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We demonstrate entanglement generation between mode pairs of a quantum field in a single, rigid

cavity that moves nonuniformly in Minkowski space-time. The effect is sensitive to the initial state, the

choice of the mode pair and bosonic versus fermionic statistics, and it can be stronger by orders of

magnitude than the entanglement degradation between an inertial cavity and a nonuniformly moving

cavity. Detailed results are given for massless scalar and spinor fields in (1þ 1) dimensions. By the

equivalence principle, the results model entanglement generation by gravitational effects.
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In the emerging field of relativistic quantum informa-
tion, the past decade has revealed a number of novel
kinematic effects on entanglement between observers in
relative inertial motion [1] and between one inertial
and one uniformly linearly accelerating observer (see
Refs. [2–8] for a selection and Ref. [9] for a recent review).
The phenomenon that has received most attention is the
entanglement degradation caused by relative acceleration,
assuming that the issues of switching the acceleration on
and off are negligible and field modes of plane wave type,
spread over large regions of the space-time, are considered.
A rare case of entanglement generation under these as-
sumptions is found in Ref. [10].

A framework that removes the idealization of spatially
unlocalized field modes is to confine the field to a cavity
[11], and the idealization of everlasting acceleration can be
removed by taking the cavity’s worldtube to be inertial
outside a finite time interval [12]. This creates a situation
that should be more directly experimentally accessible.
When the cavity’s worldtube consists of inertial and uni-
formly linearly accelerated segments, it was shown in
Refs. [12,13] that the evolution of the quantum field is
amenable to a systematic perturbative analysis when the
accelerations are small compared with the cavity mode
frequencies, both for bosonic and fermionic fields; further,
the perturbative analysis remains valid for arbitrary dura-
tions of the individual segments, and the distances travelled
may hence be arbitrarily large. The nonuniformly acceler-
ated motion was found to degrade mode entanglement
between the moving cavity and an inertial reference cavity.
The physical mechanism behind the degradation is that
when observations of the field are restricted to a small
number of field modes, for example, by appealing to
the frequency sensitivity profile of a detector by which
the field might be observed, particle creation within the

moving cavity causes information to be lost into the infi-
nitely many field modes that are not being observed.
In this article we show, within the above perturbative

treatment of a quantum field that is confined to a single
cavity, that nonuniform motion of a rigid cavity creates
entanglement between any two given field modes within
the cavity, even when the initial state is separable. We
develop a general quantitative analysis for both a scalar
field and a fermion field, giving detailed results for a
sample travel scenario and demonstrating that the parti-
cle statistics has a significant effect on the entanglement.
As a highlight, we show that the entanglement genera-
tion can appear in the first order in the small accelera-
tion expansion, while the entanglement degradation
between cavities is only a second-order effect [12,13].
This suggests that entanglement generation in a cavity
may be more readily observable than the entanglement
degradation between cavities, allowing more effective
tests of phenomena linked to the dynamical Casimir
effect [14], and possibly also improving the technologi-
cal prospects of building quantum gates based on accel-
eration effects. For instance, highly entangled two-mode
squeezed states, produced by a known gate in continuous
variable systems, can be generated by periodically re-
peating segments of uniformly accelerated and inertial
motion [15].
We work in (1þ 1)-dimensional Minkowski space with

metric signature (�þ): additional transverse dimensions
can be included via their contribution to the effective field
mass. The length of the cavity in its instantaneous rest
frame is � > 0. The cavity is assumed to be inertial outside
a finite time interval, but the initial and final velocities need
not coincide. We use units in which ℏ ¼ c ¼ 1. Complex
conjugation is denoted by an asterisk and Hermitian con-
jugation by a dagger. OðxÞ denotes a quantity for which
OðxÞ=x is bounded as x ! 0.
Bosons: We consider a real scalar field � satisfying the

Klein-Gordon equation ð�hþm2Þ� ¼ 0, where m � 0
is the mass and h is the scalar D’Alambertian. For
definiteness, we adopt at the cavity boundaries the
Dirichlet boundary condition as in [12], although much
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of the analysis holds for any boundary condition that
ensures unitarity of the time evolution.

Let f�n j n ¼ 1; 2; . . .g be a complete orthonormal set of
mode solutions that are of positive frequency with respect
to the cavity’s proper time at early times (the in-region),

and let f ~�n j n ¼ 1; 2; . . .g be a similar set at late times
(the out-region). Each set has an associated set of ladder
operators, with the respective commutation relations

½an; aym� ¼ �nm and ½~an; ~aym� ¼ �nm, and a vacuum state,

denoted, respectively, by j0i and j~0i. The two sets of modes
are related by the Bogoliubov transformation

~�m ¼ X
n

ð�mn�n þ �mn�
�
nÞ; (1)

and the ladder operators are related by

an ¼
X
m

ð�mn~am þ ��
mn~a

y
mÞ; (2)

where the notation is as in Ref. [16]. The vacua are related
by [17]

j0i ¼ NeW j~0i; (3)

where W :¼ 1
2

P
pqVpq~a

y
p~a

y
q , V :¼ �����1 and N is a

normalization constant.
We prepare the system in the in-region in a state without

mode entanglement. We ask: does the cavity’s motion
generate mode entanglement in the out-region, where the
particle content of the state has changed?

Our methodology is as follows. We first specify the in-
region state and express it in the out-region basis using
(3) and the adjoint of (2). We then trace over all out-
region modes except those labeled by two distinct quan-
tum numbers k and k0. We quantify the entanglement in
the resulting reduced density matrix by the negativity
[18–20], defined as minus the sum of the negative eigen-
values of the partial transpose. The advantages of nega-
tivity are that it is easy to compute and it interpolates
between entanglement monotones that have a more direct
operational interpretation [21].

To identify a parameter regime that is treatable analyti-
cally, we assume that the Bogoliubov coefficients have
Maclaurin expansions in a small dimensionless parameter
h, such that

� ¼ �ð0Þ þ �ð1Þ þ �ð2Þ þOðh3Þ; (4a)

� ¼ �ð1Þ þ �ð2Þ þOðh3Þ; (4b)

where the superscripts indicate the power of h, �ð0Þ ¼
diagðG1; G2; � � �Þ and each Gj has unit magnitude. For

cavity worldtubes grafted from inertial and uniformly
accelerated segments, this situation arises when the accel-
eration at the center of the cavity is proportional to h=� by
a numerical coefficient that may differ from segment to
segment: the parameter h is in this case the product of the

cavity’s width � and the acceleration at the center of the
cavity [12]. We then work perturbatively in h. It follows

that to order h2 we have N ¼ 1� 1
4

P
p;qjVð1Þ

pq j2 and

j0i ¼
�
1� 1

4

X
pq

jVð1Þ
pq j2

�
j~0i þ 1

2

X
pq

Vpq~a
y
p~a

y
q j~0i

þ 1

8

X
pqij

Vð1Þ
pqV

ð1Þ
ij ~ayp~ayq ~ayi ~a

y
j j~0i þOðh3Þ: (5)

As a first example, we take the in-region state to be the
in-vacuum j0i. To order h2, the partially-transposed re-
duced density matrix vanishes outside a 6� 6 block.
Among the six eigenvalues, the only possibly negative
ones are

�4 ¼ �j�ð1Þ
kk0 j2; (6a)

�6 ¼ f�
k:k0 þ f�

k0:k � ððf�
k:k0 � f�

k0:kÞ2 þ jVkk0 j2Þ1=2;
(6b)

where f�m:n :¼ 1
2

P
q�nj�ð1Þ

qmj2 and Vkk0 is kept to order h2.

�4 arises from coherence between j~0i and j~1kij~1k0 i, while
�6 arises from coherence between j~0i and j~2kij~2k0 i.
Specializing to a cavity worldtube that is grafted from

inertial and uniformly accelerated segments, we find that a
qualitative difference emerges depending on the relative
parity of k and k0. If k and k0 have opposite parity, the

expansions given in Ref. [12] show that �ð1Þ
kk0 is nonvanish-

ing but Vð2Þ
kk0 ¼ 0. It follows that jVkk0 j2 ¼ j�ð1Þ

kk0 j2 þOðh4Þ.
The leading term in the negativity is then linear in h and

given by j�ð1Þ
kk0 j. If, by contrast, k and k0 have the same

parity, we have �ð1Þ
kk0 ¼ 0 and Vkk0 ¼ Vð2Þ

kk0 þOðh3Þ. The
leading term in the negativity comes then from �6 and is
of order h2. Sample negativity plots for both cases are
shown in Fig. 1 for a massless field when the cavity under-
goes a single segment of uniform acceleration.
As a second example, we take the in-region state to be

j1ki, containing exactly one in-particle. Using (5) and the
adjoint of (2), we find

j1ki ¼
X
m

�
��
mk þ

X
p

�ð1Þ
pkV

ð1Þ
pm � 1

4
�mkG

�
k

X
pq

jVð1Þ
pq j2

�
~aymj~0i

þ 1

2

X
mpq

ð��
mk þG�

k�mkÞVpq~a
y
m~a

y
p~a

y
q j~0i

þ 1

8
G�

k

X
pqij

VpqVij~a
y
k ~a

y
p~a

y
q ~a

y
i ~a

y
j j~0i þOðh3Þ: (7)

To order h2, the partially-transposed reduced density ma-
trix now vanishes outside an 8� 8 block. Among the first
five eigenvalues, the only possibly negative one is

�3 ¼ � ffiffiffi
3

p j�ð1Þ
kk0 j2; (8)
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which arises from coherence between j~1ki and j~3kij~2k0 i.
The last three eigenvalues are the roots of a cubic
polynomial, analytically cumbersome for generic values
of the parameters but readily amenable to numerical
work.

Specializing to a cavity worldtube that is grafted from
inertial and uniformly accelerated segments, we again find
a qualitative difference depending on the relative parity of
k and k0. In particular, if k and k0 have opposite parity, the
leading contribution to negativity comes from the eigen-
value

�8 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ð1Þ

kk0 j2 þ 2j�ð1Þ
kk0 j2

q
(9)

and is linear in h. The negativity is in this case higher than
the corresponding negativity for the in-region state j0i.
Sample negativity plots are shown in Fig. 1 for a massless
field when the cavity undergoes a single segment of uni-
form acceleration.
Fermions: We consider in the cavity a Dirac field c with

mass m � 0, with boundary conditions that ensure unitar-
ity of the time evolution as in Ref. [13].
Let fc n j n 2 Zg be a complete orthonormal set of

mode solutions, such that the modes n � 0 are of positive
frequency and the modes with n < 0 are of negative fre-
quency with respect to the cavity’s proper time in the in-
region. We write the in-region mode expansion of the field

as c ¼ P
n�0c nbn þ

P
n<0c nc

y
n , so that the nonvanishing

anticommutators of the fermionic ladder operators for
positive frequency modes and negative frequency modes

are fbm; byn g ¼ �mn and fcm; cyn g ¼ �mn, respectively, and
the in-vacuum jj0ii satisfies bnjj0ii ¼ 0 and cnjj0ii ¼ 0.
The corresponding modes, operators, and states in the out-
region are denoted by a tilde.
We write the Bogoliubov transformation between

the two sets of modes as ~c m ¼ P
mAmnc n, where the

Bogoliubov coefficients Amn form a unitary matrix. The
relations between the two sets of ladder operators can be
written in terms of the Bogoliubov coefficients by taking
appropriate inner products. The vacua are related by

jj0ii ¼ MeW jj~0ii, where W ¼ P
p�0
q<0

V pq
~byp~c

y
q , M is a

normalization constant, andV pq can be expressed in terms

of Amn [13].
We assume again that the Bogoliubov coefficients have a

Maclaurin expansion, now of the form

Amn ¼ Að0Þ
mn þ Að1Þ

mn þ Að2Þ
mn þOðh3Þ; (10)

where h is the small dimensionless parameter, Að0Þ
mn ¼

Gm�mn (no sum) and each Gj has unit magnitude. We

then work perturbatively in h [13].
We first take the in-region state to be the in-vacuum jj0ii

and trace over all out-region modes except a mode � � 0,
of positive charge, and a mode �0 < 0, of negative charge.
As pointed out in Ref. [22], the tracing in a fermionic Fock
space has an ambiguity, but the construction of V guar-
antees that this ambiguity does not affect our measures of
entanglement, given that these measures are unambiguous
for the in-region state jj0ii. To order h2, we find that the
only potentially negative eigenvalue of the partially trans-
posed reduced-density matrix is

�3 ¼ �fA�:�0 þ fA�0:� � ðð �fA�:�0 � fA�0:�Þ2 þ jV ��0 j2Þ1=2;
(11)

where �fAm:n :¼ 1
2

P
q<0
q�n

jAð1Þ
qmj2. Note the similarity with (6b).

Specializing to the massless fermion and a cavity world-
tube that is grafted from inertial and uniformly-accelerated
segments [13], we find that the eigenvalue (11) is linear in
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FIG. 1 (color online). The leading order contribution to the
negativity is shown for a massless scalar field and a massless
Dirac field. The travel scenario has a single accelerated segment,
of acceleration h=� as measured at the cavity’s center and of
duration 	 in the cavity’s proper time, where the corresponding
Bogogliubov coefficients can be found in Refs. [12,13]. The
negativity is periodic in u :¼ h	=½4�atanhðh=2Þ� with period 1.
Figure 1(a) shows N =h, in dashed (blue) for a scalar field with
in-region vacuum and ðk; k0Þ ¼ ð1; 4Þ, in dotted (blue) for a scalar
field with in-region state j1ki and ðk; k0Þ ¼ ð1; 4Þ, in solid (red)
for a Dirac field with in-region vacuum and ð�; �0Þ ¼ ð2;�1Þ
with s ¼ 0, and in dotted-dashed (red) for a Dirac field with in-
region state jj1�ii and ð�; �̂Þ ¼ ð1; 4Þ with s ¼ 0 in the notation
of [13]. Figure 1(b) shows the corresponding curves for N =h2

with the scalar field modes ðk; k0Þ ¼ ð1; 3Þ and the fermionic
modes ð�; �0Þ ¼ ð1;�1Þ and ð�; �̂Þ ¼ ð1; 3Þ.
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h when � and �0 have opposite parity. The leading-order

correction to the negativity is then equal to jAð1Þ
��0 j.

Consider then in-region states with particles. When the
in-region state contains a single particle in mode � � 0, the
out-region reduced density matrix for two modes of oppo-
site charge turns out to have vanishing negativity to order
h2. However, when considering two modes of the same
charge as the excitation, e.g., �, �̂ � 0, entanglement is
generated between thesemodes.Mirroring the vacuum case
an analogous expression to Eq. (11), with �fA�:�0 and fA�0:�
replaced by fA�:�̂ and �fA�̂, is obtained for the possibly nega-
tive eigenvalue of the partially transposed reduced-density
matrix. Similar as before the leading-order correction to the

negativity is jAð1Þ
��̂j if � and �̂ have opposite parity.

This structure is simply a consequence of the fermionic
algebra and charge conservation: entanglement is gener-
ated by the Bogoliubov coefficients connecting two modes,
either by creation of a pair of oppositely charged particles
in these modes, or by shifting a preexistent excitation to
another mode of the same charge. If the mode in question is
populated, the Pauli exclusion principle prohibits any fur-
ther excitation of this mode and the creation of particle-
antiparticle pairs cannot entangle it with any mode of
opposite charge.

When the in-region state contains a pair of oppositely
charged particles, the situation changes again: the partial
transpose of the out-region reduced-density matrix of the
corresponding modes � � 0 and �0 � 0 then has one
potentially negative eigenvalue of the form of Eq. (11),
where �fA�:�0 and fA�0:� are replaced by fA� and �fA�0 .

Specializing to the massless fermion and a cavity world-
tube that is grafted from inertial and uniformly accelerated
segments [13], we find that when � and �0 have opposite
parity, the leading-order correction to the negativity is the
same as when the in-region state is the in-region vacuum.

Sample plots are shown in Fig. 1.
Conclusions: We have demonstrated that nonuniform

motion of a cavity generates entanglement between modes
of a quantum field confined to the cavity, both bosonic and
fermionic. Working to quadratic order in the cavity’s ac-
celeration, and quantifying the entanglement by the nega-
tivity, we found that the entanglement generation depends
on the initial state of the field, on the relative parity of the
mode pair that is observed at late times, and on the bosonic

versus fermionic statistics. For both bosons and fermions,
we found situations where the entanglement generation can
be enhanced by placing particles in the initial state. For
fermions, however, charge conservation and the Pauli ex-
clusion principle require the choice of the considered out-
region modes to be consistent with the initial state to
generate entanglement, while the bosonic statistics allow
the modes to be freely populated without hindering entan-
glement generation.
Compared with the motion-induced entanglement deg-

radation between a static cavity and a moving cavity
[12,13], we found that the entanglement generation can
occur already in linear order in the cavity’s acceleration,
while the entanglement degradation is a second-order ef-
fect. The prospects of experimental verification [12] could
hence be significantly better for phenomena signalling
entanglement generation than entanglement degradation.
The motion-induced entanglement effects that we have

analyzed have technical similarities with the creation of
squeezed states in resonators with oscillating walls, known
as the dynamical Casimir effect [14,23]. In this context, we
emphasize that our only approximation was to work in the
small acceleration regime, meaning that the product of the
cavity’s length and acceleration is small compared with
the speed of light squared [12,13]. Our analysis hence
covers as a special case cavities that oscillate rapidly
with a small amplitude: such cavities are often introduced
in theoretical analyses of the dynamical Casimir effect but
are experimentally problematic [14].
Our analysis however covers also cavities that accelerate

in a given direction for finite but arbitrarily long times,
with travel distances that may be arbitrarily large. Further,
as the equivalence principle implies that gravitational
acceleration can be locally modeled by acceleration in
Minkowski space-time, our results suggest that a gravita-
tional field can produce entanglement. Experiments for
entanglement generation could hence be sought in setups
that span macroscopic distances, including quantum com-
munication through near-Earth satellite orbits.
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