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A complete numerical calculation of the temperature anisotropies and polarization of the cosmic

microwave background in the presence of a stochastic helical magnetic field is presented which includes

the contributions due to scalar, vector and tensor modes. The correlation functions of the magnetic field

contributions are calculated numerically including a Gaussian window function to effectively cut off the

magnetic field spectrum due to damping. Apart from parity-even correlations the helical nature of the

magnetic field induces parity-odd correlations between the E and B mode of polarization as well as

between temperature (T) and the polarization B mode.
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I. INTRODUCTION

The existence of magnetic fields in the Universe has long
been established by observations on small up to very large
scales, that is on the scales of galaxies, galaxy cluster and
superclusters [1]. Recent observations even indicate evi-
dence for magnetic fields at truly cosmological scales [2].
Over recent years there has been an increasing interest in
cosmological magnetic fields, from generation mecha-
nisms to observational imprints on the cosmic microwave
background (CMB) (for recent reviews, e.g., [3]).

For a primordial magnetic field to serve as an initial seed
field to explain the galactic magnetic field, it is assumed to
be generated either in the very early Universe, such as due
to the amplification of perturbations in the electromagnetic
field during inflation (e.g., [4]), or after inflation has ended,
e.g., during a phase transition such as the electroweak or
QCD phase transitions in which case it has been shown that
the resulting magnetic fields are helical [5]. The generation
of helical magnetic fields during inflation has been studied
in [6]. However, in any case it is natural to assume that the
magnetic field existed long before initial conditions are set
for the evolution of the perturbations determining the
temperature anisotropies and polarization of the CMB.
Thus observations of the CMB could in principle be used
to put limits on the parameters of a primordial magnetic
field. The aim here is to calculate the angular power spectra
of the temperature anisotropies and polarization for a
Gaussian stochastic helical magnetic field. In this case
the magnetic field two-point correlation contains a sym-
metric and an asymmetric part. Each of which are charac-
terized by one amplitude and one spectral index. The
helical part results in nonvanishing correlations of the
temperature anisotropies and the polarization B mode on
the one hand and of the polarization Emode and Bmode of
the CMB on the other hand. These have been first consid-
ered in [7], where the vector modes were studied. The
spectra of the CMB anisotropies due to the tensor mode

have been treated in [8] and vector and tensor modes in [9].
Moreover, the helical part also contributes to all other
correlation functions, that is the temperature and polariza-
tion E mode and B mode autocorrelation functions as well
as the temperature polarization Emode cross correlation of
the CMB. Here a consistent numerical treatment is pre-
sented taking into account the magnetic field in the initial
conditions and the evolution equations as well as calculat-
ing numerically the correlation functions encoding the
contribution of the magnetic field. Using a Gaussian win-
dow function the magnetic field spectrum is effectively
cutoff at a damping scale. Moreover, the angular power
spectra of the temperature anisotropies and polarization of
the CMB are calculated for scalar, vector and tensor
modes.
The calculation of the CMB temperature anisotropies

and polarization requires to solve the evolution equations
of the perturbation equation of the geometry and matter
components together with the Boltzmann equations for
photons and neutrinos. Since the first numerical program
COSMICS [10] to do this and with a significant improvement

in speed using the line-of-sight integration in CMBFAST [11]
there has been a steady evolution of numerical codes such
as CAMB [12], CMBEASY [13] and CLASS [14] being the
latest addition. The effect of a primordial nonhelical mag-
netic field on the CMB anisotropies has been calculated
using different approaches: synchronous gauge and thus a
modified version of CMBFAST in [15,16] or the covariant
formalism and a modified version of CAMB in [17,18].
Finally using the gauge-invariant formalism for the scalar
perturbations the CMB anisotropies have been calculated
in the presence of a stochastic nonhelical magnetic field
using CMBEASY in [19].
Here the modified version of CMBEASY [19] has been

expanded to include first the numerical calculation of the
correlation functions of a helical stochastic Gaussian mag-
netic field and second a new part to solve the Boltzmann
equation and calculate the CMB temperature anisotropies
and polarization for vector and tensor modes. These are
calculated using the total angular momentum approach of*kkunze@usal.es
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Hu and White [20]. In Sec. II the decomposition of the
magnetic field contribution for scalar, vector and tensor
modes is described. Section III is devoted to the calculation
of the relevant correlation functions of the contribution of a
Gaussian stochastic helical magnetic field. As it will be
shown there are contributions due to the helical part of the
spectrum to the correlation functions for all three modes,
namely, scalar, vector and tensor modes. In Sec. IV the
perturbation equations for the vector and tensor modes in
the presence of a magnetic field are presented in the gauge-
invariant formalism [21]. The corresponding equations for
the scalar mode can be found in [19]. Moreover, the initial
conditions are presented. In Sec. V results of the numerical
calculation of the angular power spectra determining the
autocorrelation and cross correlation functions of the tem-
perature (T) and polarization, that is the E mode (E) and B
mode (B), of the CMB are presented. Because of the
helical nature of the magnetic field apart from the autocor-
relation functions of T, E and B and the temperature
polarization E mode cross correlation TE there are also
nonvanishing correlations between E and B as well as T
and B. The latter one, in particular, is compared for a
choice of parameters with the WMAP7 data [22].
Section VI contains the conclusions.

II. DECOMPOSITION OF THE MAGNETIC
FIELD CONTRIBUTION

In a flat Friedmann-Robertson-Walker the lab frame is
defined locally by choosing lab coordinates such that dt ¼
ad� and d~r ¼ ad~x [23]. The magnetic field is treated in
the lab frame in which it is related to the Maxwell tensor
F�� by

Bið ~x; �Þ ¼ 1

2a2
X
j;m

�ijmFjm; (2.1)

where �ijm is the totally antisymmetric symbol, with

�123 ¼ 1
The energy-momentum tensor of the electromagnetic

field measured by the fundamental observer has the form
of an imperfect fluid [24]

T�� ¼ ð�þ pÞu�u� þ pg�� þ 2uð�q�Þ þ ���; (2.2)

where u� ¼ a�1	�
0 is the four-velocity of the fluid and

u�u
� ¼ �1. The heat flux q� vanishes in a pure magnetic

case since it is determined by the Poynting vector. The
magnetic energy density �B, pressure pB and anisotropic
stress �ðBÞ�� in the lab frame are given by [24],

�B ¼ ~B2ð ~x; �Þ
2

; pB ¼ 1

3
�B;

�ðBÞij ¼ �Bið ~x; �ÞBjð ~x; �Þ þ 1

3
~B2ð ~x; �Þ	ij; (2.3)

where the anisotropic stress has only nonvanishing spatial
components and the vector notation denotes a spatial

3-vector. Furthermore, the term due to the Lorentz force
entering the equation of the baryon velocity evolution and
in the tight-coupling limit the photon velocity evolution is
determined by

Lj ¼ � 1

6
@j ~B

2 �X
i

@i�ðBÞij: (2.4)

In the following the magnetic field contributions,
namely, the energy density, the anisotropic stress tensor
and the Lorentz term are expanded into scalar, vector and
tensor harmonic functions. Moreover, it is used that
Bið ~x; �Þ ¼ Bið ~x; �0Þð a0

að�ÞÞ2 and �
 ¼ �
0ða0a Þ4 where the

index 0 refers to the present epoch. The energy density
of the magnetic field is written in terms of the gauge-
invariant magnetic energy contrast �B such that

�B ¼ �


X
~k

�Bð ~kÞQð0Þð ~k; ~xÞ; (2.5)

where Qð ~k; ~xÞ denote a set of scalar harmonic functions

satisfying ð�þ k2ÞQð0Þ ¼ 0 (cf. e.g., [21]). Moreover

�Bð ~kÞ � �Bð ~k; �0Þ and similarly the dependence on �0 is
omitted in the following expressions. The magnetic aniso-
tropic stress is determined by

�ðijÞð ~x; �Þ ¼ p


X
m¼0;�1;�2

X
~k

�ðmÞ
B ð ~kÞQðmÞ

ij ð ~k; ~xÞ; (2.6)

wherem ¼ 0 denotes the scalar part and Qð0Þ
ij ¼ k�2Qjij þ

1
3Q

ð0Þ, the vector part is determined by m ¼ �1 and

Qð�1Þ
ij ¼ � 1

2k ðQð�1Þ
ijj þQð�1Þ

jji Þ and the tensor modes are

given by m ¼ �2 [20].
Expanding the Lorentz term as

Ljð ~x; �Þ ¼
X

m¼0;�1;�2

X
~k

LðmÞð ~kÞQðmÞ
j ð ~k; ~xÞ (2.7)

and using that (cf., e.g., [21]) Qð0Þ
jj ¼ �kQð0Þ

j , Qð0Þ
ijji ¼

2
3 kQ

ð0Þ
j for the scalar harmonics, Qð�1Þ

ijji ¼ k
2Q

ð�1Þ
j for the

vector harmonics and Qð�2Þ
ijji ¼ 0 for the tensor harmonic

functions. Then the only nonvanishing contribution apart
from the scalar part (cf., e.g., [19]) is the vector part,

Lð�1Þð ~kÞ ¼ ��


6
k�ð�1Þ

B ð ~kÞ: (2.8)

The magnetic field is written as Bið ~x; �0Þ ¼P
~kBið ~kÞQð0Þð ~k; ~xÞ which implies

�Bð ~kÞ ¼ 1

2�
0

X
~q

Bið ~qÞBið ~k� ~qÞ: (2.9)

A convenient representation of the scalar, vector and tensor
harmonic functions in flat space is given by [20,25,26]

Qð0Þð ~k; ~xÞ ¼ ei
~k� ~x (2.10)
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Qð�1Þð ~k; ~xÞi ¼ � iffiffiffi
2

p ðê1 � iê2Þiei ~k� ~x (2.11)

Qð�2Þ
ij ð ~k; ~xÞ ¼ �

ffiffiffi
3

8

s
ðê1 � iê2Þi � ðê1 � iê2Þjei ~k� ~x: (2.12)

The (spatial) coordinate system defined by the unit vectors

ê1, ê2 and ê3 is chosen such that ê3 lies in the direction of ~k,

thus ê3 ¼ k̂. Moreover, in the helicity basis [8]

ê�
~k
¼ � iffiffiffi

2
p ðê1 � iê2Þ (2.13)

so that ê�~k � ê�~k ¼ �1 and ê�~k � ê�~k ¼ 0 and ê�~k � k̂ ¼ 0.

With this choice the scalar, vector and tensor parts of the
anisotropic stress are found to be

�ð0Þ
B ð ~kÞ ¼ 3

2�
0

�X
~q

3

k2
Bið ~k� ~qÞqiBjð ~qÞðkj � qjÞ

�X
~q

Bmð ~k� ~qÞBmð ~qÞ
�
; (2.14)

�ð�1Þ
B ð ~kÞ ¼ �i

3

�
0

X
~q

�
ðê�~k ÞiBið ~k� ~qÞBjð ~qÞk̂j

þ ðê�~k ÞjBjð ~qÞBið ~k� ~qÞk̂i
�
; (2.15)

�ð�2Þ
B ð ~kÞ ¼ �

ffiffiffi
2

3

s
3

�
0

X
~q

ðê�~k ÞiBið ~k� ~qÞðê�~k ÞjBjð ~qÞ:

(2.16)

III. HELICAL MAGNETIC FIELDS

Magnetic helicity plays an important role in the effi-
ciency of magnetic dynamos. It provides a measure of the
topological structure of the magnetic field, in terms of
linkage and twists of its field lines. It is defined as an
integral over the volume V by (cf., e.g., [27,28])

HM ¼ 1

V

Z
V

~A � ~Bd3x; (3.1)

where ~A is the gauge potential and ~B ¼ ~r� ~A. The
expression for the magnetic helicity (3.1) is gauge depen-
dent if the normal component of the magnetic field Bn does
not vanish on the boundary of the volume. In this case
magnetic helicity is a conserved quantity in the limit of
large conductivity. Strictly speaking magnetic helicity is
not defined if Bn � 0. However, more general definitions
of helicity have been formulated such as a relative helicity
which is manifestly gauge-invariant [29]. Moreover, there
are many physical situations where it is not natural to
assume that the magnetic field vanishes on the boundary
such as in the case of a stellar magnetic field or the

magnetic field inside the horizon. In [30] a different
gauge-invariant definition of the magnetic helicity is pro-
posed. Similarly to magnetic helicity which describes the
complexity of the magnetic field structure there exists the
concept of kinetic helicity which determine the structure of
the velocity field ~v which is important in turbulence.
Kinetic helicity is defined by

HK ¼
Z

d3x ~v � ð ~r� ~vÞ: (3.2)

Therefore, sometimes in analogy to the expression of the
kinetic helicity, the quantity

HC � 1

V

Z
d3x ~B � ð ~r� ~BÞ (3.3)

is considered as a measure of the magnetic helicity which
is gauge invariant, but is not an ideal invariant as pointed
out in [27]. This form was used, e.g., in [7–9]. It describes
the (electric) current helicity [31].
Assuming the magnetic field to be a homogeneous

Gaussian random field with zero mean, the most general
form of the two-point correlation function Cij in real space

which is invariant under rotations, but not reflections is
given by [32] (cf. [33,34])

Cijð ~x1; ~x2Þ ¼ Cijð ~rÞ
¼ ½CLðrÞ � CNðrÞ�

rirj

r2
þ CNðrÞ	ij

þ CAðrÞ�ijm rm
r
; (3.4)

where ~r � ~x1 � ~x2 and r ¼ j~rj. Moreover, CL and CN are
the longitudinal and lateral correlation functions. The func-
tion CA describes the asymmetric part which vanishes in
the case of homogeneous, isotropic random fields, which
by definition are also invariant under reflections. In the
case of a magnetic field the asymmetric part is related to its
helicity. The functions CL and CN are not independent in
the case of the two-point function of a stochastic magnetic

field, since ~r � ~B ¼ 0 [32–34]. This reduces by one the
number of free functions determining the two-point corre-
lation function in Fourier space. Therefore, in Fourier
space the correlation function for a homogeneous,
Gaussian magnetic field reads [32] (see also, [7–9])

hB	
i ð ~kÞBjð ~k0Þi ¼ 	~k ~k0PSðkÞð	ij � k̂ik̂jÞ

þ 	~k ~k0PAðkÞi�ijmk̂m; (3.5)

where PSðkÞ is the power spectrum of the symmetric part
which is related to the energy density of the magnetic field
and PAðkÞ is the power spectrum of the asymmetric part
related to the helicity of the magnetic field. Moreover a hat

indicates the unit vector, so that k̂i � ki
k . Following [19] the

powers spectra are chosen to be of the form,
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PSðk; km; kLÞ ¼ AB

�
k

kL

�
nS
Wðk; kmÞ (3.6)

PAðk; km; kLÞ ¼ AH

�
k

kL

�
nA
Wðk; kmÞ; (3.7)

where AB and AH are the amplitudes and nS and nA are the
spectral indices of the symmetric and antisymmetric parts,
respectively. The spectra have to satisfy the so-called
realizability condition jPAðkÞj 
 PSðkÞ which is basically
a consequence of the Schwartz inequality when applied to
the average helicity (cf. e.g., [35]). Moreover, kL is a pivot
wave number and km is the upper cutoff in the magnetic
field spectrum due to diffusion of the magnetic field energy
density on small scales. It is assumed that this cutoff is
the same for the symmetric and asymmetric parts.
Furthermore,Wðk; kmÞ is a window function. The damping
of the magnetic field is determined by the Alfvén velocity
and the Silk damping scale which leads to an estimate of
the maximal wave number [23] given by (see also [36])

km ’ 200:694

�
B

nG

��1
Mpc�1 (3.8)

using the values of the best-fit �CDM model of WMAP7
�b ¼ 0:0227 h�2 and h ¼ 0:714 [22]. The window func-
tion is assumed to be Gaussian of the form [19]

Wðk; kmÞ ¼ ��ð3=2Þk�3
m e�ðk=kmÞ2 ; (3.9)

where the normalization is chosen such thatR
d3kWðk; kmÞ ¼ 1. A different choice of window func-

tion, namely, a step function, was used in [16–18].

In the continuum limit
P

~k !
R

d3k
ð2�Þ3 the magnetic energy

density today smoothed over the magnetic diffusion scale
is given by

�B0 ¼ AB

4�ð7=2Þ

�
km
kL

�
nS
�

�
nS þ 3

2

�
; (3.10)

which is valid for nS >�3, where we have used that �B ¼
h ~Bð ~x; �Þ2i=2. The average helicity measures HM and HC

result in

HM ¼ AH

2�7=2km

�
km
kL

�
nA
�

�
nA þ 2

2

�
; (3.11)

which is valid for nA >�2

HC ¼ AHkm

2�ð7=2Þ

�
km
kL

�
nA
�

�
nA þ 4

2

�
; (3.12)

which requires nA >�4. Therefore the amplitude of the
spectral function of the asymmetric part of the two-point
function of the magnetic field can be written as

AH ¼ 2�ð7=2ÞH B

�
km
kL

��nA
; (3.13)

where

H B ¼
�HMkm=�

�
nAþ2
2

�
magnetic helicity

HCk
�1
m =�

�
nAþ4
2

�
current helicity

: (3.14)

In the numerical solutions we consider the maximal al-
lowed contribution of the asymmetric part of the spectrum,
that is for nA � nS > 0, the condition PAðkmaxÞ ¼ PSðkmaxÞ
is imposed, where kmax is the maximal wave number
considered. In the opposite case, for nA � nS < 0, the
condition PAðkminÞ ¼ PSðkminÞ is imposed, where kmin is
the minimal wave number considered in the numerical
solution. This leads to�

H B

�
0

�
2 ¼

�
�B0

�
0

�
2 4

�2ðnSþ3
2 Þ

�
q

km

�
2ðnS�nAÞ

; (3.15)

where q ¼ kmax (kmin) for nA � nS > 0 (< 0). Therefore,
the larger the absolute value of the difference between the
spectral indices of the asymmetric and the symmetric part
of the magnetic field spectrum the stronger the helical
contribution is suppressed.
The two-point correlation functions of two random

fields F and G in k-space can be written in terms of the
dimensionless spectrum P FG as

hF	
~k
G ~k0 i ¼

2�2

k3
P FGðkÞ	~k; ~k0 : (3.16)

All correlation functions will be calculated in the con-
tinuum limit. The autocorrelation function of the magnetic
energy density contrast is found to be

P�B�B
ðk; kmÞ ¼ 1

½�ðnSþ3
2 Þ�2

�
�B0

�
0

�
2
�
k

km

�
2ðnSþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznSþ2e�2ðk=kmÞz2

Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnS�2Þ=2

� ð1þ x2 � 4zxþ 2z2Þ � H 2
B

2�2

0

�
k

km

�
2ðnAþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznAþ2e�2ðk=kmÞz2

Z 1

�1
dxe2ðk=kmÞ2zx

� ð1� 2zxþ z2ÞðnA�1Þ=2ðx� zÞ; (3.17)

which reduces to the known correlation function for non
helical magnetic fields (cf., e.g., [19]). Moreover, x � ~k� ~q

kq
and z � q

k . Therefore, it is found that the contribution due
to the asymmetric part of the correlation function of the

magnetic field does not vanish. Similar to the case of the
tensor modes, it is the product of two factors involving the
helical part which contributes. Behind this is the observa-
tion that the product of two odd-parity quantities results in
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one with even parity [8]. The cross correlation function between the magnetic energy density contrast and the anisotropic
stress in the scalar sector is given by

P
�B�

ð0Þ
B
ðk; kmÞ ¼ 3

½�ðnSþ3
2 Þ�2

�
�B0

�
0

�
2
�
k

km

�
2ðnSþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznSþ2e�2ðk=kmÞ2z2

Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnS�2Þ=2

� ð�1þ z2 þ zx� ð1þ 3z2Þx2 þ 3zx3Þ þ 3H 2
B

4�2

0

�
k

km

�
2ðnAþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznAþ2e�2ðk=kmÞ2z2

�
Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnA�1Þ=2ðzþ 2x� 3zx2Þ: (3.18)

The autocorrelation function of �ð0Þ
B is determined by

P
�ð0Þ

B �ð0Þ
B
ðk; kmÞ ¼ 9

½�ðnSþ3
2 Þ�2

�
�B0

�
0

�
2
�
k

km

�
2ðnSþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznSþ2e�2ðk=kmÞ2z2

Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnS�2Þ=2

� ð1þ 5z2 þ 2zxþ ð1� 12z2Þx2 � 6zx3 þ 9z2x4Þ � 9H 2
B

4�2

0

�
k

km

�
2ðnAþ3Þ

e�ðk=kmÞ2
Z 1

0
dzznAþ2e�2ðk=kmÞ2z2

�
Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnA�1Þ=2ð4zþ 2x� 6zx2Þ: (3.19)

Since the magnetic field is helical and thus its spectral function has an asymmetric part there are two different, relevant
two-point correlation functions for the anisotropic stress of vector and tensor modes. The symmetric part which determines
the angular power spectra of the CMB due to all parity-even or all parity-odd modes is given for the vector modes by

h�ðþ1Þ	
B ð ~kÞ�ðþ1Þ

B ð ~k0Þ þ �ð�1Þ	
B ð ~kÞ�ð�1Þ

B ð ~k0Þi ¼ 2�2

k3
	~k ~k0

�
72

½�ðnSþ3
2 Þ�2

�
�B0

�
0

�
2
�
k

km

�
2ð3þnSÞ

e�ðk=kmÞ2
Z 1

0
dzznsþ2e�2ðk=kmÞ2z2

�
Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2Þðns�2Þ=2ð1� x2Þð1þ z2 � 3zxþ 2z2x2Þ

� 18H 2
B

�2

0

�
k

km

�
2ð3þnAÞ

e�ðk=kmÞ2
Z 1

0
dzznAþ3e�2ðk=kmÞ2z2

Z 1

�1
dxe2ðk=kmÞ2zx

� ð1� 2zxþ z2ÞðnA�1Þ=2ð1� x2Þ
�
: (3.20)

This correlation function is used to calculate the angular power spectra of the temperature and polarization autocorrela-
tions, that is CTT

‘ , CEE
‘ and CBB

‘ , and the temperature polarization Emode cross correlation CTE
‘ . The two-point correlation

function for the anisotropic stress of vector modes determining the angular power spectra of the CMB due to a mixture of
parity-even and parity-odd modes is found to be

h�ðþ1Þ	
B ð ~kÞ�ðþ1Þ

B ð ~k0Þ � �ð�1Þ	
B ð ~kÞ�ð�1Þ

B ð ~k0Þi ¼ 2�2

k3
	~k ~k0

36

�ðnSþ3
2 Þ

�
�B0

�
0

��
H B

�
0

��
k

km

�
6þnSþnA

e�ðk=kmÞ2
�Z 1

0
dzznSþ2e�2ðk=kmÞ2z2

�
Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnA�1Þ=2ð1� 2zxÞð1� x2Þ

�
Z 1

0
dzznAþ3e�2ðk=kmÞ2z2

Z 1

�1
dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnS�2Þ=2

� ð1� 2zxÞð1� x2Þ
�
; (3.21)

which is used to calculate the parity-odd correlations of the CMB anisotropies, that is CEB
‘ and CTB

‘ . It is interesting to note
that in the case nS ¼ nA þ 1 the correlation function (3.21) identically vanishes.

For the tensor modes the two-point correlation functions of two even-parity modes is given by
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h�ðþ2Þ	ð ~kÞ�ðþ2Þ
B ð ~k0Þ þ �ð�2Þ	
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�
; (3.22)

which determines CTT
‘ , CEE

‘ , CBB
‘ and CTE

‘ for tensor modes. The parity-odd correlations of the CMB anisotropies due to
tensor perturbations are determined by
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þ
Z 1
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dxe2ðk=kmÞ2zxð1� 2zxþ z2ÞðnA�1Þ=2

� ð1� zxÞð1þ x2Þ
�

(3.23)

yielding to nonvanishing cross correlations between the E
and B mode CEB

‘ and the temperature and B mode CTB
‘ .

These expressions agree with [8]. The dimensionless spec-
tra [cf. Eq. (3.16)] determining the correlation functions for
different choices of nS and nA are shown in Fig. 1 for the

scalar modes and in Fig. 2 for the even-parity correlations
of vector and tensor modes. Finally in Fig. 3 the odd-parity
correlations of vector and tensor modes are reported. In the
numerical solutions the amplitude of the helical compo-
nent is taken to be the maximal allowed value allowed by
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FIG. 1 (color online). Left: The spectra determining the autocorrelation function of the magnetic energy density for scalar
perturbations for B ¼ 10 nG, nS ¼ �2:9 and different choices of nA. Middle: The contributions to the total spectrum P�B�B

due

to the symmetric part of the magnetic field two-point correlation function (S) and the asymmetric part (AS). Right: The spectra
determining the autocorrelation function of the magnetic anisotropic stress and the cross correlation of the magnetic energy density
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helical component is taken to be the maximal allowed value allowed by the realizability condition. Moreover, the maximal value of the
wave number is set to kmax=km ¼ 100.
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the realizability condition [cf. Eq. (3.15)]. In Fig. 1
(middle) the contributions to the total spectral function
determining the autocorrelation function of the magnetic
energy density have been plotted for a choice of parame-
ters. In particular the contribution due to the symmetric
part of the two-point correlation function of the magnetic
field is shown, which is the first term including the factor
ð�B0=�
0Þ2 in Eq. (3.17) and denoted P ðSÞ

�B�B
in the figure,

and that due to the asymmetric part which is the second
term including the factor ðH B=�
0Þ2 in Eq. (3.17), corre-
sponding to P ðASÞ

�B�B
in Fig. 1 (middle). The symmetric part

is the only nonvanishing part in the case of a non helical

magnetic field. As can be appreciated from Fig. 1 (middle)
for nA � nS the contribution due to the asymmetric part of
the magnetic field two-point correlation function is greatly
suppressed implying that the resulting total spectral func-
tion is of the same order as the corresponding one for a non
helical magnetic field with the same field strength B and
spectral index nS. Moreover, in this case the contribution
due to the asymmetric part even for nS ¼ nA is several
orders of magnitude below the one due to the symmetric
one. However, this is not the case for the spectral functions
determining the autocorrelation function of the magnetic
anisotropic stress as well as the cross correlation function
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of nA for vector modes (left) and for tensor modes (right). The amplitude of the helical component is taken to be the maximal allowed
value allowed by the realizability condition. Moreover, the maximal value of the wave number is set to kmax=km ¼ 100.
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of the magnetic energy density and anisotropic stress
[cf. Figure 1 (right)] where the cases for equal and unequal
spectral indices of the symmetric and asymmetric parts can
be distinguished clearly. This is also observed in the parity-
even and odd correlation functions of the vector and tensor
modes (cf. Figs. 2 and 3). Moreover, as in the case of non
helical magnetic fields the magnetic energy density and
anisotropic stress are anticorrelated in the case of scalar
modes. The nonvanishing odd-parity correlations for the
vector and tensor modes in Fig. 3 constitute a distinctive
feature of the helical nature of the magnetic field which
lead to the nonvanishing cross correlations CEB

‘ and CTB
‘ in

the CMB.

IV. PERTURBATION EQUATIONS

In this section the perturbation equations and the initial
conditions in the presence of a magnetic field for the vector
and tensor modes in the gauge-invariant formalism are
presented. Perturbations are considered around a flat back-
ground ds2 ¼ a2ð�Þð�d�2 þ 	ijdx

idxjÞ, where að�Þ is the
scale factor. The corresponding equations for the scalar
sector can be found in [19]. However, we will comment
briefly on the initial conditions. Current numerical codes to
calculate the CMB anisotropies, such as [11–13], set the
initial long after neutrino decoupling at which time there is
already a nonvanishing value of the neutrino anisotropic
stress. However, in most models the magnetic field will be
generated long before neutrino decoupling. This leads to the
magnetic field anisotropic stress being the only contribution
to the total anisotropic stress. As shown in [18,37,38] in the
case of scalar modes the magnetic anisotropic stress causes
the comoving curvature perturbation on superhorizon
scales to evolve approaching a constant value shortly after
neutrino decoupling. Moreover, at this time the neutrino
anisotropic stress approaches the compensating solution, in
which it balances the magnetic anisotropic stress [16,39].
However, the comoving curvature perturbation has ac-
quired an additional contribution due to its evolution before
neutrino decoupling. This is in addition to any primordial
curvature perturbation generated, for example, during in-
flation. The additional contribution is determined by [18]

� ’ � 1

3
R
�

ð0Þ
B ln

��
�B

; (4.1)

where R
 � ��

�
þ��
and �B is the time of (instantaneous)

generation of themagnetic field, whichwould correspond to
the time of the phase transition (e.g., [5]) or to reheating if
generated during inflation (e.g., [4]). In [18] a distinction
was made between the compensated magnetic mode with
� ¼ 0 and the adiabatic-like passive mode with � given by
Eq. (4.1). In [38] this distinction was not made and here this
approach is followed. The initial conditions used in the
numerical solution include as a new parameter � � ln���B .

A. Vector perturbations

There are two gauge-invariant equations [21]. The am-
plitude of the shear of the normal vector field to the

constant time hypersurface, �ð1Þ
g , is determined by

_� ð1Þ
g þ 2H�ð1Þ

g ¼ k

�
H 2

k2

�
½�
ð�ð1Þ


 þ �ð1Þ
B Þ þ���

ð1Þ
� �;
(4.2)

where a dot indicates the derivative with respect to con-
formal time � and H ¼ _a

a . The amplitude of the vorticity

of the matter velocity field Vð1Þ is gauge-invariant and
satisfies [21]

_V ð1Þ þ ð1� 3c2sÞHVð1Þ ¼ � k

2

w

1þ w
�ð1Þ; (4.3)

where w determines the equation of state of the fluid P ¼
w� with P the pressure and � the energy density and �ð1Þ
denotes the anisotropic stress. Moreover, cs is the adiabatic
sound speed. For massless neutrinos (�) and cold dark
matter (c) Eq. (4.3) yields to

_V ð1Þ
� ¼ � k

8
�ð1Þ

� (4.4)

_V ð1Þ
c þHVð1Þ

c ¼ 0: (4.5)

Deep inside the radiation dominated era photons and elec-
trons are tightly coupled through Thomson scattering and
the latter are tightly coupled with the baryons via Coulomb
interaction. Thus the baryon, electron and photon fluids are
well described by a single fluid. In the tight-coupling limit
the vorticity fields of photons (
) and baryons (b) are
determined by

_V ð1Þ

 ¼ ��1

c ðVð1Þ
b � Vð1Þ


 Þ (4.6)

_V ð1Þ
b ¼ �HVð1Þ

b þ R��1
c ðVð1Þ


 � Vð1Þ
b Þ � R

8
�ð1Þ

B ; (4.7)

where ��1
c is the mean free path of photons between

scatterings which is determined by the number density of
free electrons ne and the Thomson cross section�T , �

�1
c ¼

ane�T . Moreover, in the baryon vorticity equation (4.7)
R � 4

3

�


�b
and the magnetic field contribution is due to the

vector component of the Lorentz force [cf. Eq. (2.8)]. At very
early times the mean free time between scatterings is much
smaller than the Hubble time implying a comparatively large
value of ��1

c . This leads to problems in the numerical inte-
gration andwas first solved in the case of scalar perturbations
by using an iterative solution at early times and the exact
equations at later times [40–42]. For the vector perturbations
we use a similar approach which results in

_V ð1Þ
b ¼ � H

1þ R
Vð1Þ
b þ R

1þ R

�
_V ð1Þ � k

8
�ð1Þ

B

�
(4.8)

KERSTIN E. KUNZE PHYSICAL REVIEW D 85, 083004 (2012)

083004-8



_V ð1Þ

 ¼ � R

1þ R

k

8
�ð1Þ

B � 1

1þ R
ð _V ð1Þ þHVð1Þ

b Þ; (4.9)

where the shift _V ð1Þ � _Vð1Þ
b � _Vð1Þ


 is determined by

_V ð1Þ ¼
�
1þ 2

H �c
1þ R

��1
�

�c
1þ R

�
� €a

a
Vð1Þ
b þ €Vð1Þ




� €Vð1Þ
b � 2H

�c
ðVð1Þ

b � Vð1Þ

 Þ

�
þ _�c

�c
ðVð1Þ

b � Vð1Þ

 Þ

�
(4.10)

and in the tight-coupling limit the term €Vð1Þ
b � €Vð1Þ


 is

neglected.
As pointed out for the scalar modes, initial conditions

for the numerical solutions are usually set after neutrino
decoupling when the neutrino anisotropic stress is already
nonvanishing. Therefore before neutrino decoupling the
magnetic field is the only source of anisotropic stress
[18,37,38]. Whereas for scalar perturbations this leads to
an additional contribution to the comoving curvature per-
turbation this is not the case for vector perturbations
(cf. Appendix A 1) [18]. The initial conditions in terms
of x � k� are given by,

�ð1Þ
g ¼ 15

14

�
�
ð1Þ
B

15þ 4��

x; Vð1Þ
b ¼ Vð1Þ


 ¼ ��ð1Þ
B

8
x;

Vð1Þ
� ¼ 1

8

�


��

�ð1Þ
B x; �ð1Þ


 ¼ 0

�ð1Þ
� ¼ �


��

�ð1Þ
B

�
�1þ 45

14

x2

15þ 4��

�
;

Nð1Þ
3 ¼ �


��

�ð1Þ
Bffiffiffiffiffiffi
24

p
�
�1þ 15

14

x2

15þ 4��

�
x; (4.11)

which agree with those of [18]. In deriving these initial
conditions it was used that for the numerical solutions to
calculate the CMB anisotropies these are set deep inside
the radiation dominated era when the baryon-photon fluid
is tightly coupled.

B. Tensor perturbations

The metric tensor perturbations are determined by one

gauge-invariant amplitude Hð2Þ
T which satisfies [21]

€HT
ð2Þ þ 2H _Hð2Þ

T þ k2Hð2Þ
T

¼ H 2½�
ð�ð2Þ

 þ �ð2Þ

B Þ þ���
ð2Þ
� �: (4.12)

The initial conditions for the numerical solutions of the
Boltzmann equations are set after neutrino decoupling. For

tensor perturbations it is found that the evolution of Hð2Þ
T

before neutrino decoupling contributes (cf. Appendix A 2)
and the initial conditions at an initial time �i > �� on
superhorizon scales x � 1 are given by

Hð2Þ
T ð�iÞ ¼ Hð2Þ

T ð�BÞ
�
1� 5x2

2ð15þ 4��Þ
�

þ�
�
ð2Þ
B ln

��
�B

�
1� 5x2

2ð15þ 4��Þ
�

þ�
�
ð2Þ
B

5x2

28ð15þ 4��Þ þOðx3Þ; (4.13)

for the gauge-invariant amplitude and

�ð2Þ
� ð�iÞ ¼ ��


��

�ð2Þ
B þ

�
4

15þ 4��

Hð2Þ
T ð�BÞ þ

4�
�
ð2Þ
B

15þ 4��

� ln
��
�B

þ 15

14

�


��

�ð2Þ
B

15þ 4��

�
x2 þOðx3Þ

(4.14)

for the anisotropic stress of the neutrinos which agree with
[18]. Moreover, �B is the time of generation of the primor-
dial magnetic field if this takes place after the beginning of
the radiation dominated era. In this case it is natural to

assume Hð2Þ
T ð�BÞ ¼ 0. If, however, the magnetic field is

generated during inflation, then the evolution of Hð2Þ
T dur-

ing inflation has to be matched to the evolution during the
radiation dominated era before neutrino decoupling which
is considered here. However, this is beyond the scope of
this article and will be considered elsewhere (for work in
this direction for the scalar modes see [43]). For simplicity,
it is assumed that �B ¼ �RH the time of reheating when the
standard radiation dominated era begins and in the numeri-

cal solution Hð2Þ
T ð�BÞ ¼ 0. The solution for the anisotropic

stress of the neutrinos approaches the one corresponding to
the so-called compensating mode. However, since there are
no independent constants multiplying the passive and the
compensating mode the two parts of the initial conditions
are not treated separately as in [18]. This follows [38]
where in the case of scalar perturbations no separation
into a passive and a compensating mode was made. We
close this section by noting that in the numerical solution
the standard tight-coupling approximation is used [18],

in the notation of [20], �ð2Þ
2 ¼ 5

8 ¼ �ð2Þ

 ¼ � 4

3 �C
_Hð2Þ
T for

the anisotropic stress of the photons, and Eð2Þ
2 ¼ �

ffiffi
6

p
4 �ð2Þ

2 ,

Bð2Þ
2 ¼ 0 for the polarization.

V. RESULTS

In [19] the CMB temperature anisotropies and polariza-
tion due to scalar perturbations in the gauge-invariant
formalism in the presence of a stochastic magnetic
field have been calculated using a modified version of
CMBEASY [42]. As opposed to the case considered here,

it was assumed that the magnetic field is non helical. The
calculation of the angular power spectra of the CMB
temperature anisotropies and polarization in the presence
of a helical stochastic magnetic field as described by the
two-point correlation function (3.5) has been done by
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expanding the numerical code of [19]. In the case of the
scalar perturbations the initial conditions have been
changed in order to include the contribution of the mag-
netic field to the curvature perturbation due to its evolution
before neutrino decoupling. Moreover, a new part has been
added to the modified version of CMBEASY [19] to include
the numerical solution of the Boltzmann hierarchy and the
calculation of the CMB anisotropies and polarization for
the vector and tensor modes using the total angular
momentum approach of Hu and White [20]. In the numeri-
cal solution here it is not assumed that there is an explicit
separation into a magnetic mode and a passive mode
as in [18]. The initial conditions for the numerical solution
are set long after neutrino decoupling. For scalar and tensor
modes a new parameter, � � ln���B , is included encoding

the evolution of the comoving curvature perturbation in the
case of the scalar mode and the amplitude of the tensor
mode, respectively, after the creation of the magnetic field
at �B and before neutrino decoupling at ��. The vector
mode is not affected significantly by the presence of a
magnetic field before neutrino decoupling. The spectrum
of the stochastic magnetic field is effectively cut off at the
magnetic diffusion scale using a Gaussian window func-
tion [19]. The contribution of the magnetic field is deter-
mined by the two-point correlation functions involving the
magnetic energy density and anisotropic stress leading to
convolution integrals in Fourier space. Rather than using
an approximation, as in previous work, which however,
also differs in the sharp cutoff of the magnetic field spec-
trum as opposed to the Gaussian window function used
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FIG. 4 (color online). The TT, EE, TE and BB angular power spectra for the scalar, vector and tensor modes for the magnetic field
strength B ¼ 5 nG, spectral index of the symmetric part of the magnetic field correlation function nS ¼ �2:9. The spectral index of
the asymmetric part is assumed to be nA ¼ �2:9 which corresponds to the maximal helical case. The pure magnetic mode is shown,
� ¼ 0.
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here, e.g., [16–18], these integrals are calculated numeri-
cally in the code as was done in [19] for the non helical
case for the scalar mode. The angular power spectra
describing the CMB temperature anisotropies and polar-
ization are obtained following a treatment similar to the
one of correlated isocurvature modes (e.g., [44]) [18,19]
with the relevant correlation functions being the ones of the
magnetic field contribution.

In Figs. 4–6 the angular power spectra determining the
autocorrelation and cross correlation functions of the tem-
perature anisotropies and polarization of the CMB due to
the scalar, vector and tensor modes are shown for a choice

of the magnetic field parameters and the best-fit values of
the 6-parameter �CDM model of WMAP7 [22], in par-
ticular, �b ¼ 0:0445, �� ¼ 0:738 and the reionization
optical depth � ¼ 0:086. In all numerical solutions the
amplitude of the helical part of the magnetic field is taken
to be the maximally allowed value by the realizability
condition [cf. Eq. (3.15)]. The magnetic field correlation
functions for the even-parity modes for different values of
nA do not change very much as can be seen from Figs. 1
and 2. Therefore, in this case the angular power spectra are
only shown in the maximal helical case, that is nS ¼ nA
(cf. Fig. 4). For the odd-parity modes, however, there are
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strong differences in magnitude in the correlation functions
(cf. Fig. 3) and thus in this case the resulting angular power
spectra are shown for different choices of nA (cf. Fig. 5), in
particular, nA ¼ nS ¼ �2:9 and nA ¼ �1:9. Moreover,
for nA ¼ �1:9 the maximal wave number is set to kmax ¼
102km. The spectral indices of the symmetric and asym-
metric parts are chosen to be negative. Whereas magnetic
fields generated during inflation with cosmologically rele-
vant field strengths result to have negative spectral indices
(e.g., [4]) those generated during a phase transition, such as
e.g., the electroweak one, have to satisfy causality con-
straints which require positive spectral indices [8,45]. The
asymmetric part of magnetic field correlation function
causes nonvanishing cross correlations between the E
mode and B mode and the temperature and the B mode,
respectively. These are shown in Fig. 5. Current observa-
tions of the Bmode of polarization are consistent with zero
[22,46]. Thus comparing, in particular, the cross correla-
tion between temperature and the B mode seems a prom-
ising possibility to constrain the helical contribution. In
Fig. 6 the TB- and the BB-angular spectra have been
plotted for different choices of parameters together with
observational data from WMAP7 [47]. As can be appre-
ciated from Fig. 6 the constraint on the contribution to CTB

‘

due to the vector mode is at high values of the multipoles ‘
and for the tensor modes at low values of ‘. Whereas the
vector modes do not depend on the parameter � encoding
the evolution of relevant quantities up to the time of
neutrino decoupling, a nonzero value of � constrains the
magnetic field strength to lower values due to the tensor
modes. Assuming that the magnetic field is created during
inflation and thus setting �B to the beginning of the stan-

dard radiation dominated era, so that � ¼ lnTRH

T�
, then

assuming reheating at 1010 GeV and together with T� ¼
1 MeV resulting in � ¼ 30, puts an upper limit on the
magnetic field strength of B ¼ 2 nG for nS ¼ nA ¼ �2:9.
For lower reheat temperatures larger values of the mag-
netic field strength are allowed. The WMAP7 data for the
BB spectrum are less constraining as can be seen in Fig. 6
(right). In the numerical solutions it was assumed that there
is no correlation between the magnetic field contributions
and any primordial curvature perturbation or tensor modes
from, e.g., inflation. However, if the magnetic field is
generated during inflation then one might expect a corre-
lation which deserves further study. This has recently been
considered in [48].

VI. CONCLUSIONS

The CMB anisotropies and polarization in the presence
of a stochastic helical magnetic field have been calculated
for scalar, vector and tensor modes. For this purpose the
modified version of CMBEASY [19] calculating the CMB
anisotropies due to the scalar perturbations in the presence
of a non helical magnetic field has been expanded. First,
the numerical solution for the corresponding correlation

functions has been included for scalar, vector and tensor
modes. Second, a new part has been added to include the
calculation of the CMB anisotropies and polarization due
to vector and tensor modes using the total angular momen-
tum approach of Hu and White [20]. A Gaussian window
function is used to effectively cutoff the magnetic field
spectrum at a wave number corresponding to the magnetic
damping scale. In the case of the scalar and tensor pertur-
bations the initial conditions for the numerical solution
which are set long after neutrino decoupling include a
contribution encoding the evolution of relevant quantities
due to the presence of the magnetic field before neutrino
decoupling. In the case of the scalar perturbations the
comoving curvature perturbation grows up to the time of
neutrino decoupling due the magnetic anisotropic stress.
After neutrino decoupling the neutrino anisotropic stress
compensates the magnetic anisotropic stress and the
comoving curvature perturbation becomes a constant on
superhorizon scales [18,37,38]. In the case of the tensor
modes a similar behavior is found for the amplitude of the
tensor mode which has been shown here explicitly. The
presence of a magnetic field prior to neutrino decoupling
does not affect significantly the evolution of the vector
modes. Using a standard Boltzmann solver the contribution
due to presence of the magnetic field before neutrino
decoupling has been included in the initial conditions for
the numerical solution which are set long after neutrino
decoupling. However, since the presence of a magnetic
field affects the evolution of the scalar and tensor pertur-
bations before neutrino decoupling in order to be more
precise one would have to start the numerical evolution and
thus set the initial conditions for the Boltzmann code
before neutrino decoupling. A problem we hope to address
in the future.
In the case of a helical magnetic field in addition to the

temperature (T) and polarization E- and B- mode autocor-
relation spectra and cross correlation TE angular power
spectrum there are also the cross correlation EB and TB
angular power spectra. The latter one has been used to
illustrate the use of the current WMAP7 data to constrain
the magnetic field parameters.
In comparison to earlier work on the effects of a helical

magnetic field [7–9] on the CMB here a full numerical
treatment has been provided including the correct initial
conditions and evolution equations in the presence of a
magnetic field as well as including numerical solutions for
the different correlation functions of the magnetic field
contributions. Moreover, the magnetic field spectrum is
effectively cutoff using a Gaussian window function.
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APPENDIX A

1. Initial conditions for vector perturbations

Before neutrino decoupling the only source for the
amplitude of the shear of the normal vector field to the

constant time hypersurfaces�ð1Þ
g is given by the anisotropic

stress of the magnetic field, therefore Eq. (4.2) implies
that at ��

�ð1Þ
g ð��Þ ¼

�
�B
��

�
2
�ð1Þ

g ð�BÞ þ
�
�

ð1Þ
B

k��

�
1� �B

��

�
; (A1)

where �B is the time of generation of the magnetic field. In
case it is generated during inflation this time is chosen to
coincide with the beginning of the radiation dominated era
(see also Sec. IVB). After neutrino decoupling, ignoring
any photon anisotropic stress, and neglecting the contribu-
tion from the multipole ‘ ¼ 4 the relevant equations from
the Boltzmann hierarchy in addition to Eq. (4.4) are given
by [20]

�ð1Þ0
� ¼ 8

5
ðVð1Þ

� � �ð1Þ
g Þ � 8

ffiffiffiffiffiffi
24

p
35

Nð1Þ
3 (A2)

Nð1Þ0
3 ¼ �ð1Þ

�ffiffiffiffiffiffi
24

p ; (A3)

where Nð1Þ
2 ¼ 5

8
ffiffi
3

p �ð1Þ
� . This gives together with Eq. (4.2)

�ð1Þ000
� þ 3

x
�ð1Þ00

� þ 1

5

�
99

35
þ 8��

x2

�
�ð1Þ0

� þ
�
9

7
� 8��

5x2

�
�ð1Þ

�

x

¼ 8

5

�
�
ð1Þ
B

x3
; (A4)

where a prime denotes the derivative with respect to x �
k�. On superhorizon scales x � 1 Eq. (A4) is solved by

�ð1Þ
� ð�Þ ¼ ��


��

�ð1Þ
B þ ðk�Þ�ð1=2Þ½C1e

�ði=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32��=5�1

p
lnðk�Þ

þ C2e
ði=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32��=5�1

p
lnðk�Þ�; (A5)

so that for fixed k and late times the compensating solution

is approached, �ð1Þ
� ! ��


��
�ð1Þ

B . This implies the vanish-

ing of the right-hand side of Eq. (4.2) leading to �ð1Þ
g � ��2

and therefore suppressing any contribution due to the
evolution before neutrino decoupling. The resulting initial
conditions are given in Eq. (4.11).

2. Initial conditions for tensor perturbations

On superhorizon scales, x ¼ k� � 1 using the evolution

of Hð2Þ
T during the era before neutrino decoupling, at �� a

regular solution for Hð2Þ
T is found to be

Hð2Þ
T ð��Þ ’ Hð2Þ

T ð�BÞ þ�
�
ð2Þ
B ln

��
�B

; (A6)

where �B is the time of generation of the primordial
magnetic field. After neutrino decoupling the amplitude

of the tensor mode Hð2Þ
T and the neutrino anisotropic stress

�ð2Þ
� satisfy [20],

Hð2Þ00
T þ 2

x
Hð2Þ0

T þHð2Þ
T ¼ x�2½�
�

ð2Þ
B þ���

ð2Þ
� �; (A7)

�ð2Þ0
� ¼ � 8

5
Hð2Þ0

T � 8

7
ffiffiffi
5

p Nð2Þ
3 (A8)

Nð2Þ0
3 ¼

ffiffiffi
5

p
8

�ð2Þ
� ; (A9)

where a prime indicates the derivative with respect to x ¼
k� and the neutrino multipole for ‘ ¼ 4 has been ne-
glected. Equations (A7) to (A9) can be combined to give

a fourth order differential equation for Hð2Þ
T ,

Hð2Þ0000
T þ 6

x
Hð2Þ000

T þ
�
8

7
þ 2

5

15þ 4��

x2

�
Hð2Þ00

T þ 30

7x
Hð2Þ0

T

þ
�
1

7
þ 2

x2

�
Hð2Þ

T ¼ 1

7

�
�
ð2Þ
B

x2
: (A10)

On superhorizon scales x � 1 a regular solution at some
time �i > ��, which is going to be taken the initial time to
start the numerical evolution of the Boltzmann code, is
given by

Hð2Þ
T ð�iÞ ¼ Hð2Þ

T ð�BÞ
�
1� 5x2

2ð15þ 4��Þ
�

þ�
�
ð2Þ
B ln

��
�B

�
1� 5x2

2ð15þ 4��Þ
�

þ�
�
ð2Þ
B

5x2

28ð15þ 4��Þ þOðx3Þ; (A11)

where the solution has been determined by matching the
solution before and after neutrino decoupling at � ¼ ��.
Similarly, using Eqs. (A7) to (A9) the evolution of the
anisotropic stress of the neutrinos is determined by,
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On large scales x � 1 a regular solution is found to be

�ð2Þ
� ð�iÞ¼��


��

�ð2Þ
B þ

�
4

15þ4��

Hð2Þ
T ð�BÞþ

4�
�
ð2Þ
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15þ4��

� ln
��
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þ15

14
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��
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15þ4��

�
x2þOðx3Þ (A13)

where Eqs. (A8) and (A9) have been used to determine the
free constant.
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