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We construct a compact phase space for flat Friedmann-Lemaı̂tre-Robertson-Walker spacetimes with

standard matter described by a perfect fluid with a barotropic equation of state for general fðRÞ theories of
gravity, subject to certain conditions on the function f. We then use this framework to study the behavior

of the phase space of universes with a non-negative Ricci scalar in Rþ �Rn gravity. We find a number of

interesting cosmological evolutions which include the possibility of an initial unstable power-law

inflationary point, followed by a curvature-fluid-dominated phase mimicking standard radiation, then

passing through a standard matter era and ultimately evolving asymptotically towards a de Sitter-like late-

time accelerated phase.
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I. INTRODUCTION

The � standard matter (�CDM) (or Concordance)
model [1] is one of the greatest successes of general
relativity. It reproduces beautifully all the main observa-
tional results, e.g., the dimming of type Ia supernovae [2],
cosmic microwave background radiation anisotropies [3],
large scale-structure formation [4], baryon oscillations [5]
and weak lensing [6]). Unfortunately, this model is also
affected by significant fine-tuning problems related to the
vacuum energy scale, and this has led to a considerable
amount of effort thoroughly exploring other viable theo-
retical schemes.

Currently, one of the most popular alternatives to the
�CDM model is based on gravitational actions which are
nonlinear in the Ricci curvature R and/or contain terms
involving combinations of derivatives of R: the so-called
fðRÞ theories of gravity [7–10]. Such models first became
popular in the 1980s because it was shown that they can
be derived from fundamental physical theories (like
M-theory) and naturally admit a phase of accelerated ex-
pansion, which could be associated with an early Universe
inflationary phase [11]. The fact that the phenomenology
of dark energy requires the presence of a similar phase
(although only a late-time low-energy one) has recently
revived interest in these models. In particular, the idea that
dark energy may have a geometrical origin, i.e., that
there is a connection between eark energy and a nonstan-
dard behavior of gravitation on cosmological scales is
now a very active area of research (see, for example,
Refs. [12–14,14–17]).

Unfortunately, efforts to obtain an understanding of the
physics of these theories are hampered by the complexity
of the fourth-order field equations, making it difficult to
obtain both exact and numerical solutions, which can be
compared with observations. Recently, however, progress
has been made in resolving these issues using a number of

useful techniques. One such method, based on the theory of
dynamical systems [18], has proven to be very successful
in providing a simple way of obtaining exact solutions and
a (qualitative) description of the global dynamics of these
models [19]. The dynamical systems analysis has up to
now approached this problem in the conventional way, by
first exploring the finite equilibrium points and then com-
puting the asymptotic behavior of the phase-space using
the classical method of Poincaré projections.
In this paper, we develop an alternative scheme which

involves compactifying the phase space for general fðRÞ
theories of gravity [20], subject to certain conditions on the
function f.
As an illustrative example for the compactification strat-

egy, we discussed the rich structure of the 3-dimensional
phase space of Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) universes with R> 0 in Rþ �Rn gravity.
Although this is one of the simple and widely studied
modified gravity models, a complete analysis of the phase
space of this model has never been done before [21]. We
find a number of interesting cosmological evolutions,
which include the possibility, at least in principle, where
the Universe begins close to at an unstable power-law infla-
tionary equilibrium point, then evolves towards a curvature-
fluid-dominated phase where the effective equation of state
mimics standard radiation with w� 1=3 (we will refer to
such phases as radiationlike), then passes through a stan-
dard matter era and ultimately evolves asymptotically to-
ward a de Sitter-like late-time accelerated phase.
We also show that as n ! 0, all the fixed points that

approach the �CDM subspace of the complete state space
of Rþ �Rn gravity are unstable. This implies that the
behavior of the solutions of a fourth-order theory which
is close to �CDM may be completely different from those
of �CDM, and one needs to do a careful analysis of the
solutions rather than a priori assuming any global behavior
of the trajectories.
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II. THE FIELD EQUATIONS FOR
FOURTH-ORDER GRAVITY

The natural extension of standard general relativity is to
consider a Lagrangian that contains curvature invariants of
higher than linear order. In fact, renormalization of quan-
tum field theory suggests that adding such terms to the
standard gravitational action appears to be necessary [22]
to give a first approximation to some quantized theory of
gravity. The quadratic Lagrangians are at the first level of
such modifications and have been studied extensively over
the past two decades. The four possible second-order cur-
vature invariants are

R2; RabR
ab; RabcdR

abcd; �iklmRikstR
st
lm; (1)

where �iklm is a completely antisymmetric 4-volume
element and R, Rab, Rabcd are the Ricci scalar, Ricci
tensor and Riemann tensor, respectively. However, for
homogeneous and isotropic spacetimes, because of the
identities [23]

ð�=�gabÞ
Z

dVðRabcdR
abcd � 4RabR

ab þ R2Þ ¼ 0; (2)

ð�=�gabÞ
Z

dV�iklmRikstR
st
lm ¼ 0; (3)

ð�=�gabÞ
Z

dVð3RabR
ab � R2Þ ¼ 0; (4)

it follows that the general fourth-order Lagrangian for
these highly symmetric spacetimes contain only powers
of R, and we can write the action as

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fðRÞ þ 2Lm�; (5)

where Lm represents the matter contribution.
Varying the action with respect to the metric gives the

following field equations:

f0Gab ¼ Tm
ab þ 1

2ðf� Rf0Þgab þrbraf
0 � gabrcrcf0;

(6)

where f0 denotes the derivative of the function f with
respect to the Ricci scalar and Tm

ab is the matter stress-

energy tensor defined by

Tm
ab ¼ �muaub þ pmhab þ qma ub þ qmb ua þ �m

ab: (7)

Here, ua is the direction of a timelike observer, and hab is
the projected metric on the 3-space perpendicular to ua.
Also, �m, pm, qm and �m

ab denote the standard matter

density, pressure, heat flux and anisotropic stress, respec-
tively. Equations (6) reduce to the standard Einstein field
equations when fðRÞ ¼ R.

For the homogeneous and isotropic spacetimes with
vanishing 3-curvature and barotropic perfect fluid as the
standard matter source with equation of state p ¼ !�, the

independent field equations for general fðRÞ gravity are as
follows.
(i) The Raychaudhuri equation:

_�¼�1

3
�2� �

2f0
ð1þ3!Þ� f

2f0
þR

2
��

2

_f0

f0
�3

2

€f0

f0
;

(8)

where � is the volume expansion of the matter-flow
lines ua and � is the standard matter density.

(ii) The Friedmann equation:

�2 ¼ 3�

f0
þ 3

2
R� 3

2

_f

f0
� 3�

_ðf0Þ
f0

: (9)

(iii) Conservation of standard matter:

_� ¼ ��ð1þ!Þ�: (10)

Combining the Raychaudhuri and Friedmann equations,
we obtain:

R ¼ 2 _�þ 4

3
�2: (11)

III. COMPACT PHASE SPACE FOR POSITIVE
RICCI SCALAR UNIVERSE:

In this paper, we will study the dynamics of FLRW
models only in the sector R � 0. This is because the sector
R< 0 is not of much physical interest, and also, as we shall
see later, the sectors R> 0 and R< 0 are connected by the
invariant submanifold R ¼ 0, making the physically inter-
esting dynamics completely confined to the sector R> 0.
Also, we consider the 3-curvature to be vanishing, which is
an invariant submanifold by itself. As required by the no-
ghost condition, we also assume f0 > 0.
To compactify the phase space, we rewrite the

Friedmann equation (9) in the following form:

D2 ¼ 3�

f0
þ 3

2
Rþ 9

4

� _ðf0Þ
f0

�
2
; (12)

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�þ 3

2

_ðf0Þ
f0

�
2 þ 3

2

f

f0

vuut
: (13)

We can now define the following set of normalized
variables:

x ¼ 3

2

_ðf0Þ
f0D

y ¼ 3

2

f

f0D2
�m ¼ 3�

f0D2

z ¼ 3

2

R

D2
Q ¼ �

D
:

(14)

To guarantee that the propagation equations for these
compact variables will result in a dimensionless dynamical
system, we need to define a new time variable �, such that
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d

d�
� 0 ¼ 1

D

d

dt
: (15)

For � to be a monotonously increasing time variable, a
normalization D is chosen such that it is strictly positive at
all times. It is clear by construction that when � ¼ 0, the
normalized dynamical variables as well as the time vari-
able are well defined. Thus, this normalization allows the
study of general static, recollapsing and bouncing
solutions.

From the Friedmann equation, we obtain the following
constraints:

�m þ zþ x2 ¼ 1; ðQþ xÞ2 þ y ¼ 1: (16)

The first constraint comes directly from the Friedmann
equation, while the second one arises from the definition
of the normalization parameter D. According to these
constraints and considering R> 0, � > 0 and f0 > 0, we
see that the above dynamical variables have to be defined
in the following ranges:

0 � �m � 1; 0 � z � 1; �1 � x � 1

�2 � Q � 2; 0 � y � 1;
(17)

making the complete phase space compact. Also, since the
variable Q is a normalized Hubble parameter, the cosmo-
logical solutions will naturally include both expanding and
collapsing as well as static solutions, and these two sets of
solutions are connected via the noninvariant subset Q ¼ 0.

IV. THE PROPAGATION EQUATIONS

An autonomous system, which is equivalent to cosmo-
logical equations (8)–(11), can be derived by differentiat-
ing the compact variables (14), with respect to � and using
Eqs. (8)–(11). The dimensionality of the resultant
system can then be reduced by using the two constraints
(16). By eliminating the dynamical variables�m and y, we
obtain the following 3-dimensional effective autonomous
system:

x0 ¼ 1

6
ð�3ð1þ!Þ� ð1þ 3!Þx4� 4Q2ð�1þ x2Þ

þ ð1þ 3!Þz�Qx½ð5þ 3!Þð�1þ x2Þþ 3ð1þ!Þz�
þ x2½4þ 6!þ zð�3ð1þ!Þ� 2�Þ�Þ

z0 ¼ z

3
ð�4Q2x�Qðð5þ 3!Þx2þ 3ð1þ!Þð�1þ zÞÞ

þ xð5þ 3!�ð1þ 3!Þx2��½�2� 3nð1þ!Þ
þ 2zþ 3nð1þ!ÞðzþðQþ xÞ2Þ�Þ

Q0 ¼ 1

6
ð�4Q2x�Q½ð5þ 3!Þx2þ 3ð1þ!Þð�1þ zÞ�

þ xð5þ 3!�ð1þ 3!Þx2��½�2� 3nð1þ!Þ
þ 2zþ 3nð1þ!ÞððQþ xÞ2þ zÞ�Þ; (18)

where � � f0=Rf00. In general, the system is not closed
unless � is expressed in terms of the dynamical variables
(14). For example, in the case of Rþ �Rn, we have

� � � z

nðy� zÞ ¼
z

n½ðqþ xÞ2 þ z� 1� : (19)

Thus, the above system defines the dynamics of all well-
defined fðRÞ theories for which f0=Rf00 is invertible in
terms of the dynamical variables. From Eqs. (18), we can
see that z ¼ 0 is an invariant submanifold, and in the z ¼ 0
2-surface, the line Q ¼ 0 is an invariant subset. Since
z ¼ 0 corresponds to R ¼ 0, we obtain an important result:
For all well defined functions fðRÞ, with f0 > 0 and

f0=Rf00 invertible in terms of the dynamical variables
defined by (14), a FLRW universe with non-negative
Ricci Scalar continues to be so, both in the future and in
the past. Also, an R ¼ 0 universe can never undergo a
bounce in the future or the past.
In the next section, we will fix the function f to be the

class of theories fðRÞ ¼ Rþ �Rn and study the dynamics
of the flat FLRW universes and their stability for those
theories. In order to study the stability of the fixed points
of the dynamical systems (18), we will use the very
well-known techniques, which involve linearizing the
dynamical equations around the equilibrium points and
then finding the eigenvalues of the linearization matrix
(the Jacobian) at the equilibrium points. If the Jacobian is
well-defined, then they can be classified according to the
sign of the real part of eigenvalues as attractors, repellers
and saddle points.

V. THE FIXED POINTS AND EXACT SOLUTIONS
FOR Rþ �Rn GRAVITY

As we have seen from Eq. (19), f0=Rf00 is invertible in
terms of the dynamical variables for fðRÞ ¼ Rþ �Rn. It is
interesting to note that the constant ‘‘n’’ couples to the
dynamical equations (19) only via the quantity �, and the
constant � does not couple to the equations at all. Hence,
all the fixed points of the system are necessarily indepen-
dent of �.
The coordinates of the fixed points are shown in Table I.

Note that each fixed point has an expanding (Q> 0) and a
collapsing (Q< 0) version as indicated by the subscripts
(þ , �), respectively. Also, some points only occur in the
compact-state space defined by Eq. (17) for certain ranges
of n. The occurrence of the fixed points outside the com-
pact region for specific n and ! means that the constraints
(16) are not satisfied, and consequently, these fixed points
are not physical for these values of n and !. Fixed points
that are not physical for these values of n and ! have been
excluded from the analysis.
By looking at the coordinates of the fixed points in

Table I, we can distinguish two classes. The first corre-
sponds to points with coordinates that are independent of n,
which means that these points are common to all fðRÞ
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theories. This class contains the fixed points A�, B, C�,
D�, E� and N�, and they all lie on the boundary of the
compact region except for the point N.

In the noncompact analysis developed in Ref. [25], none
of these boundary points appear. Furthermore, even though
N� is not a boundary point, it does not appear in Ref. [25],
because of its special location in the phase space—it lies
exactly on the intersection of the plane x ¼ 0 and the
surface z ¼ y ¼ 1� ðQþ xÞ2. In this case, one has to
take the limit of � carefully as one approaches this point,
and the standard techniques of finding fixed points breaks
down for this case.

The other class contains fixed points with coordinates
that depend on n and!. This class contains the three points

L�, I� and F�. F� is the only boundary point, and it lies in
the invariant submanifold z ¼ 0. The expanding versions
of the points L� and I� correspond to the equally labeled
finite points in Ref. [25]. The point H in Ref. [25] enters the
compact sector, which we consider in this paper only when

n ¼ ð1þ ffiffiffi
3

p Þ=2, and for this value of n, it merges with the
point I. All the other points which appear in the above-
mentioned reference do not appear in the sector we are
studying in this paper.

Exact solutions

The exact solutions at the fixed points are also summa-
rized in Table I, and the stability analysis for the dust
and radiation cases are summarized in Table II. First, we

TABLE II. The stability of the fixed points for ! ¼ 0; 1=3.

Fixed point Physical range Stability

Equation of state ! ¼ 0 ! ¼ 1
3 ! ¼ 0 ! ¼ 1

3

A� 8n 8n Attractor Attractor

Aþ 8n 8n Repeller Repeller

B 8n 8n Attractor Attractor

D� 8n 8n Saddle Saddle

E� 8n 8n Repeller Repeller

Eþ 8n 8n Attractor for n 2 ð0; 2Þ Attractor for n 2 ð0; 2Þ
F� n 2 ð0; 13 þ

ffiffiffiffi
57

p
9 Þ n 2 ð0; 18 þ

ffiffiffiffi
17

p
8 Þ Saddle Saddle

I� n 2 ð0; 12 ; 1Þ and n > 5=4 n 2 ð12 ; 1Þ and n > 5=4 Saddle for n 2 ð1=2; 1Þ Saddle for n 2 ð1=2; 1Þ
Attractor for n ¼ 5=4 Attractor for n ¼ 5=4

Saddle for n 2 ð5=4; 2Þ Saddle for n 2 ð5=4; 2Þ
Attractor for n > 2 Attractor for n > 2

Iþ n 2 ð12 ; 1Þ and n > 5=4 n 2 ð12 ; 1Þ and n > 5=4 Saddle for n 2 ð1=2; 1Þ Saddle for n 2 ð1=2; 1Þ
Repeller for n ¼ 5=4 Repeller for n ¼ 5=4

Saddle for n 2 ð5=4; 2Þ Saddle for n > 2

Repeller for n > 2 Repeller for n > 2

L� n 2 ð34 ; 47 þ
ffiffiffiffi
37

p
7 Þ n 2 ð1; ffiffiffi

2
p Þ Saddle Saddle

N� 8n 8n Spiralþ Spiralþ

Nþ 8n 8n Spiral� Spiral�

TABLE I. Coordinates of the equilibrium points for Rþ �Rn gravity. We will not explicitly
state the expressions for s, g1; . . . ; g4 or f1; . . . ; f4, which are rational functions of n and !.
However we give them in Ref. [24].

Fixed points Coordinates ðx;�; z; QÞ Solution aðtÞ
A� ð1; 0; 0;�2Þ a0

ffiffiffiffiffiffiffiffiffiffiffiffi
t� t0

p
B ð�1; 0; 0; 0Þ a0

C ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ12!þ9!2

p
1þ3! ;� 2

1þ3! ; 0; 0Þ a0

D� ð 1�3w
3ðw�1Þ ;

4ð3w�2Þ
9ðw�1Þ2 ; 0;� 2

3ðw�1ÞÞ a0
ffiffiffiffiffiffiffiffiffiffiffiffi
t� t0

p

E� ð0; 0; 1;� 1ffiffi
2

p Þ a0e
Ct

F� ðf1ðn;!Þ; g1ðn;!Þ; l1ðn;!Þ; n1ðn;!ÞÞ a0
ffiffiffiffiffiffiffiffiffiffiffiffi
t� t0

p
G� ðf2ðn;!Þ; g2ðn;!Þ; l2ðn;!Þ; n2ðn;!ÞÞ a0ðt� t0Þsðn;!Þ
I� ðf3ðnÞ; g3ðnÞ; l3ðnÞ; n3ðnÞÞ a0ððn� 2Þt� t0Þð�1þ3n�2n2=�2þnÞ
L� ðf4ðn;!Þ; g4ðn;!Þ; l4ðn;!Þ; n4ðn;!ÞÞ a0ð3tð1þ!Þ � t0Þ2þn=3ð1þ!Þ

N� ð0; 23 ; 13 ;�
ffiffi
6

p
3 Þ a0ð2t� t0Þ2=3
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discuss the static solutions. From definition (18),Q ¼ 0 )
� ¼ 0, so any fixed point that lies on the surface Q ¼ 0
represents a static Universe. By looking at the coordinates
of the fixed points in Table I, we can see that the point B is
static for all values of n and !. The point I� is static only
for n ¼ 1=2 and n ¼ 1, and we find that for these values of
n, the point I� represent an unstable saddle point.

We now proceed to find the exact solutions for the scale
factor at the nonstatic fixed points. The expansion rate and
the deceleration parameter q ¼ � €aa

_a2
are related by the

Raychaudhuri equation,

_� ¼ � 1

3
ð1þ qÞ�2: (20)

If we know the value of the deceleration parameter qi at
some fixed point i, we can use the above equation to obtain
the behavior of the scale factor at that point. When qi ¼
�1, we have de Sitter solutions ð� ¼ constantÞ or static
solutions (� ¼ 0). For qi ¼ 0, we have a Milne evolution,
and when �1< q0 < 0; q0 > 0, we have accelerated and
decelerated power-law behaviors, respectively.

To obtain the exact solutions for the scale factor aðtÞ
associated with the nonstatic� � 0 equilibrium points, we
need to have an expression for q in terms of the compact
variables. From the definition q, we obtain

qi ¼ 1� zi
Q2

i

: (21)

The noninvariant surface zi ¼ Q2
i is the transition surface

between accelerated and decelerated expansions phases
(see Fig. 1). By substituting Eq. (21) in Eq. (20) we obtain

_� ¼ � 1

3

�
2� zi

Q2
i

�
�2; (22)

where Q � 0. The evolution of the scale factor can now be
given directly by integrating Eq. (22):

aðtÞ ¼ a0ðt� t0Þ�i ; (23)

where

�i ¼ ð2� zi
Q2

i

Þ: (24)

The constants of integration can be obtained by substitut-
ing the solutions into the original equations. As explained
in Ref. [25], these solutions must satisfy all the cosmologi-
cal equations in order to be considered physical.
By looking at Table I, we can distinguish two classes of

nonstatic solutions. The first class fA�; D�; E�;
F� andN�g contain solutions that are independent of n
and !. The fixed point B represents a static phase as
mentioned earlier, and the points A, D and F are radiation-
like phases. The expanding version of the point A is a
saddle for z > 0 and repeller for z ¼ 0, and the other two
points D an F are saddles. The fixed point N represents a
matter phase, and the expanding version of this point is
a Spiral�.
The evolution of the scale factor aðtÞ for the fixed point

L is a function of ðn;!; tÞ, and for fixed point I, is a
function of ðn; tÞ. The dependence of these solutions on n
and/or ! provides us with additional degrees of freedom
which can lead to interesting cosmological scenarios.
When ! ¼ 0, the fixed point L merges with N for

n ¼ 1, and it merges with the point D� for n ¼ 3=4.
When ! ¼ 1=3, it merges with D� for n ¼ 1, and for n ¼
4=3, it corresponds to the matter pointN. In the case! ¼ 0
or ! ¼ 1=3, we find that for all values n for which this
point is physical, the expansion (contraction) is never
accelerating.
As mentioned earlier, the evolution of the scale factor

for the point I is independent of the equation-of-state
parameter !. For n ¼ 5=4, the fixed point I merges with

A, for n ¼ 2, it merges with point E, and for n ¼ 7=12þffiffiffiffiffiffi
73

p
=12, it is a matter point.

We also find that for this fixed point, the expansion

(contraction) is accelerating for n > 1=2ð1þ ffiffiffi
3

p Þ. The
existence of this accelerated phase, together with the fact

that, for n > 1=2ð1þ ffiffiffi
3

p Þ, the point L is a matterlike point,
leads to the possibility of an extremely interesting cosmo-
logical scenario, where it is possible in principle to find an
orbit that starts close to the unstable accelerating phase Iþ,
evolves past the unstable radiationlike point Dþ, followed
by the unstable matter point Lþ and finally ends up at the
de Sitter attractor Eþ.
In Figs. 2 and 3, we have plotted two interesting orbits.

The orbit in Fig. 2 is for! ¼ 0 and n ¼ 5=4. It begins near
the radiationlike points Aþ=Iþ, passes near the radiation-
like point Dþ, followed by the standard matter point Lþ
and ends up at the de Sitter attractor Eþ. The orbit in Fig. 3

FIG. 1 (color online). Plot of the invariant subspace z ¼ 0 for
! ¼ 0; n ¼ 5=4. The left half of the state space corresponds to
collapsing models, while the right half contain expanding mod-
els. This is indicated by the subscripts of the various equilibrium
points.
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is for ! ¼ �11=18þ ffiffiffiffiffiffi
73

p
=18 and n ¼ 7=12þ ffiffiffiffiffiffi

73
p

=12.
It begins near the radiationlike point Aþ, passes near the
matter point Iþ, then close to the matter point Lþ and ends
up at the de Sitter attractor Eþ.

It is interesting to see that all fixed points whose x
coordinate goes to zero as n ! 0 are unstable. As the
�CDM subspace lies on the x ¼ 0 surface and this surface
is not an invariant submanifold, this implies that the be-
havior of the solutions of a fourth-order theory which is
close to �CDM may be completely different from those of

�CDM. Furthermore, this suggests that the best-fit model
to the current observational data within the complete state
space of Rþ �Rn may be given by a noninfinitesimal
value of n.

VI. CONCLUSION

In this work, we have presented a careful analysis of the
state space of the class of Rþ �Rn theories of gravity,
focusing on the R> 0 sector with K ¼ 0, together with the
no-ghost condition fðRÞ; f0ðRÞ> 0.
Because of the complexity of this class of gravity theo-

ries, the standard Hubble normalization does not lead to
compact dynamical variables. In order to construct varia-
bles defining a compact dynamical system, one has to use
an appropriate normalization. In this paper, we used the
same formalism used in Ref. [26], where we absorbed all
the negative contributions of the Friedmann equation into
the normalization. First of all, we obtained the following
important result: for all well-defined functions fðRÞ, with
f0 > 0 and f0=Rf00 invertible in terms of the dynamical
variables defined by Eq. (14), the FLRW universes with
non-negative Ricci Scalar continue to be so both in the
future and in the past. Also an R ¼ 0 universe can never
undergo a bounce in the future or past.
Our compact analysis shows that there are more equilib-

rium points than in the corresponding noncompact analysis
in Ref. [25]. In particular, we find a new finite fixed point
N�. Because of its very special location in the phase space,
it is quite difficult to obtain this point using the standard
techniques. This point is found to represent a matter phase,
and the expanding version of this point is Spiral�.
Furthermore, we find that for n > 1=2ð1þ ffiffiffi

3
p Þ, the

phase space of Rþ �Rn contains two accelerated fixed
points Eþ; Iþ, together with two other saddle points (one
represents a radiation phase Dþ, and the other represents a
matterlike phase Lþ). Although we have obtained all the
desired fixed points and desired stability, this does not
necessarily imply that there is an orbit connecting them.

Because of the fact that for n > 1=2ð1þ ffiffiffi
3

p Þ, the two
accelerated points and the matterlike point are quite close
to each other in the phase space, it is difficult to prove the
existence of an orbit connecting these points together with
the radiationlike point. But the presence of all these phases
in the state space of Rþ �Rn makes a more detailed
investigation worth pursuing.
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