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In the next decade gravitational waves might be detected using a pulsar timing array. In an effort to

develop optimal detection strategies for stochastic backgrounds of gravitational waves in generic metric

theories of gravity, we investigate the overlap reduction functions for these theories and discuss their

features. We show that the sensitivity to nontransverse gravitational waves is greater than the sensitivity to

transverse gravitational waves and discuss the physical origin of this effect. We calculate the overlap

reduction functions for the current NANOGrav pulsar timing array and show that the sensitivity to the

vector and scalar-longitudinal modes can increase dramatically for pulsar pairs with small angular

separations. For example, the J1853þ 1303� J1857þ 0943 pulsar pair, with an angular separation of

about 3�, is about 104 times more sensitive to the longitudinal component of the stochastic background, if

it is present, than the transverse components.

DOI: 10.1103/PhysRevD.85.082001 PACS numbers: 04.80.Cc

I. INTRODUCTION

General relativity is among the most successful theories
of physics in the 20th century, passing all current weak-
field, slow-motion tests with flying colors. Progress in
cosmology and high energy physics over the course of
the last 50 years, however, has brought with it questions
that may be unanswerable in the context of general rela-
tivity. The accelerated expansion of the Universe, the dark
matter problem, and inflation have led some authors to
reexamine general relativity and attempt to modify it to
explain some of these puzzles. Additionally, the incom-
patibility between general relativity and quantum field
theory may be an indication that modifications to general
relativity are necessary.

A number of alternative theories of gravity have been
proposed to address some of these problems. Those that
satisfy the Einstein equivalence principle are called metric
theories of gravity. In these theories, the only gravitational
fields that may influence matter are the components of the
metric tensor g��. Additional fields play the role of gen-

erating spacetime curvature. Metric theories are grouped
broadly into several categories: scalar tensor theories, in
which a dynamical scalar field � is present in addition to
the metric (see Refs. [1–9]); vector-tensor theories, which
contain a dynamic gravitational four-vector field in
addition to the metric (see Refs. [7,9–12]); and bimetric
theories, which are characterized by ‘‘prior’’ geometry
contained in dynamical scalar, vector, or tensor fields
(see Refs. [7,9,13]).

Gravitational wave astronomy promises not only to open
a new observational window on the Universe, but also to
provide a new testing ground for general relativity. In a
general metric theory of gravity, the six independent com-
ponents of the Riemann tensor provide up to six possible

gravitational wave (GW) polarization states, four more
than those allowed in general relativity. Detection of any
extra GW polarization states would be fatal for general
relativity. A nondetection could be used to put constraints
on the parameters of alternative theories of gravity.
Several international efforts are currently underway to

detect GWs. Of these the most promising on the 5–10 yr
time scale are ground-based laser interferometers [14] and
pulsar timing arrays [15], which aim to detect GWs in the
10–103 Hz and 10�9–10�7 Hz ranges, respectively.
Potential sources for low frequency GWs (10�9–10�7 Hz)
include binary supermassive black hole mergers [16], cos-
mic superstrings [17], relic gravitational waves from
inflation [18], and a first order phase transition at the
QCD scale [19].
Previous work on stochastic backgrounds of gravita-

tional waves in the context of alternative theories of gravity
has shown that three ground-based interferometers are
sufficient to disentangle the polarization content of a gen-
eral metric theory of gravity [20]. For pulsar timing arrays
the form of the correlation between pulsar pairs as a
function of pulsar-pair angular separation depends on the
polarization content of the theory [21]. Additionally it has
been shown that pulsar timing arrays have a greater sensi-
tivity to longitudinal and vector polarization modes than to
transverse modes [21,22].
In this paper we investigate the problem of stochastic

GW detection using pulsar timing arrays (PTAs) in the
context of the optimal statistic. We compute the expected
cross correlations for pulsar timing arrays for the case of
stochastic backgrounds of GWs for any metric theory
of gravity. The expected cross correlations are proportional
to the so-called overlap reduction function, a geometrical
factor that captures the loss of sensitivity due to detectors
not being co-located or aligned. We explain various features
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of the overlap reduction functions including the physical
origin of the increased sensitivity to scalar-longitudinal
and vector polarization modes. In Sec. II, we use a coor-
dinate independent approach to describe the redshift of
pulsar signals from passing GWs. In Sec. III we write the
optimal cross correlation filter by maximizing the signal-
to-noise ratio for a pulsar pair, and define the overlap
reduction function for GWs of anymetric theory of gravity.
In Sec. IV we discuss the effect of GWs of various polar-
izations on the pulsar-Earth system, and the physical origin
of the increased sensitivity to longitudinal and shear
modes. This effect is most easily understood in the fre-
quency domain. In Sec. V, we write down explicitly the
form of the overlap reduction function for transverse GWs
and discuss the form of the function for nontransverse
GWs. We find that for the scalar-longitudinal and vector
(shear) modes, the overlap reduction functions are fre-
quency dependent in the ranges of frequencies and dis-
tances relevant to pulsar timing. This is not the case for the
transverse tensor and breathing modes. In Sec. VI, we
compute the overlap reduction functions for the current
NANOGrav PTA and show that sensitivity to the scalar-
longitudinal and vector (shear) modes increases by at least
an order of magnitude for nearby pulsar pairs for vector
modes, and about 4 orders of magnitude for the longitudi-
nal mode. We summarize our results in Sec. VII.
Throughout we work in units where the speed of light
c ¼ 1.

II. DETECTING GRAVITATIONALWAVES WITH
A PULSAR TIMING ARRAY

The radio pulses from pulsars arrive at our radio tele-
scopes at very steady rates. Pulsar timing experiments
exploit this regularity. Fluctuations in the time of arrival
of radio pulses, after all known effects have been ac-
counted for, might be due to the presence of a GW back-
ground. If a GW is present the signal from the pulsar can be
redshifted (or blueshifted). For a GW propagating in the

direction �̂, the redshift of signals from a pulsar in the
direction p̂ is given by [23,24]

zðt; �̂Þ ¼ p̂ip̂j

2ð1þ �̂ � p̂Þ ½hijðtp; �̂Þ � hijðte; �̂Þ�; (1)

where hij is the metric perturbation and tp, te represent the

times the pulse was emitted at the pulsar and the time
received at the Solar System barycenter, and we have
defined

zðt; �̂Þ ¼ �e � �p

�p

: (2)

Note that this is the opposite of the sign convention nor-
mally used in the literature [23]. Modified gravity theories
extend the possible polarization modes of GWs present in

general relativity—the plus (þ ) and cross (� ) modes—
to a maximum of six possible modes. For the two-pulsar-
Earth system shown in Fig. 1, the GW coordinate system is
given by

�̂ ¼ ðsin� cos�; sin� sin�; cos�Þ;
m̂ ¼ ðsin�;� cos�; 0Þ;
n̂ ¼ ðcos� cos�; cos� sin�;� sin�Þ; (3)

where, relative to [20], we have fixed the GW polarization
angle c ¼ ��=2 to agree with the conventions in [25].
From (3), the GW polarization tensors can be constructed
[20–22,26,27]

�þij ¼ m̂ � m̂� n̂ � n̂; ��ij ¼ m̂ � n̂þ n̂ � m̂;

�bij ¼ m̂ � m̂þ n̂ � n̂; �lij ¼ �̂ � �̂;

�xij ¼ m̂ � �̂þ �̂ � m̂; �yij ¼ n̂ � �̂þ �̂ � n̂;

(4)

where � is the tensor product and �̂ is the direction of
GW propagation. Here, x and y correspond to the vector
(spin-1) polarization modes while b and l correspond to the
scalar (spin-0) breathing and longitudinal modes, respec-
tively. The plus, cross, and breathing modes are character-
ized by transverse GW propagation, while the longitudinal
and vector (or shear) modes are nontransverse in nature
(see Fig. 2).

FIG. 1 (color online). Pulsar positions are given with respect to
the Solar System barycenter (located at the origin). Here � and�
are the typical polar and azimuthal angles (as projected from the
position of pulsar 1), and pulsar 1 and pulsar 2 are separated by
angle �. A gravitational wave, characterized by polarization

angle c , propagates along the �̂ direction.
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Defining the antenna patterns as

FAð�̂Þ ¼ �Aijð�̂Þ p̂ip̂j

2ð1þ �̂ � p̂Þ ; (5)

the Fourier transform of (1) may be written as [21,24,27]

~zðf; �̂Þ ¼ ðe�2�ifLð1þ�̂�p̂Þ � 1ÞX
A

~hAðf; �̂ÞFAð�̂Þ; (6)

where the sum is over all possible GW polarizations:
A ¼ þ, �, x, y, b, l, and L is the distance to the pulsar.
The actual quantity measured in pulsar timing experiments
is the timing residual, which is defined as the difference
between the actual and expected time of arrival (TOA) of a
pulse:

RðtÞ ¼ TOAactual � TOAexpected: (7)

The expected TOA for a pulse is modeled and includes
daily and yearly motion of the Earth, the position and
proper motion of the pulsar, motion about a binary com-
panion (if applicable), etc. The timing residual can be
obtained by integrating the redshift in time [23].

In Fig. 3 we plot the antenna patterns for the various GW
polarization modes in a system where the GW’s direction
of propagation is fixed and the pulsar’s position is varied
[see Appendix A, Eqs. (A20), (A26), (A24), and (A12) for
details], as is usually done in the literature.

III. GW DETECTION STATISTIC

In this section we introduce the optimal cross correlation
statistic [24,25] for stochastic background searches. The
optimal cross correlation statistic involves the calculation

of the overlap reduction function, a geometrical factor that
characterizes the loss of sensitivity due to detectors not
being co-located or aligned. We will show how the overlap
reduction function is computed for nontransverse modes.
We follow the analysis (for general relativity) of Allen and
Romano [25].
The plane wave expansion for a GW perturbation prop-

agating in the direction �̂ is given by [25]

hijðt; ~xÞ ¼
X
A

Z 1

�1
df

Z
S2
d�e2�ifðt��̂� ~xÞhAðf; �̂Þ�Aijð�̂Þ;

(8)

where i, j are spatial indices, the sum is over all six

polarization states, and the Fourier amplitudes hAðf; �̂Þ
are complex functions satisfying hAð�f; �̂Þ ¼ h�Aðf; �̂Þ.
A stochastic background of GWs is produced by a large
number of weak, independent, unresolvable sources. The
energy density of this background per unit logarithmic
frequency is given by

�gwðfÞ ¼ 1

�critical

d�gw

d lnf
; (9)

where d�gw is the energy density of the gravitational waves

and �critical is the critical energy density required to close
the Universe,

�critical ¼ 3H2
0

8�G
; (10)

where H0 is the Hubble constant.
The characteristic strain spectrum, hcðfÞ, is typically

given a power-law dependence on frequency so that

hcðfÞ ¼ A

�
f

yr�1

�
	
: (11)

It may also be expressed in terms of the energy density of
the background per unit logarithmic frequency, �gwðjfjÞ:

h2cðfÞ ¼ 3H2
0

2�2

1

f2
�gwðjfjÞ: (12)

For an isotropic stochastic background of GWs, the
signal appears in the data as correlated noise between
measurements from different pulsars. The ith data set is
of the form

siðtÞ ¼ ziðtÞ þ niðtÞ; (13)

where ziðtÞ corresponds to the unknown GW signal and
niðtÞ to noise (assumed in this case to be stationary and
Gaussian). Because the signal is assumed to be much
smaller than the noise, the properties of the noise deter-
mine the variance. We can express these properties in the
frequency domain as

h~niðfÞi ¼ 0; (14)

FIG. 2 (color online). Motion of test masses in response to
GWs of the six polarization modes. The plus (þ), cross (�), and
scalar-breathing (b) mode GWs are transverse, while the two
vector modes ðx; yÞ and the scalar-longitudinal (l) mode GWs are
nontransverse. Figure reproduced from Nishizawa et al. [20]
with permission.
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h~n�i ðfÞ~njðf0Þi ¼ 1
2
ðf� f0ÞPiðjfjÞ; (15)

where we have introduced the one-sided noise power spec-
trum PiðjfjÞ.

The cross correlation statistic is defined as

S ¼
Z T=2

�T=2
dt

Z T=2

�T=2
dt0siðtÞsjðt0ÞQðt� t0Þ; (16)

where Qðt� t0Þ is the filter function. The optimal filter is
determined by maximizing the expected signal-to-noise
ratio

SNR ¼ �

�
: (17)

Here � is the mean hSi and � is the square root of the

variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihS2i � hSi2p

.

(a) (b)

(c) (d)

FIG. 3 (color online). Antenna patterns (5) for plus/cross (a), breathing (b), vector-x/vector-y (c), and longitudinal (d) polarization
modes. Note that the cross and vector-y modes are identical to plus and vector-x, respectively, but rotated by 45� and thus do not
appear separately here. In this figure, the GW propagates in the positive z direction with the Earth at the origin, and the antenna pattern
depends on the pulsar’s direction, specified by polar angle �p and azimuthal angle �p. Exact expressions corresponding to each figure

may be found in Appendix A: (A20) for the plus mode, (A26) for the breathing mode, (A24) for the vector-x mode, and (A12) for the
longitudinal mode. Note that fixing the GW propagation direction while allowing the pulsar position to change is analogous to fixing
the pulsar position while allowing the direction of GW propagation to change (there is an inherent degeneracy in the GW polarization
angle and the pulsar’s azimuthal angle �p).
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In the frequency domain (16) becomes

S ¼
Z 1

�1
df

Z 1

�1
df0
Tðf� f0Þ~s�i ðfÞ~sjðf0Þ ~Qðf0Þ; (18)

and the mean � is

� ¼
Z 1

�1
df

Z 1

�1
df0
Tðf� f0Þh~z�i ðfÞ~zjðf0Þi ~Qðf0Þ; (19)

where 
T is the finite time approximation to the delta
function


TðfÞ ¼ sin�ft

�f
:

The assumption that the background is unpolarized, iso-
tropic, and stationary implies that the expectation value of

the Fourier amplitudes hAðf; �̂Þ must satisfy [24,25]

hh�Aðf; �̂ÞhA0 ðf0; �̂0Þi ¼ 3H2
0

32�3

2ð�̂; �̂0Þ
AA0

� 
ðf� f0Þjfj�3�gwðjfjÞ; (20)

where 
2ð�̂; �̂0Þ is the covariant Dirac delta function on
the two-sphere. With the demand (20) in place, the expec-
tation value of the signals ziðfÞ may be written as

h~z�i ðfÞ~zjðf0Þi ¼
3H2

0

32�3

1

�

ðf� f0Þjfj�3�gwðjfjÞ�ðjfjÞ:

(21)

Here � is a normalization factor and we define [24]

�ðjfjÞ ¼ �
X
A

Z
S2
d�ðe2�ifLið1þ�̂�p̂iÞ � 1Þ

� ðe�2�ifLjð1þ�̂�p̂jÞ � 1ÞFA
i ð�̂ÞFA

j ð�̂Þ; (22)

where the sum is over all possible GW polarizations, and
the exponential phase terms correspond to the pulsar term
in the time domain.

The optimal filter is given by [24,25]

~QðfÞ / �gwðfÞ�ðfÞ
jfj3PiðfÞPjðfÞ

; (23)

where PiðfÞ and PjðfÞ are the power spectra for the ith and
jth pulsar redshift time series that are being cross-
correlated [see Eq. (16)].

In general relativity, for the frequency and distance
ranges appropriate to pulsar timing experiments (i.e. for
f � 1=L), the overlap reduction function �ðfÞ approaches
a constant that is only a function of the angular separation
between the two pulsars. This constant is proportional to
the value of the Hellings-Downs curve for the angle be-
tween the pulsars [24,28]. We will see that for longitudinal
modes and for tensor modes the overlap reduction function
remains frequency dependent, even for f � 1=L, and is
considerably larger than for the transverse modes. This

indicates an increased sensitivity to such modes. To under-
stand the physical origin of the increased sensitivity we
first discuss the effect of GWs in the more simple case of a
single pulsar-Earth baseline.

IV. GW INDUCED REDSHIFT ON THE
PULSAR-EARTH SYSTEM

In this section we will study the redshifts induced by
GWs of different polarizations on the pulsar-Earth sys-
tem. From (6), the redshift induced by this GW may be
written as

~z Aðf; �̂Þ ¼ ðe�2�ifLð1þ�̂�p̂Þ � 1Þ pipj

2ð1þ �̂ � p̂Þ �
A
ijð�̂Þ~hA:

(24)

The factor of 1=2ð1þ �̂ � p̂Þ comes from the relation-
ship between the affine parameter  and time t [see

Eq. (A9)], and ~hA ¼ ~hAðf; �̂Þ.
In the region where the GW direction, �̂ and the pulsar

direction, p̂ are antiparallel, (24) appears to become sin-

gular due to the 1þ �̂ � p̂ term in the denominator [note
that the derivative of hA with respect to the affine parame-
ter vanishes in this limit; see (A9)]. There is in fact no
divergence in the redshift induced. In this regime the

exponential can be Taylor expanded and the 1þ �̂ � p̂
term in the denominator cancels.
A Taylor expansion of (24) can be performed in two

cases. In the first, when fL 	 1, the metric perturbation is
the same at the pulsar and at the Earth. This case is often
referred to as the long wavelength limit. In the second,
when

1þ �̂ � p̂ 	 1

fL
;

the pulse’s direction of propagation and the GWare nearly
parallel (i.e. the GW is coming from a direction near the
pulsar). In this case the metric perturbation at the pulsar
when the pulse is emitted, and on Earth when the pulse is
received, are also nearly the same. This is often described
in the literature in terms of the pulse ‘‘surfing’’ the gravi-
tational wave.
The surfing description, combined with Eq. (1), might

lead one to incorrectly conclude that the effect of the GW
should cancel in this case because the metric perturbations
at the Earth and the pulsar are the same, despite the

divergent 1=ð1þ �̂ � p̂Þ term in the redshift. In fact, a
delicate cancellation occurs with the divergent term in
the denominator that is only manifest in the frequency
domain. Let the pulse direction and the gravitational wave

direction be nearly parallel so that �̂ � p̂ ¼ �1þ 
, where

 	 1. Then as in [24,27] we obtain

~z Aðf; �̂Þ 
 ��ifLpipj�Aij
~hA: (25)

STOCHASTIC BACKGROUNDS IN ALTERNATIVE . . . PHYSICAL REVIEW D 85, 082001 (2012)

082001-5



The redshift is proportional to fL, but for finite 
 increases
only to the point where the argument of the exponential in
(24) can no longer be Taylor expanded, at which point it
becomes an oscillatory function of fL.Whether the redshift
is finite in the 
 ! 0 limit depends on the projection term
pipj�AijhA. Aswewill see, the vanishing contribution for the

tensor modes of general relativity occurs solely because of
the transverse nature of these waves, and is unrelated to the
surfing effect. For longitudinal modes the projection term
does not vanish, and the increase in sensitivity to such
modes originates from GWs that come from directions
near the pulsar. To better understand this, we will look at
the behavior of the redshifts induced by GWs of various
modes.

The redshift for a longitudinal mode GW perturbation is

~z lðf; �̂Þ ¼ cos2�

2ð1þ cos�Þ ðe
�2�ifLð1þcos�Þ � 1Þ~hl; (26)

while the redshift for a plus mode GW perturbation is

~zþðf; �̂Þ ¼ �sin2�

2ð1þ cos�Þ ðe
�2�ifLð1þcos�Þ � 1Þ~hþ: (27)

Here we note that the geometrical factor in the redshift for
the transverse breathing mode differs from (27) only by a
sign, and our analysis of (27) applies equally to the breath-
ing mode. In Fig. 4 we plot the geometrical and phase

factor j~zðf; �̂Þ=~hj for both theþmode and the longitudinal
mode. We plot these for a value of fL in the long wave-
length limit (fL ¼ 10�2) and for a value in the regime of
pulsar timing experiments (fL ¼ 10). In the regime of
pulsar timing experiments the sensitivity is largest for
GW directions near the pulsar � � � for both polariza-
tions. Although we do not show it here the same is true for
all other polarization modes. In the long wavelength limit,
fL 	 1, the pulsar-Earth system is most sensitive to

þ-mode GWs coming from the equator and longitudinal
GWs from the poles.
As discussed above, these redshifts appear to become

singular when � ! �, but the pulsar term may be Taylor
expanded. Let � ¼ �� 
, where 
 	 1. Then

~z lðf; �̂Þ 
 �ifLð1� 
2Þ~hl (28)

for the longitudinal case, while

~zþðf; �̂Þ 
 �ifL
2 ~hþ (29)

for the plus mode. In the limit as 
 ! 0, ~zþ vanishes while
~zl becomes proportional to fL. The vanishing redshift of
~zþ is therefore due to the transverse nature of the mode and
does not occur for ~zl, even though in both cases the pulse is
surfing the GW. In the time domain, in the � � � region,
the redshift for both modes goes as

zl;þðt; �̂Þ / L _hl;þ: (30)

One may readily identify the right-hand side of (30) as a
velocity. The interpretation of this result is that, in this
limit, the redshift is proportional to the relative velocity of
the pulsar-Earth system. The velocity of the pulsar when
the pulse is emitted in this limit is approximately equal and
opposite to the velocity of the Earth when the pulse is
received.
An identical analysis for the shear GW modes produces

analogous results. Starting from (6), the redshift for the
vector-y mode goes as

~z yðf; �̂Þ ¼ � cos� sin�

ð1þ cos�Þ ðe
�2�ifLð1þcos�Þ � 1Þhy: (31)

The small 
 expansion yields

~z yðf; �̂Þ 
 �2�ifL


�
1� 
2

2

�
hy: (32)
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FIG. 4 (color online). Plots of j~zðf; �̂Þ=~hj for the þ mode (dashed, blue) and the longitudinal mode (solid, red). We show these for
fL ¼ 10�2 (a), a value of fL in the long wavelength limit, and (b) fL ¼ 10, a value of fL typical of pulsar timing experiments. In the
regime of pulsar timing experiments the sensitivity is largest for GW directions near the pulsar � � � for both polarizations. In the
long wavelength limit, fL 	 1, the pulsar-Earth system is most sensitive to þ-mode GWs coming from the equator, and longitudinal
GWs from the poles.
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Relative to the longitudinal mode the redshift of vector
modes is smaller by a factor of 
 and vanishes as 
 ! 0,
but it is still larger than the transverse modes by a factor
of 1=
.

The same behavior is not present in other sky locations.
If the GW propagates perpendicular to the pulsar-Earth
line (� ¼ �=2þ 
), then up to second order in 
 the
redshifts

~z l ¼ 
2

2ð1� 
Þ ðe
�2�ifLð1�
Þ � 1Þ ðlongitudinalÞ; (33)

~zþ ¼ �ð1� 
2Þ
2ð1� 
Þ ðe�2�ifLð1�
Þ � 1Þ ðplusÞ; (34)

~z y ¼ 
ð1� 
2=2Þ
ð1� 
Þ ðe�2�ifLð1�
Þ � 1Þ ðshearÞ (35)

are obtained. In this case for small 
 the exponential cannot
be expanded unless fL 	 1. For this sky location the
redshift is always an oscillatory function of fL. The pulse
comes across different phases of the GW as it propagates
toward Earth.

To summarize, one can see that the surfing effect does
not lead to a vanishing response of the pulsar-Earth system
to GW waves coming from � ¼ �. For the tensor and
scalar-breathing modes, it is the transverse nature of
GWs that is responsible for the vanishing response. For
the scalar-longitudinal modes the response does not van-
ish—in fact, the response increases with both frequency
and pulsar distance. For the vector modes the response
does vanish, but more slowly than for the transverse
modes. For all GW modes from directions near � ¼ �,
the redshift increases monotonically up to some limiting
frequency beyond which the Taylor series expansion of the
pulsar term that leads to Eqs. (28) and (29) can no longer be
performed.

We now discuss the implications of this effect on the
overlap reduction functions.

V. OVERLAP REDUCTION FUNCTIONS

As discussed in Sec. III, the overlap reduction function
for the two pulsars in Fig. 1 is equal to

�ðjfjÞ ¼ 3

4�

X
A

Z
S2
d�ðe2�ifL1ð1þ�̂�p̂1Þ � 1Þ (36)

� ðe�2�ifL2ð1þ�̂�p̂2Þ � 1ÞFA
1 ð�̂ÞFA

2 ð�̂Þ
¼ �þðjfjÞ þ ��ðjfjÞ þ �bðjfjÞ þ �lðjfjÞ

þ �xðjfjÞ þ �yðjfjÞ (37)

where all possible GW polarizations are allowed. It is
advantageous to consider each term in the sum (36) sepa-
rately since various gravity theories may have different
polarization content [3–13,20]. The overlap reduction
function has a closed analytic form for transverse GWs.
The overlap reduction function for the plus mode has been
calculated by [28] and is given by

�þð�Þ ¼ 3

�
1

3
þ 1� cos�

2

�
log

�
1� cos�

2

�
� 1

6

��
; (38)

where � is the angular separation of the pulsars. For the
scalar-breathing mode, a closed form is given by [21]

�bð�Þ ¼ 1
4ð3þ cos�Þ: (39)

Equations (38) and (39) are shown in Fig. 5. For the case of
nontransverse GWs, the overlap reduction functions cannot
be integrated analytically and we calculate them
numerically.
In general relativity the pulsar term can be excluded

from the integral (36) without any significant loss of opti-
mality [24]. The reason for this is that the smallest fre-
quencies that PTAs are sensitive to are 
0:1 yr�1, and the
closest PTA pulsar distances are
100 ly, so that fL * 10.
This is shown in Fig. 6, where we plot the overlap reduc-
tion functions �ðfLÞ with (solid curves) and without (hori-
zontal dashed lines) the pulsar term for several pulsar
separation angles � and GW polarization modes. The
frequencies that PTAs are sensitive to are to the right of
the vertical dashed line at fL ¼ 10 in each plot. As seen in
Fig. 6(a), �þðfLÞ is roughly independent of frequency over
the range of frequencies relevant to pulsar timing experi-
ments. The same is true for the scalar-breathing mode,
which is shown in Fig. 6(b). It is worth pointing out that
both �þðfLÞ and �bðfLÞ are normalized to unity for co-
aligned pulsars. Note that the overlap reduction functions
for all other modes are normalized with the same factor of
3=4� used in the þ mode.
In Fig. 6(c), we plot the overlap reduction function

�yðfLÞ for the vector-y mode. Over the range of relevant

frequencies, �yðfLÞ is frequency independent for most of

the pulsar separation angles shown. For co-aligned pulsars,
however, �yðfLÞ retains frequency dependence well into

the range of pulsar timing frequencies, and takes on values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.5

0.0

0.5

1.0
C

or
re

la
tio

n
Plus mode

Breathing mode

FIG. 5 (color online). Hellings and Downs [28] first showed
that for general relativity, an isotropic stochastic background of
GWs is expected to produce the correlation shown by the solid
blue line. The correlation for the transverse breathing mode
appears as the dashed black line.
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an order of magnitude higher than those obtained by
�þðfLÞ and �bðfLÞ.

Similar behavior is shown in Fig. 6(d), where we have
plotted the overlap reduction function for the scalar-
longitudinal mode. Here �lðfLÞ retains frequency depen-
dence throughout the relevant frequency range for each of
the pulsar separation angles shown. For the case of co-
aligned pulsars, �lðfLÞ does not converge, and for separa-
tion angles that do converge �lðfLÞ takes on values that are
at least an order of magnitude larger than those obtained by
�þðfLÞ and �bðfLÞ.

For co-located pulsars we can understand the behavior
of the longitudinal mode analytically. In the problematic
sky region (� � �), �lðfLÞ is proportional to the square of
the redshift,

�lðfLÞ / 2�
Z 1

�1
jðe�2�ifLð1þcos�Þ � 1Þj2

� cos4�

4ð1þ cos�Þ2 dðcos�Þ; (40)

which may be evaluated analytically. In the limit of
large fL (fL � 1),

�lðfLÞ ¼ �f37=6� 4�� 1=ð�ðfLÞ2Þ þ 4Cið4�fLÞ
� 4 logð4�fLÞ þ 2�fL Sið4�fLÞg

� ð37=6� 4�Þ�� 4� logð4�fLÞ þ �3fL; (41)

where � is Euler’s constant. The overlap reduction
function �lðfLÞ is roughly proportional to fL in this
limit. Equation (41) is shown along with the numeri-
cally integrated overlap reduction functions in Fig. 6(d)
and, with the exception of the singular behavior near
the origin (where the large fL approximation is not
valid), agrees well with the numerical �lðfLÞ curve for
co-aligned pulsars (� ¼ 0).

VI. OVERLAP REDUCTION FUNCTIONS FOR
THE NANOGRAV PULSARS

The NANOGrav PTA consists of 24 pulsars. The
Australia Telescope National Facility data for the distances
to these pulsars is given in Table I [29]. Using a simple
numerical integration scheme, the overlap reduction func-
tion for each pulsar pair was computed. The main differ-
ence relative to the previous section is that we are including

fL 10
Pulsar timing experiments
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(a)
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�
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�
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FIG. 6 (color online). �ðfLÞ with (solid curves) and without (horizontal dashed lines) the pulsar term for the various polarization
modes: plus (a), breathing (b), shear (c), and longitudinal (d). In the latter two modes, smaller pulsar separation angles are
characterized by retained frequency dependence in �ðfLÞ in the range of frequencies relevant to pulsar timing experiments. Nearly
all the nontransverse curves eventually converge, but at rather high values of �ðfLÞ relative to the transverse modes, indicating
increased sensitivity to GWs with these polarizations. We have plotted the large limit approximation (41) (dashed black curve) along
with �lðfLÞ in (d), which is in good agreement with the � ¼ 0 curve.
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the effect of different pulsar distances. Results are given in
Figs. 7(a)–7(d) and show that the calculated values of �ðfÞ
are consistent with the more simple results discussed in
Sec. V for the nontransverse modes for frequencies up to

10�9 Hz. Pulsar pairs with the smallest (� & 12�) sepa-
ration angles [starred curves in Figs. 7(b) and 7(d)] for
nontransverse polarization modes are characterized by

large values of the overlap reduction function and mono-
tonic growth up to some limiting frequency. Pulsar pairs
with larger (� * 12�) separation angles [unstarred curves
in Figs. 7(b) and 7(d) and all curves in Fig. 7] do not
display monotonic growth up to a limiting frequency, but
still result in much larger values than those of the plus and
cross modes. Figure 7 shows that sensitivity is greater for
scalar-longitudinal and vector modes than for the tensor
and scalar-breathing modes and increases rapidly for pul-
sars that are nearly co-aligned in the sky. Theoretical
sensitivity estimates using (41) support this result (see
Appendix B). In these plots, increased variation in curve
amplitudes appears due to the fact that the pulsars are not
equidistant from the Earth.
Over the entire range of frequencies plotted for pulsar

timing experiments (between 
10�9 and 
10�7 Hz), the
overlap reduction functions are approximately constant. In
practice, some optimality will be lost due to the fact that
pulsar distances are known at best to only 
10% [30].

VII. DISCUSSION

Direct detection of GWs might be possible in the next
decade using a pulsar timing array. A detection would

TABLE I. NANOGrav pulsar data.

PSR Distance (kpc) PSR Distance (kpc)

J0030þ 0451 0.23 J1853þ 1303 1.60

J0218þ 4232 5.85 J1857þ 0943 0.70

J0613� 0200 2.19 J1903þ 0327 6.45

J1012þ 5307 0.52 J1909� 3744 0.55

J1024� 0719 0.35 J1910þ 1256 1.95

J1455� 3330 0.74 J1918� 0642 1.40

J1600� 3053 2.67 J1939þ 2134 3.58

J1640þ 2224 1.19 J1944þ 0907 1.28

J1643� 1224 4.86 J1955þ 2908 5.39

J1713þ 0747 0.89 J2010� 1323 1.29

J1738þ 0333 1.97 J2145� 0750 0.50

J1744� 1134 0.17 J2317þ 1439 1.89

FIG. 7 (color online). �ðfÞ for some of the NANOGrav pulsar pairs. Pulsar pairs, along with their angular separation in degrees, are
shown with each curve. As f increases, �ðfÞ approaches a constant value. The asterisk indicates the NANOGrav pulsar pair with the
smallest angular separation (
 3:35�). Note the larger values of the �ðfÞs for this pair.
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provide a mechanism for testing various metric theories of
gravity. To develop optimal detection strategies for sto-
chastic backgrounds in alternative theories of gravity, we
have computed overlap reduction functions for all six GW
polarization modes, including four modes not present in
general relativity.

We began by introducing the redshift induced by GWs of
various polarizations, along with the polarization tensors
unique to each mode. We then used the optimal detection
statistic for an unpolarized, isotropic stochastic back-
ground of GWs, defined in Anholm et al. [24], to find the
overlap reduction function, a geometric dependent quantity
in the expression for the expected cross correlation.

We examined the redshifts induced by GWs of various
polarizations on the pulsar-Earth system and found that our
results are consistent with those of Anholm et al. [24] and
Tinto and Alves [27]: when the GWs are coming from
roughly the same direction as the pulses from the pulsar,
the induced redshift for any GW polarization mode is
proportional to fL, the product of the GW frequency,
and the distance to the pulsar. When the GWs and the
pulse direction are exactly parallel the redshift for the
transverse and vector modes vanishes, but it is proportional
to fL for the scalar-longitudinal mode.

We show that the vanishing contributions from the ten-
sor, vector, and scalar-breathing modes are not a result of
the pulse surfing the GW. In fact, sensitivity to GWs
coming from directions near the pulsar increases for all
polarizations. It is the transverse nature of these modes that
is responsible for the vanishing response. In this limit we
also show that the redshift is proportional to the relative

velocity of the pulsar-Earth system (L _h), which is the same
when the pulse is emitted and when it is received.

We find that the overlap reduction functions for non-
transverse GWs are characterized by frequency dependence
that is significant for nearby pulsar pairs. The values of the
overlap reduction function increase by up to 1 order of
magnitude for the vector polarization modes and up to 2
orders of magnitude for the scalar-longitudinal mode.
Pulsar timing arrays are significantly more sensitive to
scalar-longitudinal and vector GW stochastic backgrounds.

Next, we used current pulsar distance and sky-location
data from the Australia Telescope National Facility pulsar
catalog to calculate the overlap reduction functions for
each pulsar pair in the NANOGrav pulsar timing array.
Over the range of frequencies relevant to pulsar timing
array experiments, these overlap reduction functions for all
polarization modes are roughly constant for most pulsar
pairs. For nearly co-aligned pulsars, the overlap reduction
functions for scalar-longitudinal and vector modes exhibit
marked frequency dependence and asymptote to much
larger values than the overlap reduction functions for
transverse modes. In fact, for a pair separated by about
3� we find a sensitivity increase of about a factor of 104 for
longitudinal modes.

The results discussed here may be compared to other
recent work. Lee et al. [21] calculated the cross correlation
functions for stochastic GW backgrounds including all six
GW polarizations and found that the correlation functions
for nontransverse GWs are frequency dependent, as well as
an increased response in the cross correlation to scalar-
longitudinal GWs, in agreement with our results. This
work was done in the context of the coherence statistic
[21] for stochastic background detection, rather than the
optimal statistic [24]. The coherence statistic is a measure
of goodness of fit of the pulsar-pair cross correlations to the
Hellings-Downs curve. For nontransverse modes there is
no Hellings-Downs curve because the overlap reduction
functions remain frequency dependent for large fL. Lee
et al. solved this problem by simulating GW backgrounds
and finding effective background-dependent Hellings-
Downs curves for these theories. In the context of the
optimal statistic this is a nonissue: The frequency depen-
dent overlap reduction functions can be used to construct
the optimal filter in Eq. (23). This is identical to what is
done for LIGO stochastic background optimal filter con-
struction [25], where the overlap reduction functions are
also frequency dependent.
Alves and Tinto [22] have estimated antenna sensitiv-

ities to GWs of all six polarization modes by assuming a
signal-to-noise ratio of 1 over 10 years and calculating the
noise spectrum. Their results indicate an increase of 2–3
orders of magnitude in sensitivity to scalar-longitudinal
mode GWs compared to that of plus- and cross-mode
GWs. To explain this effect Alves and Tinto compare the
effect of a tensor GW propagating orthogonally to the
pulsar-Earth system and a scalar-longitudinal GW propa-
gating in a direction parallel to the pulse direction. They
argue that the increased sensitivity to longitudinal GWs is
due to the amount of time a longitudinal GW affects the
pulsar-Earth radio link.
We have compared the effect of GW propagation from

directions near the pulsar and orthogonal to the pulsar-
Earth system for all polarization modes. For GW propaga-
tion directions parallel to the pulse direction we find that
the redshift induced by a gravitational wave is large, and
seemingly divergent when the GWand pulse directions are
exactly parallel. This apparent divergence occurs for lon-
gitudinal, transverse, and shear modes alike. In that limit,
however, the divergent term in the redshift that comes from
the relationship between time and affine parameter deriva-
tives cancels because the phase of the GW pulse when
pulse is emitted is nearly equal to the phase of the GW
when the pulse is received [see Eqs. (A9), (24), and (25)].
The redshift becomes proportional to the relative velocity
of the pulsar-Earth system and a mode-dependent geomet-
rical projection factor for all GW polarization modes. In
this limit the relative velocity of the pulsar-Earth system is
approximately equal when the pulse is emitted and re-
ceived. For transverse and shear modes the projection
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factor vanishes when the GW and pulse directions become
parallel. For longitudinal modes the geometrical factor
goes to a constant, so that the pulsar-Earth system is very
sensitive to GWs from directions near the pulsar. This is
the physical origin of the increased sensitivity to scalar-
longitudinal GWs.
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APPENDIX A: ANALOG TO DETWEILER’S
EQUATION FOR VECTOR AND SCALAR

POLARIZATION MODES

Here we show the derivation of the redshift induced by
non-Einsteinian GW modes. This derivation appears in
[27] for all six GW polarizations and is included here for
completeness. We begin by considering the metric due to a
longitudinal mode gravitational wave perturbation:

gab ¼ �ab þ habðt� zÞ ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1þ hL

0
BBBBB@

1
CCCCCA:

(A1)

Given a null vector sa ¼ �ð1;�	;��;��Þ in Minkowski
space (where 	, �, � are directional cosines) the corre-
sponding perturbed null vector is given by

�a ¼ sa � 1

2
�abhbcs

c ¼ �

1

�	

��

��

�
1� hL

2

�

0
BBBBBBB@

1
CCCCCCCA
: (A2)

From the geodesic equation, the t component of �a must
satisfy

d�t

d
¼ ��t

ab�
a�b; (A3)

where

�t
ab ¼ 1

2g
tcð@agbc þ @bgac � @cgabÞ ¼ 1

2
_gab: (A4)

Now we may write the geodesic equation as

d�t

d
¼ � 1

2
_gab�

a�b ¼ � 1

2
_hLð�zÞ2: (A5)

To zeroth order in hL,

ð�zÞ2 ¼ �2�2

�
1þ hL

2

�
2 � �2�2 þOðhLÞ; (A6)

allowing us to write the geodesic equation as

d�t

d
¼ d�

d
¼ � 1

2
_hL�

2�2: (A7)

We now need to express the time derivative of the metric

perturbation, _hL, as a derivative of the affine parameter .
Since hL ¼ hLðt� zÞ, we may write

dhL
d

¼ @hL
@t

dt

d
þ @hL

@z

dz

d
¼ @hL

@t

dt

d
� @hL

@t

dz

d
: (A8)

Identifying the relations dt
d ¼ � and dz

d ¼ ���, we obtain

the relation

_h L ¼ @hL
@t

¼ 1

�ð1þ �Þ
dhL
d

; (A9)

which makes the geodesic equation

d�

d
¼ � 1

2
_hL�

2�2 ¼ � 1

2

��2

ð1þ �Þ
dhL
d

: (A10)

Integrating both sides, we obtain

�e

�p
¼ exp

�
� 1

2

�2

ð1þ �Þ�hL
�
; (A11)

where �hL ¼ heL � hpL. Expanding to first order in hL, we
may write

�e � �p

�p
� � 1

2

�2

ð1þ �Þ�hL (A12)

¼ � cos2�p
2ð1þ cos�pÞ�hL: (A13)

The derivation for vector modes is nearly identical to that
of the longitudinal mode. For the sake of brevity we only
detail the vector-ymode in the remainder of this paper. For
the vector-y mode, the metric perturbation takes the form

gab ¼

�1 0 0 0

0 1 0 0

0 0 1 hy

0 0 hy 1

0
BBBBB@

1
CCCCCA: (A14)

The null vector becomes
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�a ¼ �

1

�	

��þ hy�

2

hy�

2 � �

0
BBBBBB@

1
CCCCCCA
: (A15)

Following the same algebraic steps used above, one obtains
the geodesic equation

d�t

d
¼ d�

d
¼ � _hy�

2��; (A16)

which leads to

d�

d
¼ � ���

ð1þ �Þ
dhy
d

: (A17)

Integrating this expression and expanding the result to first
order in �hy produces the result

�e � �p

�p
� � ��

ð1þ �Þ�hy (A18)

¼ � cos�p sin�p sin�p
ð1þ cos�pÞ �hy; (A19)

where �hy ¼ hey � hpy .

For comparison, we also include the results for the plus,
cross, vector-x, and breathing modes. For the plus mode,
we obtain

�e � �p

�p
� �ð	2 � �2Þ

2ð1þ �Þ �hþ (A20)

¼ �cos2�psin
2�p þ sin2�psin

2�p

2ð1þ cos�pÞ �hþ;

(A21)

for the cross mode,

�e � �p

�p
� � 	�

ð1þ �Þ�h� (A22)

¼ � cos�psin
2�p sin�p

ð1þ cos�pÞ �h�;

for the vector-x mode,

�e � �p

�p
� � 	�

ð1þ �Þ�hx (A24)

¼ � cos�p cos�p sin�p
ð1þ cos�pÞ �hx; (A25)

and for the breathing mode,

�e � �p

�p
� �ð	2 þ �2Þ

2ð1þ �Þ �hb (A26)

¼ �cos2�psin
2�p � sin2�psin

2�p

2ð1þ cos�pÞ �hb:

(A27)

Here, �hA ¼ heA � hpA, and we can identify these expres-
sions with (2).

APPENDIX B: SENSITIVITY BOUNDS FOR �lðfÞ
In this section we derive an upper limit estimate for the

value of �lðfÞ for pulsars that are nearly co-aligned in the
south-pole region of the sky. We begin by considering a
two-pulsar-Earth system in which the pulsars are separated
by angle � and are equidistant from the Earth (L1 ¼ L2). In
this scenario the overlap reduction function for a longitu-
dinal mode GW is given by

�lðfÞ ¼
Z
S2
d�

cos2�

2ð1þ cos�Þ
� ðcos� cos�þ sin� sin� cos�Þ2

ð1þ cos� cos�þ sin� sin� cos�Þ
� ðe2�ifLð1þcos�Þ � 1Þ
� ðe�2�ifLð1þcos� cos�þsin� sin� cos�Þ � 1Þ: (B1)

We would like to work in the approximation where

2�fLð1þ cos�Þ 	 1: (B2)

To this end, suppose that � ¼ �� 
, such that 
 � � 	 1
(this constraint on � is necessary to achieve a large enough
response in the cross correlation). Doing the relevant series
expansion in 
 and retaining terms to second order, the
integrand simplifies significantly and we obtain

�lðfÞ � ð�fLÞ2
Z 2�

0
d�

Z 
max

0
d
ð1� 
2Þ

� ð1� 
2 � 
� cos�Þ: (B3)

Here we have used the approximation (B2) to define

max ¼ m=

ffiffiffiffiffiffiffiffiffiffi
�fL

p
, where m 2 R satisfying m 	 1.

Completing the integration over � eliminates factors of
� in the remaining integrand and the remaining mathemat-
ics is straightforward:

�lðfÞ ¼ 2�ð�fLÞ2
Z 
max

0
d
ð1� 
2Þ2

� 2�ð�fLÞ2
�

max � 2

3

3
max

�
: (B4)

Replacing the ð�fLÞ2 term with m4=
4
max and allowing



 � (this arises from our demand 
 � � 	 1), we
obtain
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�lðfÞ ¼ 2�m4

�
1

�3
� 2

3

1

�

�
: (B5)

By saturating the inequality m< 1, we can establish an upper bound for �lðfÞ that depends only on the pulsar separation
angle �:

�lðfÞ & 2�

�
1

�3
� 2

3

1

�

�
: (B6)

For example, for a pulsar pair with 3� angular separation, we obtain the upper limit �lðfÞ & 4� 104, which agrees with the
results shown in Fig. 7(b) for the J1853þ 1303� J1857þ 0943 pulsar pair.
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