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Stable massive neutral particles emitted by astrophysical sources undergo deflection under the

gravitational potential of our own Galaxy. The deflection angle depends on the particle velocity and

therefore nonrelativistic particles will be deflected more than relativistic ones. If these particles can be

detected through neutrino telescopes, cosmic ray detectors or directional dark matter detectors, their

arrival directions would appear aligned on the sky along the source-lens direction. On top of this

deflection, the arrival direction of nonrelativistic particles is displaced with respect to the relativistic

counterpart also due to the relative motion of the source with respect to the observer; this induces an

alignment of detections along the sky projection of the source trajectory. The final alignment will be given

by a combination of the directions induced by lensing and source proper motion. We derive the deflection-

velocity relation for the Milky Way halo and suggest that searching for alignments on detection maps of

particle telescopes could be a way to find new particles or new astrophysical phenomena.

DOI: 10.1103/PhysRevD.85.083507 PACS numbers: 95.35.+d

I. INTRODUCTION

As is well known (see e.g. [1]), a light ray trajectory is
deviated by a compact mass M by an amount

�̂ ¼ 2RS

�
; (1)

where RS ¼ 2 GM=c2 is the Schwarzschild radius of
the deflector (or ‘‘lens’’) and � is the impact parameter,
i.e. the shortest distance of the particle to the deflector
along the imperturbed path. The angle �̂, denoted the
lensing angle, defined as in Fig. 1, lies in the plane
observer-lens source. This equation holds true for small
lensing angles and for a deflector size much smaller than
the source distance.

The analogous deflection for a nonrelativistic particle is
easy to derive in the Newtonian limit. If a particle is
emitted by an astrophysical source with a nonrelativistic
velocity v (in units of c), its trajectory will be deflected by
any mass close to its trajectory by an angular amount equal
to (e.g. [1], p. 2)

�̂ ¼ RS

v2�
(2)

again in the limit of small deflection angles and deflector
size. Crucially, this deflection is amplified with respect to
the relativistic one by the v�2 factor. Because of the strict
analogy, we refer to this deflection as particle lensing,
although in neither case is there any focusing of images.

If the particle is neutral, its trajectory will not be further
deflected by the galactic magnetic field and by estimating
�̂, � and Rs, we can infer the particle velocity and, given
the kinetic energy, its mass. If particles of the same kind are
emitted by an astrophysical source with a range of veloc-

ities, they will all travel on the same plane observer-lens
source and reach the observer with different angles �̂ðvÞ.
The observer will therefore detect particles with different
energies aligned on the sky in the direction source lens (see
Figs. 2 and 3). In this paper we suggest that this peculiar
alignment of detections in particle telescopes, as e.g. neu-
trino telescopes (e.g. [2]) cosmic ray detectors (e.g. [3]) or
future directional dark matter detectors (e.g. [4,5]), could
be used as a test to reveal the existence of stable massive
neutral particles (SMaNPs) emitted by astrophysical
sources inside or outside our Galaxy. Let us remark from
the outset that although the method we propose is ex-
tremely simple, it is not easy to identify possible targets
for its application within the current frontiers of particle
physics and astrophysics and it is therefore to be meant as a
search for unexpected phenomena. For this reason, we will
not investigate in any detail how and where such neutral
particles could be produced and accelerated.
Since dark matter particles are also expected to be

SMaNPs, it is clear that a novel way of detecting them
would be potentially very interesting. However, the parti-
cle lensing method applies only to particles emitted by
astrophysical bodies and clearly cannot be employed to
detect halo dark matter particles. Possible candidates are
massive sterile neutrinos (e.g. [6]) or exotic components of
cosmic rays (e.g. heavy axionlike particles [7], Q-balls
[8,9], neutral strangelets [10], etc.) emitted by high-energy
sources like supernovae remnants [11] or microquasars
[12]. In principle, also transient phenomena like super-
novae or binary star collapse could be interesting sources;
however, nonrelativistic particles will arrive scattered for
thousands or million years after their optical counterpart.
Only if the flux is sufficiently large, could one still detect
alignments of slow neutral particles with just slightly
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different velocities with arrivals spaced by days or months.
In this paper we do not consider transient phenomena and
time delays and assume that a sufficient and continuous
flux of particles reaches the Earth.

Two bodies could represent useful lenses: the Sun and
the galactic halo. As we will show below, the Sun in

quadrature with respect to the source will deflect
SMaNPs above 0.1 degree if they are slower than
1500 km= sec (in the observer rest frame). Our galactic
halo can deflect particles of the same velocity or smaller up
to several degrees and its therefore the primary choice for
the lens. Here ‘‘deflection’’ means in fact ‘‘deflection with
respect to the optical or relativistic counterpart’’ of the
source, or ‘‘differential deflection’’ for short. The angle
of deflection �̂ itself is in fact not observable since in
general we do not know the unlensed source position. If
the galactic halo acts as a lens, and assuming radial sym-
metry of the halo potential, the detection pattern would
show up as straight alignments on the sky pointing toward
the galactic center, as illustrated qualitatively in Fig. 3.
Extragalactic sources and lenses are also possible but we
will not consider them in this paper.
There are three obvious problems with this technique.

The angular resolution for nonrelativistic particles is cur-
rently very poor: directional dark matter detectors exploit
the fact that the deviation between the recoil direction of
the detector’s nuclei and the arrival direction is related to
the recoil energy but for nonrelativistic particles the reso-
lution of current and planned detectors is very low, no
better than 15 degrees [4,5]. Cosmic ray experiments and
neutrino detectors reach much higher resolutions, down to
0.1 degree, but only for ultrarelativistic particles. In this
paper we assume optimistically that the resolution of 1 de-
gree can be reached in the near future also for nonrelativ-
istic scattering. The lower the resolution, the more difficult
is to distinguish the lensing alignment from chance align-
ment of background sources, halo dark matter or other
unlensed particles.

FIG. 1 (color online). The geometric configuration of the halo
lens system. The observer is in O, the source in S, its image in S’,
and the lens is the filled circle. Point C is added to ease the
discussion. In the following we always assume �, �̂ to be small.
The angles �, � are also small in Sect. III while are left free in
Sec. IV.

FIG. 2 (color online). Schematic representation of the deflec-
tion due to the galactic halo.

FIG. 3 (color online). A depiction of the detection map with
nonrelativistic lensing for a source with negligible proper mo-
tion, purely for illustrative purposes. The little red dots represent
the arrival directions of massive particles emitted by source 1
and 2.

LUCA AMENDOLA AND PETTORINO VALERIA PHYSICAL REVIEW D 85, 083507 (2012)

083507-2



The second problem is that the lensing technique is
sensitive to an extremely narrow energy band. Typically,
if the energy is larger than the particle mass by more than
10�5 or so, the deflection by the galactic halo reduces to the
subdegree level and cannot be resolved by current or
foreseeable particle telescopes. In fact, since they must
be nonrelativistic, all detectable lensed particles of the
same species should have almost exactly the same energy,
practically coinciding with their mass. This reduces dras-
tically the flux of nonrelativistically lensed particles but on
the other hand could simplify their search, since only
equal-energy detections could have been aligned due to
particle lensing (this of course applies only if the particles
transfer all, or a fixed fraction, of their energy to the
detector).

The third problem is that, if the source is moving with
respect to the observer, the nonrelativistic particles that
reach today the Earth were emitted when the source was in
another position. This induces a spread of the arrival
directions with respect to the relativistic counterpart. The
particles will then appear aligned along the sky projection
of the source trajectory (‘‘proper motion vector’’). This
‘‘proper motion alignment’’ (PMA) adds to the lensing
alignment and in general produces a new alignment inter-
mediate between the source-lens one and the source proper
motion vector. If the source proper motion is known, the
PMA can be disentangled from the lensing effect. This
paper is devoted to the calculation of the lensing align-
ment; we confine in an Appendix a brief but sufficient
treatment of the PMA. In general, the proper motion does
not spoil the lensing signal and in principle can be ac-
counted for.

In this paper we derive the geodesic equation in a
general-relativistic setting, bridging the gap between Eq.
(1) and (2) and we derive the angle of deflection as a
function of velocity or of energy per mass. Although as
we already emphasized we cannot at the moment point to
any specific realistic target, the method we propose is so
straightforward to carry out on existing and future detec-
tion maps that we feel it is an interesting addition to the
astroparticle physics toolbox.

II. GEODESIC EQUATION

We begin by writing down the equations of motion in the
weak and slow-varying field limit but without limitations
on velocities. We assume the usual longitudinal metric for
scalar perturbations in a Friedmann-Robertson-Walker
metric

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1þ 2�Þdxidxi: (3)

The passage to a Minkowsky metric, appropriate for
Galaxy lensing, will be carried out at the end. Defining
the affine parameter � such that d�2 ¼ �ds2 we can write

d� ¼ dtð1þ�Þ�; (4)

where for small �, �,

� � ½1� v2ð1þ 2ð���ÞÞ�1=2
and where we define the peculiar velocity

vi � a
dxi

dt
: (5)

We need to derive the geodesic equations for a particle

du�

d�
þ ��

��u
�u� ¼ 0; (6)

where the four velocity is

u� ¼ dx�

d�
¼

�
1��

�
;
vi

a�

�
: (7)

Here we assume that the gravitational potentials are small,
but the velocity can be relativistic. We assume from now on
that the time derivatives of�,� are negligible, i.e. that the
lens is a static object. Notice that d=dt is a total derivative
and therefore

dðvið1��Þ=�Þ
dt

� 1

�

�
_vi þ vi v _v

�2

� vivj�;j � v2vivj�;j

a�2

�
; (8)

where v ¼ jvj.
From the geodesic equation with� ¼ iwe obtain to first

order in �, �:

a _við1þ "1Þ þ �2aviv _vð1þ "2Þ
¼ �aHvið1þ "1Þ þ v2�;i � ð�2 þ 1Þviðvjrj�Þ

þ �2viðvjrj�Þ � ð�;i � v2�;iÞ (9)

with

"n ¼ 2�ð1� 2n�2Þ (10)

and where we used the usual special-relativistic factor

�2 ¼ ð1� v2Þ�1: (11)

We put now � ¼ ��, valid for ordinary matter. Then we
obtain

TABLE I. Parameters used for the Milky Way NFW halo, sun
and a typical Milky Way star. The distance of the Galactic Center
from Earth is Rc ¼ 8:5 kpc. MNFWðxÞ is calculated from the
integral (43) as a function of the distance r from the center of the
lens. Alternatively, for the galaxy halo, we also compare with a
constant mass lens of mass M ¼ MðrL sin�Þ.
Parameter Halo Sun Star

M MNFW M� M�
rL Rc 1 A.U. 1 kpc

rs 2rL cos� 10 kpc � rL
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_við1þ"1Þþ�2viv _vð1þ"2Þ
¼�Hvið1þ"1Þþð2�2þ1Þviðvjrj�Þ�ð1þv2Þ�;i

(12)

and from now on all spatial derivatives are with respect to
physical distances ri ¼ axi. The � ¼ 0 equation is

�2v _vð1þ"2Þ¼�v2Hð1þ"1�4�Þþð2�2�3Þðvjrj�Þ
(13)

(this can also be obtained up to terms higher order in� by
multiplying Eq. (12) by vi) and we can use it to simplify
Eq. (12) obtaining

�2 _vð1þ "1Þ ¼ �Hvð1� 2�Þ þ 4�2vðv � r�Þ
� ð1þ 2v2�2Þr�: (14)

However all the equations here assume that �2� � 1,
otherwise wewould need to include terms like �4�2 etc. In
this limit we can approximate "̂1 � 0 so

�2 _v¼� ~Hvþ�2½2vv �rð���Þ�v2rð���Þ��r�:

(15)

In Appendix A we generalize this equation to a scalar-
tensor gravity. Although the limit v ! 1 cannot be naively
taken from this equation, it turns out that it approximates
the correct result. In fact, if a light ray passes near a
spherical potential�, in the vicinity of the potential (where
the effect is largest), the direction is orthogonal to the
gradient and therefore v � rð���Þ ! 0 and for � ! 1

_v ¼ �v2rð���Þ ¼ �rð���Þ; (16)

which is indeed the lensing equation (see e.g. [13]).

III. PARTICLE LENSING

We evaluate now the lensing of relativistic and non-
relativistic particles. From here on, we restrict to a
Minkowky metric, i.e. we put H ¼ 0 and as before we
put � ¼ ��. Equation (15) becomes

�2 _v ¼ �2�2½2vv � r�� v2r�� þ r�: (17)

We integrate this equation along a slightly distorted path.
We can assume that the real trajectory is only weakly
distorted with respect to the imperturbed one, which is
given by

vdt ¼ vad	 ¼ adr (18)

with v ¼ const. Then on the right-hand side of Eq. (17) we
can assume that v follows the imperturbed path. We con-
sider a pointlike mass (lens) located at a distance rL from
the observer (see Fig. 1). We have then the standard
Newtonian potential

�ðrÞ ¼ �G
Z d3r0

jr� r0j
ðr
0Þ: (19)

We use a frame such that the particle is described by the
coordinates ðr�1; r�2; rÞ with small deviation angles �1;2.
On this path, the term v � r� changes sign when the
particle overcomes the lens and therefore its total effect
for a spherically symmetric lens is zero. We are then left
with (i ¼ 1, 2)

_v i ¼ v2 dðr�iÞ
adr2

¼ 2v2ri�þ ��2ri� (20)

or

dðr�iÞ
dr2

¼ 2ri�þ 1

v2�2
ri�; (21)

where now spatial derivatives are with respect to comoving
coordinates. The total lensing can be obtained by summing
the two terms on the right-hand side. Let us analyze them
separately.
The first gives the standard weak-lensing equation. Its

solution is (see e.g. [13])

�i ¼ �i � �i0 ¼ 2
Z rs

0
dr

rs � r

rsr

d�

d�i
� r?i�1; (22)

where r? is the gradient along the angular directions �1;2,
rs is the source distance and �1 is defined as

�1 ¼ 2
Z rs

0
dr

rs � r

rsr
�

¼ �2G
Z rs

0
dr

rs � r

rsr

Z d3r0

jr� r0j
ðr
0Þ (23)

¼ �2G
rs � rL
rsrL

Z d2R0dr0dr
ððR0 �RÞ2 þ ðr� r0Þ2Þ1=2 
ðR

0; r0Þ;

(24)

where R0 ¼ ðr0�01; r0�02Þ and R ¼ ðrL�1; rL�2Þ and where
if the lens potential is sharply peaked at the lens position,
we can assume r ¼ rL in the slowly varying factors inside
the integral (in other words we assume here that the lens is
a point mass separated by the source by a small angle, i.e.
the typical strong-lensing astronomical configuration; later
on we generalize to a distributed mass). Finally we have
(up to a constant independent of � and therefore irrelevant
when the gradient r? is applied)

�1ð�Þ ¼ 4G
rs � rL
rsrL

Z
d2R0�ðR0Þ lnjR0 �Rj; (25)

where the surface mass density is

� ¼
Z

dr
ðR; rÞ: (26)
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The second term in (21) can be treated similarly and gives

�2ð�Þ ¼ 2G
rs � rL
v2�2rsrL

Z
d2R0�ðR0Þ lnjR0 �Rj: (27)

The second term is therefore ð2v2�2Þ�1 times the first one,
and dominates for v � 1. The final result is

� ¼ r?�; (28)

where

� ¼ 4G

�
1þ 1

2v2�2

�
rs � rL
rsrL

Z
d2R0�ðR0Þ lnjR0 �Rj:

(29)

So finally we have

�ð�Þ ¼ 4G

�
1þ 1

2v2�2

�
rs � rL

rs

Z
d2�0

�ð�0Þ
j�� �0j2 ð�� �0Þ;

(30)

where � is a vector on the lens plane (impact vector). For a
point lens of mass M, this gives

� ¼ 4 GM

�
1þ 1

2v2�2

�
rs � rL
rs�

; (31)

where � ¼ j�j ¼ rL sin� is the impact radius. The angle �
is related to the angle �̂ (see Fig. 1) between initial and
final propagation (more often employed by astronomers)
by the relation

�̂ ¼ �
rs

rs � rL
¼ 4 GM

�
1þ 1

2v2�2

�
1

�
¼ 2�RS

�
; (32)

where RS ¼ 2 GM=c2 is the Schwarzschild radius and

� ¼ 1þ 1

2v2�2
: (33)

Equation (32) generalizes Eqs. (1) and (2).
Using these formulae, we can employ the standard lens-

ing equations, simply replacing �RS for RS. Making ref-
erence to Fig. 1, for small �, the imperturbed angle
between source and lens, the angular separation between
the direction of the lens and the direction of particle arrival
is (see e.g. [1])

�1;2 ¼ 1

2
ð�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ �2

p
Þ; (34)

where

� ¼ �1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RS

rs � rL
rLrs

s
� �1=2�0 (35)

and where �0 is the standard characteristic angle. Finally,
the differential deflection, i.e. the angle between the differ-
ent arrival directions of particles of velocity v with respect
to the optical/relativistic counterpart will be

�� ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��2

0 þ �2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

0 þ �2
q

Þ; (36)

where we only considered the solution with � > �. From
this equation we can identify three regimes of velocities.
For very small v, the dominating term is 4��2

0 and we

expect a 1=v behavior:

�� � �1=2�0 � 1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

rs � rL
rLrS

s
! 1

v

ffiffiffiffiffiffi
RS

rL

s
(37)

(where in the last expression, here and in the next equation,
we assume rs � rL). For larger v, but still v � 1, we
expect a 1=v2 trend since

�� � �2
0

�
ð�� 1Þ ¼ �2

0

�

1

2v2�2
! RS

rL�v
2
: (38)

Finally, for v ! 1, �� quickly vanishes.

IV. LENSING IN A HALO

In the following we derive the lensing in our own galaxy
halo, where the approximation of point mass and of small �
is no longer acceptable. We assume a general spherical
mass distributionMðrÞ centered on rL ¼ ðrL cos�; rL sin�Þ
on the propagation plane. In Fig. 1 we display the geomet-
ric configuration of the problem. In this case the lensing
equation amounts to the statement that S0Sþ SC ¼ S0C,
from which, assuming that OA � rL cos� and OS0 � OS,
one finds to first order in �̂

tan� ¼ tan�þ �̂
rs � rL cos�

rs
; (39)

where if� is the gravitational potential of the halo [see e.g.
Eq. (23)]

�̂ð�; vÞ ¼ 2�
rs

rs � rL cos�



Z rs

0
dr

rs � r

rsr

d

d	
�ðjr� rLjÞj	¼0 (40)

¼2�
R̂s

rL sin�



�
1

2

Z rs

0
dr

rs�r

rs�rLcos�

rL sin�

rM̂

d

d	
�ðjr�rLjÞj	¼0

�
;

(41)

where R̂s ¼ 2GM̂ and M̂ ¼ MðrL sin�Þ and the distance
between the lens center and a generic point r ¼
ðr cos	; r sin	Þ is
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jr� rLj ¼ ½r2 þ r2L � 2rrL cosð	� �Þ�1=2: (42)

Notice that R̂S is the Schwarzschild radius of the mass
contained inside the impact radius. Notice also that here we
put the coordinates of the center as rL ¼ ðrL sin�; rL cos�Þ,
since at this order � can be replaced by �. To the same
order, we can approximate the particle trajectory with the
horizontal straight line 	 ¼ 0 (i.e. y ¼ 0). The dimension-
less term inside the square brackets (let us call it the halo
integral)

H � 1

2

Z rs

0
dr

rs � r

rs � rL cos�

rL sin�

rM̂

d

d	
�ðjr� rLjÞj	¼0

(43)

reduces to unity forM ¼ const and for small �. We have in

fact in this case �ðxÞ ¼ M̂=x and

H � 1

2

Z rs

0
dr

rs � r

rs � rL cos�

rL sin�

r

d

d	

�
1

jr� rLj
���������	¼0

(44)

¼ 1

2

Z rs

0
dr

�
rs � r

rs � rL cos�

� ðrL sin�Þ2
ðr2 þ r2L � 2rrL cos�Þ3=2

:

(45)

The integrand is sharply peaked at r � rL cos� and there-
fore we can replace r with rL cos� in the first parentheses
of Eq. (45) and find, in the limit of rs � rL,

1

2

Z rs

0
dr

ðrL sin�Þ2
ðr2 þ r2L � 2rrL cos�Þ3=2

¼ 1þ cos�

2
� 1

(46)

(the condition rs � rL can in fact be relaxed; for instance,
H approximates 1 even in the isosceles configuration
rs ¼ 2rL cos�).

Since we have now �̂ ¼ 2�HR̂S=ðrL sin�Þwe can solve
the lens equation

tan� ¼ tan�þ�H

sin�
; (47)

where

�2
0 ¼

2R̂Sðrs � rL cos�Þ
rsrL

(48)

is a minor generalization of the standard characteristic
angle. In Eq. (47) the factor � takes into account the
velocity of the particles, the factor H takes into account
the deviation from the point-mass configuration. Both
reduce to unity for the standard point-mass relativistic
lensing. Although Eq. (47) could be easily solved numeri-
cally, here we assume simply that cos� � 1 even when x is
not very small, and obtain the solutions

�1;2 ¼ arcsin

�
1

2
ðtan�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ tan2�

p
Þ
�
; (49)

where now

�2 ¼ �H�2
0: (50)

Finally, the halo differential deflection is

�� ¼ arcsin

�
1

2
ðtan�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�H�2

0 þ tan2�
q

Þ
�

� arcsin

�
1

2
ðtan�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H�2

0 þ tan2�
q

Þ
�
; (51)

which generalizes Eq. (36). Notice that for tan� � 1 the
argument of the arcsin exceeds unity; in this case one
should solve the full Eq. (47). If H ¼ 1 and moreover
� � 1 (along with �0 � 1, an approximation needed in
both cases), we recover Eq. (36). The same three regimes
of velocities discussed before can be found here, although
with more complicated behaviors.

V. SUN AND STAR LENSING

For a star of 1 solar mass with rs � rL one has

�2
0 ¼

2RS

rL
� 10�5

�
1 kpc

rL

�
arcsec2: (52)

For the Sun at rL ¼ 1 AU we have then, using Eq. (38)

��Sun ¼ 103

�Sun

1

v2
arcsec (53)

so that for a source at � ¼ 1 rad the deflection is

��Sun � 10�2

4v2
arcsec (54)

We will see in the next section that the solar deflection,
although non-negligible, is quite smaller than the halo
deflection. Moreover, it can be evaluated and subtracted
from the total deflection since we know position and mass
of the Sun with great accuracy.
Assuming a density of 10�1 stars per parsec3, in a cone

of 1 arcsec aperture and 10 kpc depth, one expect roughly
one star. The deflection for particles passing 1 arcsec away
from a 1 solar mass star lens at 1 kpc is

��star ¼ 10�5

�star

1

2v2�2
arcsec � 10�5

2v2
arcsec (55)

again using Eq. (38). The deflection from single stars is
therefore negligible with respect to the solar one. To esti-
mate the resulting effect of many stars we can integrate the
random deflection variance ð��starÞ2 over a cone of aper-
ture �max (expressed in arcseconds) along whose axis the
particle travels from the source to us. Then we have

ð��totÞ2 ¼ 2�

C2

Z rs

0
dr

Z �max

�min

d�

�
R2
sC

2

v2�

�
2
�
rs � r

rsr

�
2
nsr

2�;

(56)
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where C � 2
 105 converts from radians to arcsecs and
ns ¼ 0:1 pc�3 is the star density. Then we have

ð��totÞ2 ¼ 2�

C2
ns

rs
3

�
R2
sC

2

v2�

�
2
log

�max

�min

�
�
3
 10�6

v2

�
2
arcsec2; (57)

where in the last step we assume, for instance, �max ¼
10 deg and �min ¼ 1 arcsec. The total random deflection
induced by the stars along the line of sight is therefore
negligible as well.

VI. GALAXY HALO DEFLECTION

Let us consider now the amount of deflection induced by
the Milky Way halo potential. We assume that a source lies
at distance rs from us in a direction that makes an angle �
with respect to the Galactic center (GC). The GC is then at
coordinates ðRc cos�; Rc sin�Þ on the plane observer-GC
source if Rc is the GC distance from us.

As a first approximation we can simply take Eq. (38) and
putM ¼ 1010M�. In this case the characteristic angle is of
the order of

�2
0 � 105

�
1 kpc

rL

��
M

1010M�

�
arcsec2: (58)

For v � 1 we have from Eq. (38)

��gal ¼ �2
0

�

1

2v2�2
� 105

2�v2

�
1 kpc

rL

�
arcsec: (59)

Assuming � ¼ 0:25 rad and rL ¼ 10 kpc this is �
0:1=v2 arcsec. As anticipated, this is one order of magni-
tude larger than Sun’s deflection in Eq. (54). This is larger
than 1 degree for v < 0:005. For v � 0:001 the deflection
is of the order of tens of degrees and the small-deflection
approximation adopted throughout would fail.

For a more precise calculation, we need to integrate
Eq. (41) with rL ¼ ðRc cos�; Rc sin�Þ. The mass MðxÞ in-
side a distance x from the center can be taken by integrat-
ing a model for the Galaxy. Here, just to produce a rough
estimate, we employ a Navarro-Frenk-White [14] profile
for the galactic halo


NFWðrÞ ¼ x3s
0

rðxs þ rÞ2 (60)

with parameters xs � rv=cwhere rv is the virial radius and
c is the concentration. For our source we choose c ¼ 12:5,
rv ¼ 200 kpc corresponding to xs ¼ 16 kpc. The density
parameter is 
0 ¼ 0:014M�=pc3 is chosen such that the
mass within the virial radius is M ¼ 1012M� [15,16].

Then we obtain

MNFWðxÞ ¼ 4�
Z x

0
y2
NFWðyÞdy (61)

and the potential

�NFWðxÞ ¼ 4�
0x
3
s logð1þ x=xsÞ

x
: (62)

Then we can evaluate the halo integral H and use Eq. (51)
to calculate the differential deflection ��. The results are
plotted in Figs. 4 and 5 using the values summarized in
Table I. As can be seen, the halo lensing can be larger than
1 degree for v < 0:004. The dependence on � in the range
0.1–0.5 rad is quite modest, since for small � both the
impact radius and the halo mass within the particle trajec-
tory decrease. In Fig. 6 we plot the deflection versus
E=m � 1þ v2=2. This shows that as soon as the particle
energy is 10�5 larger than the particle mass, the deflection
decreases to less than 1 degree, making it impossible to
distinguish from the relativistic counterpart. The particle
lensing method is therefore sensitive only to a very narrow
energy band, �E=E � 10�5.
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FIG. 5 (color online). Zoom of Fig. 4.
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FIG. 4 (color online). Differential deflection �� in units of
arcsec as a function of velocity, in units of the speed of light, for
Milky Way halo, Sun and star. We show the �� corresponding to
� ¼ 0:5 rad for a NFW potential �ðxÞ (solid red) and for � ¼
0:1 (solid blue). For � ¼ 0:5 we plot also the curve assuming a
constant massM� ¼ MðrL sin�Þ (dashed red). The curve for � ¼
0:1 shows clearly the three regimes v�1,v�2 and ��1, from small
to large velocities. The Sun (solid orange) is shown for � ¼
0:5 rad. A typical star in the Milky Way of mass M ¼ M�,
located at rL ¼ 1 kpc and rs � rL with � ¼ 1 arcsec is also
shown (dashed orange). Resolution thresholds of 1 deg and
0.1 deg are overplotted for reference (solid black).
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The assumption of a smooth Navarro-Frenk-White
(NFW) profile is of course very rough. A realistic galaxy
model should include at a minimum the disk and the bulge.
As long as they are both radially symmetric, the particles
will still be aligned along the GC direction (for the disk
cylindrical symmetry is sufficient, provided also the lens
belongs to the disk). Deviation from symmetry will induce
deviations from the straight alignment.

VII. CONCLUSIONS

In the last few years we have seen the beginning of
particle astronomy, i.e. the detection of particles of astro-
physical origin with detectors that are able to reconstruct
the arrival direction. Present neutrino and cosmic ray de-
tectors already reach an angular resolution for high-energy
events of 1 degree and better [2,3]; although the directional
dark matter detectors that are currently investigated only
reach down to 15 degrees or so [4], one can reasonably
expect that future technology will sensibly improve this,
especially if additional science cases can be found in
support for it.

In this paper we explore the possibility of detecting
SMaNPs by using particle telescopes. We point out that
if these particles are nonrelativistic they will appear to an
observer aligned in the sky due to the combined effect of
nonrelativistic lensing and of the source proper motion.
This alignment is a very distinctive signature that seems
difficult to be mimicked by background noise. The method
can be applied to particles of any mass, provided of course
their kinetic energy is above the detector’s threshold.
Searching for alignments in detection maps could then be
a simple and effective way to search for new physics and
new astrophysics.

We derived the deflection-velocity relation due to halo
lensing and to proper motion and found that particles with
velocity around 1000 km= sec are the best target for
detection. We also pointed out however that the energy

bandwidth is extremely small, roughly �E=E � 10�5 and
therefore the useful flux from any given source is very
much reduced. There are several extensions of the standard
model that predict the existence of SMaNPs [6–10]; how
and where these particles could be emitted by astrophysical
bodies is of course a difficult problem that we leave to
future work.
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APPENDIX A: GEODESICS IN A
SCALAR-TENSOR GRAVITY

For generality, we can include the effect of a fifth force
mediated by a scalar field, as in a modified gravity scenario
(see e.g. [17]), by conformally transforming the geodesic
equation. If we put

ĝ � ¼ e2��g�; (A1)

we obtain

��
� ¼ �̂�

� � �ð�;��
�
 þ�;�

�
� ��;�ĝ�Þ (A2)

and

u� ¼ e��û�: (A3)

Then, by assuming also that ’ � �� is taken at first order
and _’ is negligible we have

_vð1þ "1Þ þ �2vv _vð1þ "2Þ
¼ � ~Hvð1þ "1Þ � rð�� �’Þ � v2rð�þ �’Þ

þ vðv � rð�þ �’ÞÞ þ 2�2vðv � r�Þ; (A4)

where ~H ¼ Hð1� �
_�
HÞ. This reduces to the standard case

_v ¼ � ~Hv�rð�� �’Þ (A5)

for small velocities. The � ¼ 0 equation is

�2v _vð1þ "2Þ ¼ � ~Hv2ð1þ "1 � 4�Þ
þ ðv � rðð2�2 � 3Þ�þ �’ÞÞ; (A6)

which again can be used to simplify Eq. (A4):

�2 _vð1þ "1Þ ¼ � ~Hvð1� 2�Þ þ 4�2vðv � r�Þ
� 2�2v2r��rð�� �’Þ: (A7)

If we keep the two potentials distinct, we obtain
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FIG. 6 (color online). Differential deflection versus energy/
mass for the NFW halo with � ¼ 0:1 and 0.5, same parameters
as in Fig. 6.
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�2 _vð1þ "̂1Þ ¼ � ~Hvð1� 2�Þ þ �2½2vv � rð���Þ
� v2rð���Þ� � rð�� �’Þ; (A8)

where

"̂ 1 ¼ 2�ð�2 � 1Þ � 2��2: (A9)

It is interesting to note that the motion depends on�� �’
alone when slow, but on c � ��� (and not on ’, due to
the conformal invariance of electromagnetism) when
ultrarelativistic.

APPENDIX B: FLUX FROM SUPERNOVAE
REMNANTS

We can estimate the possible order of magnitude flux of
SMaNPs from a typical supernovae remnant (SNR) in the
following way. The �-ray energy flux from typical SNRs,
e.g. the sources RX J0852.0-4622 and RX J1713.7-3946, as
observed by the H.E.S.S. Cerenkov detector [18,19] in an
energy band �E is

N�E ¼ dN

dE
�E; (B1)

where

dN

dE
� 10�11 cm�2 s�1 TeV�1

�
E

1 TeV

���
(B2)

is the differential flux in the range 100 GeV �10 TeV and
� � 2. Both sources are estimated to lie at a distance 1 kpc,
with a large uncertainty. The flux from similar SNRs at
distance D could be taken therefore to be

dN

dE
�10�11 cm�2 s�1TeV�1

�
E

1TeV

���
�

D

1 kpc

��2
: (B3)

Let us now suppose that the flux of SMaNPs is a fraction �
of the flux in � rays. In an energy band �E=E ¼ 10�4

(which as we have seen is the typical bandwidth for particle
lensing) we have a flux

N�E � 10�4 �m�2 yr�1

�
E

1 TeV

���þ1
�

D

1 kpc

��2
: (B4)

Then a flux larger than 1 particle in T years can be achieved
if �

m

1 TeV

���þ1
�

D

1 kpc

��2
�AT > 104; (B5)

where A is the detector area in m2. A detector of effective
area 103 m2 (compare with 400 m2 for H.E.S.S.) will
therefore receive more than one particle/year if m �
0:1 TeV and D � 1 kpc and � � 1.

Obviously, both " and the fraction of particles effec-
tively detected can be much less than unity, especially if
the particles are weakly interacting; the quick estimate of

this Appendix is meant only to give an idea of the orders of
magnitudes.

APPENDIX C: SOURCE’S PROPER MOTION

If the source has a non-negligible proper motion with
respect to us, then the nonrelativistic particles that we
observe today were emitted from a position that depends
on their velocity. The particles will have therefore a differ-
ent arrival direction with respect to the relativistic counter-
part. This will spread the particles on the plane that
contains the source velocity vector and the observer, in-
ducing a ‘‘proper motion alignment’’.
Let us now denote with �c (see Fig. 7) the angle between

the source velocity vs and the direction of arrival of a
relativistic signal (photon or particle) and with � the cor-
responding angle for a nonrelativistic particle and let us
assume a uniform motion. All velocities are in the observer
rest frame. In order for the two signals to arrive at approxi-
mately the same time we require

1

v sin�
� cot�

vs

� 1

sin�c
� cot�c

vs

(C1)

for nonrelativistic vs � jvsj. This condition can be solved
analytically to obtain �ð�c; vs; vÞ. It is more useful how-
ever to derive an approximate solution. A nonrelativistic
particle will arrive therefore with a proper motion deviation
angle

�PM ¼ �c � � (C2)

with respect to the relativistic signal. For small deviations
�PM we obtain

FIG. 7 (color online). Proper motion geometry. The source
moves with velocity vs from S’ to S. When the source is at S’
it emits a particle with velocity v; when is in S it emits light or a
ultrarelativistic particle with velocity c. The distance OC is the
impact radius �PM. The time it takes for the particle to travel
from S’ to the observer must equal the times it takes for the
source to move from S’ to S and for the relativistic signal to
propagate from S to the observer.
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�PM � ð1� vÞvs sin�c
v� vs cos�c

� vs sin�c
v� vs cos�c

; (C3)

where the last step applies for v � 1. Note that v is always
larger that vs cos�c due to the composition of velocities, so
�PM > 0. Finally, if the source is moving slowly with
respect to the particle velocity (a reasonable assumption
since the velocity dispersion in the Milky Way at the Sun’s
location is around 50–100 km= sec (see e.g. [20]), we
obtain

�PM � vs

v

�PM

rs
¼ rs

cv
(C4)

in terms of the impact parameter �PM and the distance to
the source rs or in terms of the proper motion  �
cvs sinð�cÞ=rs (the velocity of light appears explicitly
now because  is the angular velocity). Unless the source
proper motion is negligible, the particles will arrive to the
observer aligned on a direction which is intermediate
between the lensing direction (source lens) and the source
proper motion vector. Assuming a proper motion of
� arcsec=year, we have

�PM � ð9 degÞ�
�

rs
10 kpc

��
v

10�3

��1
; (C5)

i.e. a typical deviation of 10 degrees from the direction
induced by the nonrelativistic lens. In general the resulting
detection trail will be a combination of the lensing
and proper motion effect, it will point in a random direction
and for large v it will no longer be an exact straight line due
to the different behavior with respect to v. In principle
however the parameters�, rs of a given galactic source can
be estimated through direct astrometric observation and
utilized to subtract the proper motion from the detection
map.

Let us finally notice that the particle velocity v and
arrival angle � in the earth rest frame are different from
the corresponding quantities in the source rest frame.

Suppose the source has a peculiar velocity vector vs with
respect to us. A particle is emitted with velocity u in the
frame in which the source is at rest, and received with
velocity v in our rest frame. All velocities are in units of c.
The relativistic addition theorem for velocities says that

v ¼ uk � vs
1� vu

þ u?
�sð1� vuÞ ; (C6)

where �s ¼ ð1� v2
sÞ�1=2 and

u k ¼ vsðvs � uÞ=V2 (C7)

u? ¼ u� uk: (C8)

Putting

u ¼ ufcos�0; sin�0g (C9)

v ¼ vfcos�; sin�g; (C10)

we find

sin� ¼ u sin�0

½�2
sðvs þ u cos�0Þ2 þ u2sin2�0Þ�1=2 (C11)

v ¼ ½�2
sðvs þ u cos�0Þ2 þ u2sin2�0Þ�1=2

�sð1þ uvs cos�
0Þ : (C12)

The equation for �0 can also be written as

tan
�

2

¼ usin�0

�sðvsþucos�0Þþ½�2
sðvsþucos�0Þ2þu2sin2�0Þ�1=2 ;

(C13)

which for u ! 1 becomes the standard aberration equation

tan
�

2
¼ tan

�0

2

�
1� vs

1þ vs

�
1=2

(C14)

(and at the same time u ¼ v).
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