � 3
5
GM2

R is the gravitational potential energy.

Performing the integration on the right-hand side using
integration by parts, we find��������

Z R

0
4	r3�m

dAð’Þ
dr

��������� 4	R3�mðAð’ðRÞÞ � 1Þ: (94)

Note that this term is usually much smaller than the gravi-
tational potential energy. This can be understood from the
chameleon thin-shell analogue: the fifth force is only felt in
a thin shell close to the surface of the body and therefore
the potential energy associated with the fifth force for the
whole halo is small.

In Fig. 6, we show the ST mass function of the super-
symmetron relative to that of �CDM. Because the super-
symmetron fifth force is increasing with decreasing scale,
we recover�CDM on large scales, but see an enhancement
in the mass function for low-mass halos.

V. MASS SCALES

Having found a range for our model parameters which
gives predictions that are in agreement with current obser-
vations, we will now analyze how these constraints affect
the original mass scales �i, of the model.
We start by defining x0 ¼ 1040x, m0 ¼ m

g TeV , and

z0 ¼ ð1þ z1Þ3. We can now rewrite Eq. (16) as

�min

H0

	 105m0x0 (95)

and Eq. (17) as �
�

Mpl

�
4 	 10�160x0z0: (96)

From Eq. (10), we find�
M

Mpl

�
nþ4 	 10�160�55nx0nþ1m0nz0: (97)

By using Eq. (7), we get�
�1

�0

�
2��2

�
�0

Mpl

�
nþ4 	 10�160�55nx0nþ1m0nz0; (98)

�
�1

�2

�
2��2

�
�2

Mpl

�
4 	 10�160x0z0 (99)

from which we find�
�2

�0

�
2þ2�

�
�0

105H0

1

x0m0

�
n 	 1: (100)

The simplest case to analyze is � ¼ 1 for which the
scale �1 vanishes from the theory. We find

�2 	 1020ðx0z0Þ1=4H0 (101)

i.e. �2 needs to be between the current Hubble scale and
the dark energy scale. This scale can be elevated by in-
creasing the redshift z1 � 1, but we typically need a
redshift in the very early Universe to reach super-TeV
scales. For �0, we find

�0 	 1020
�

z0

ðx0m0Þn
�ð1=4Þ

H0: (102)

In the general case � � 1, we see from Eq. (98) that taking
�< 1 together with �1 � �0, �2 can serve to increase
the other two scales. For example, � ¼ 1

2 and �1 	 Mpl

gives

�2 	 �0 	 1028ðx0z0Þð1=5ÞH0 (103)

which is around the dark energy scale. There seems to be
no unfine-tuned way of bringing these mass scales up to
typical particle physics scales if we want the cosmological
symmetry breaking to be close to the present era. For

FIG. 6. The fractional difference in the supersymmetron mass
function compared to �CDM at z ¼ 0. The symmetron parame-
ters are m1 ¼ 105 eV, z1 ¼ 0:0, x ¼ 10�43, and � ¼ n ¼ 1.
The supersymmetron converges to �CDM for large halo masses.
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example, to have �2 � TeV when � ¼ 1 and x0 	 1 then
Eq. (98) shows that we need z0 	 10100 which translates to
�1 	 ð1013 GeVÞ4.

Finally, and from a field theoretic point of view, the scale
�1 has a different status from �0;2. The former appears in

the Kähler potential as a suppression of scales for higher-
dimensional operators and signals the typical scales above
which the effective field theory description breaks down.
On the contrary, �0;2 appear in the superpotential and are

protected by nonrenormalization theorems. Hence, we ex-
pect that�1 should be sensitive to high-energy physics and
represents the effective cutoff of the theory. On the other
hand,�0;2 may be already present at very high energy even

if these scales are very low. Of course, this does not provide
an explanation for the discrepancy of scales between �1

and �0;2 which is not natural.

VI. DISCUSSION AND CONCLUSION

We have studied the cosmological evolution of the
supersymmetron and its possible effects on structure for-
mation. Requiring that linear perturbations are in agree-
ment with �CDM on large scales, we find that the energy
density in the supersymmetron is negligible compared to
the dark matter density and a pure cosmological constant
must be introduced to play the role of dark energy.

The nonlinear evolution of the model was also inves-
tigated by using the spherical collapse model. Spherically

symmetric solutions to the field equation have been derived
and used to predict the fifth-force effects on a collapsing
halo. The effective gravitational constant at the edge of a
spherical overdensity has been found to be much larger
than the linear prediction due to the highly nonlinear
properties of the model. The model parameter must be
tuned such that the spherical collapse is under control on
large scales. This implies that linear perturbations reduce
to that of �CDM. On nonlinear scales, the model then
predicts a faster collapse than that of�CDM. In particular,
we find that the supersymmetron predicts an excess of
small mass halos compared to �CDM. However, for this
to be the case, one or more of the mass scales in the theory
must be fine-tuned.
On very small scales, i.e. galaxy scales, the matter

density is large enough to effectively screen the fifth force
via the chameleon mechanism. This nonlinear regime
could in principle be probed using N-body simulations.
However, due to the enormous mass of the field this poses a
severe challenge for existing methods.
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