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An effective action for asymptotically safe gravity
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Asymptotically safe theories of gravitation have received great attention in recent times. In this
framework an effective action embodying the basic features of the renormalized flow around the non-
Gaussian fixed-point is derived and its implications for the early universe are discussed. In particular, a
landscape of a countably infinite number of cosmological inflationary solutions characterized by an
unstable de Sitter phase lasting for a large enough number of e-folds is found.
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Thanks to the application of renormalization group (RG)
techniques [1], the possibility that the high-energy behav-
ior of gravity can be governed by an ultraviolet non-
Gaussian fixed-point (NGFP) is gradually emerging as a
viable theoretical scenario for a consistent theory of quan-
tum gravity. In this context, the nonperturbative functional
renormalization group equation [2] for gravity [3], is a
particularly important tool because it generates an RG
flow on a theory space which consists of all diffeomor-
phism invariant functionals of the metric g,,,. It defines a
one-parameter family of effective field theories with
actions I';(g /w) depending on a coarse graining scale (or
“cutoff”) k, and interpolates between a ““bare” action (for
k — 00) and the ordinary effective action (for k& — 0).
When applied to the Einstein-Hilbert (EH) action the func-
tional renormalization group equation yields beta functions
[3,4] which have made detailed investigations of the scal-
ing behavior of Newton’s constant possible [5-16]. It has
been shown quite convincingly that the dimensionful
Newton constant G is antiscreened at high energies, a
behavior that eventually leads to an ultraviolet (UV)
NGFP, a necessary condition for asymptotic safety. These
analyses have then been enlarged to include matter [17]
and a growing number of purely gravitational operators in
the action [18-22] and reviews of these works have
appeared in [23].

Clearly, a natural arena for the applications of this idea is
the physics of the early universe and the space-time singu-
larities. In those contexts, the RG flow of the effective
average action, obtained by different truncations of theory
space, has been the basis of various investigations of
“RG-improved” black hole [24,25] and cosmological
[26-32] spacetimes. In particular, very recently it has
been shown that the “RG-improved” Einstein equations
admit (power-law or exponential) inflationary solutions
and that the running of the cosmological constant can
account for the entire entropy of the present universe in
the massless sector [33,34] (see [35] for an extended
review.)

However, it is still not always clear how to extract all the
relevant information encoded in the running of the Newton
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constant because of the conceptual difficulties in relating
the typical energy momentum scale k with the space-time
properties. In a situation with more than one possible
physical cutoff scale the general theory of the effective
average action [36] implies that the relevant action is I,
where k is the largest one of the various competing scale.
Therefore in a realistic description of the early universe,
including the presence of the matter fields, the cutoff
identification becomes a difficult task unless one knows
a priori the hierarchies of scales during the universe evo-
lution. However, even if this information were known, the
cutoff must then be promoted to the status of a dynamical
variable in order to preserve diffeomorphism invariance at
the level of the action [37-40]. In a recent work [41],
Weinberg has discussed the possibility that, in the context
of asymptotically safe gravity, it could be possible to
have a period of exponential expansion which comes to
an end after enough e-folds of inflation. An important
ingredient is the choice of an “‘optimal cutoff” which
only partially includes the effect of the radiative correc-
tions. Unfortunately, it turns out that an unstable de Sitter
phase which lasts enough e-folds is in general not simple to
achieve in this model, unless some fine-tuning occurs
[41,42].

Ideally, if one wanted to study the quantum evolution of
the curvature at very high, let us say Planckian energies,
the full effective action I'(g,,,) should in principle be used.
This functional coincides with I';(g,,,) in the limit k — 0
but this limit is not easily accessible unless renormalization
effects are unimportant below some given mass scale.

A possible strategy in order to obtain an effective
action describing the physics near the NGFP up to
Planckian energies, is to perform a renormalization group
improvement of the classical Lagrangian, a standard ap-
proach in QED and QCD [43,44]. For instance, for the
quark binding problem in QCD [45] the leading contribu-
tions to the effective QCD Lagrangian LSfED is encoded
in the well known leading-log model, which can be
obtained by means of a renormalization group improve-

ment of the standard classical Lagrangian, £8§D o

F/28hn where gh,=g*(u?)/[1+1bg*(u?)log(F/ut)],

© 2012 American Physical Society

RAPID COMMUNICATIONS


http://dx.doi.org/10.1103/PhysRevD.85.081503

ALFIO BONANNO

F=-3(0,A% —0,A% + f°A,,A,.)?, wisan infrared
subtraction scale and b is the usual one-loop renormaliza-
tion constant, dependent on the number of flavors. In this
case the renormalization group is applied to the field-
strength dependence rather than the usual k*-dependence
of the running coupling constant [45-48]. A nontrivial
confirmation of the validity of this approach in QCD can
be found in the recent work of [49] where it was shown that
the leading-log model is in qualitative agreement with the
results of an explicit evaluation of the full effective action
obtained with the functional RG.

Let us then start with the standard classical EH
Lagrangian

and replace the coupling constant G and A in (1) with the
running counterparts G — G(k) and A — A(k) with
k* « R. Although at this point it would be possible to
consider more complicated tensor structure of the curva-
ture, it has been shown in [50] that, at variance with
Lagrangians dependent on nonlinear function of the scalar
Ricci curvature alone, nontrivial vacua of higher derivative
theory dependent on nonlinear functions of the square of
the Ricci tensor or of the Riemann tensor, carry additional
ghostlike excitations which will not be considered in the
following discussion.

In particular, in our case G(k) = g(k)/k* and A(k) =
A(k)k?, being g(k) and A(k) the dimensionless running
Newton and cosmological constant, respectively. Since
we do not have an explicit solution for the B-functions at
our disposal in general, it turns out to be more convenient
to use the information we know from the linearized flow
around the NGFP. In particular in [6,7] it has been shown
that the approach to the fixed-point is characterized by a
pair of complex conjugate critical exponents §; = 65 with
positive real part ' and imaginary parts *£6". Introducing
t = In(k/ky) the general solution to the linearized flow
equation reads

(A g)T = (A, g)T + 2{[ReCcos(8"1)
+ ImCsin(0"t)|ReV + [ReC cos(0"r)
— ImCsin(0"1)JImV}e 0" 2)

where C is an arbitrary complex number and V is the right
eigenvector of the stability matrix (with eigenvalues
—6; = —6%) around the NGFP in the EH truncation.
Because of the fact that 8’ > 0 all the trajectories converge
to the fixed-point (A, g.) as t — co. The imaginary part 6"
plays no role in the stability but it influences the trajecto-
ries which spiral into the fixed-point as k — co. We can
now substitute the solution (2) in (1) obtaining the follow-
ing effective Lagrangian

PHYSICAL REVIEW D 85, 081503(R) (2012)

£le]EG(R) = R? + bR? cos[alog(ﬁ)](ﬁ)ﬁ 3)
n) \u

where the freedom in choosing the constant C has been
used in order to set the coefficient of the sine term to zero.
In performing the RG improvement k> « R has been as-
sumed, following the same idea used in obtaining the
leading-log QCD effective action. In addition, a global
constant rescaling in order to have the coefficient of R?
equal to unity in the limit R — oo has been performed: this
is always possible as we do not consider the inclusion of
matter fields. In this notation, a« = 6"/2, B = —6' <0
and p = k3 is the infrared momentum scale which defines
the crossover region between the Gaussian fixed-point, and
the NGFP. The constant b could be calculated in principle
from all the constants appearing in Eq. (2) and the fixed-
point values A, and g. but its precise value is not important
in the following discussion.

It is interesting to note that this particular a functional
dependences of the log-periodic type as shown in Eq. (3)
characterizes a wide variety of physical systems like for
instance the deviations from the pure Kolmogorov scaling
in hydrodynamical turbulence due to intermittence, or
fractal space-time structures[51]. The equation of motion
for a generic action of the type (3)

1 8S dL ] dr
- e - v v, =
el 88, dR M 3 L8 = ViV e
dr
+ 8 VPV, S =0 4)

being

s = f dxyflgl LR) )

a generic gravitational action.

Let us now investigate the physical content of this
effective Lagrangian in the context of early universe, by
considering a spatially flat Friedmann-Robertson-Walker
metric in vacuum. In a Friedmann-Robertson-Walker cos-
mology with scale factor a(f) we can write both the
Einstein tensor G, and the Ricci tensor R, in terms of
the Hubble rate H(t) = a(t)/a(t). In particular, the
(tt)-component and (minus) the trace of (4) become

dr 1

A(H)= —-3(H+ H2)— + 3H—dR +-L (6)
dL dr dr
_ 2
B(H) = 6(H+2H)—+2£+3dR+9HdR

)

For the following analysis, instead of using directly Eq. (6)
it is more convenient to eliminate the A term generated by
(7) using (6) in order to obtain
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H? + 6Pb cos[a ln<6(2H2 + H)
o
+(1+ B)H>+ (a — (1 + B)(2 + B))HH)

6(2H? + H)
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)](21—12’;_ H)B(2,3H4 + (402 — 6 — B9 + 4B))H?H

=2H(HH + H) + 6Fba sin[aln(
2

One is interested in de Sitter solutions, so that H = H =
const so that Eq. (8) yields

i ILL 1 B B )]
= 1/— — =+
H 12exp[2a (tan a nw) |,

which represent a countable number of de Sitter vacua all
labeled by n. It is important to remark that this nontrivial
structure of the solution is a consequence of the ““spiral”
evolution around the NGFP. As discussed by Weinberg
[41], the relevant question is if these solutions are unstable
with characteristic growth time > 1/H so that inflation
comes to an end after a large enough e-folds number =~

neZ )

)]<2H2,u+ H)ﬂ(2H4 — (9 + 8B)H2H + H? — (3 + 2B)HH). (8)

1/£. In order to address this question it is convenient to
write

H(t) = H + §H(?) (10)
and linearize Eq. (8) around the solutions (9) with 6H(z) =
exp(éHt). After some manipulations, it is possible to ob-
tain the following stability equation

£+ 3e"2 + A =0, (11)

where

401[7(— l)n(a2 4 ﬁ2)e(ﬁtan_l(ﬁ/a)+7r(ﬁ+l)n)/oz

The interesting result of this discussion is that the stability
of these inflationary solutions does not depend on the mass
scale w: only the real and imaginary part of the critical
exponent and the point in the A-g-plane, monitored by the
constant b, determine the stability of the solution. As
discussed in [7], the scheme dependence of the critical
exponents turns out to be very limited, as #’ and 6" assume
values in the ranges 2.1 < 6’ <3.4 and 3.1 < 0" <4.3,

- ab(—l)"(a2 + :82 _ z)eﬂ(tan’l(ﬁ/aHml)/a _ 2m

12)

[

root, which implies stability, for any value of b. The
situation is different for negative values of n because the
exponents in (12) are very large, the —2y/a” + % term in
the denominator can be neglected and the b-dependence
cancels out: now A is always negative and one root is
unstable. In this case A can be approximated with

B 4(a2 + 32)e7m/a

respectively, for various cutoff functions. For positive val- A= a?+ B2-2 (13)
ues of the integer n the constant A decays exponentially to
zero because 8 < 0, and one is left only with a negative  and the unstable root is
|
~ (W(a? + B> = 2)(2502 + 258 — 18) — 3a® — 3% + 6)e™/2® ”
¢ 2(a*+ B> —2) ’ (14)

The prefactor in front of the exponential is always of the
order unity and positive for 6’ and 6" in the allowed range
as a = 60"/2 and B = —6' and therefore it is always
possible to produce enough e-folds of inflation for n nega-
tive enough. At last we find

1/¢ = e /" 15)

for the number of e-folds. For instance forn = —3,1/& =
17 and for n = —4 one gets 1/£& =~ 49 while for n = —5,
1/€& = 140. It should be stressed that this result is rather
remarkable, because it only depends on one ‘“‘universal”
quantity, namely, the imaginary part of the critical expo-
nent which characterizes the flow around the NGFP. This is

reassuring because otherwise a strong cutoff dependence
in (15) would have signaled that important terms in the
truncations still needed to be considered in the cos-log
model of Eq. (3).

The effective action presented in this work has some
attractive features, which could be useful in discussing the
cosmological consequences of an asymptotically safe
gravity near the Planck scale. It reproduces the expected
leading R? behavior of the Lagrangian for large curvature
near the NGFP due to the fact that G ~ 1/k? at the
NGFP, but it also embodies the important information
provided by the linearized RG flow which “‘spirals” to-
wards the NGFP.
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One limitation of our result is that it has been obtained
within the EH truncation. However, it is not difficult to
realize that the structure of the linearized flow near the
NGFP can always be recast in an effective Lagrangian of
the log-periodic type. To illustrate this point, let us con-
sider a quadratic Lagrangian of the type introduced in [6]

S = fd“x\/lgj{ﬁue —2A) — ,BRQ}. (16)

The linearized flow in the vicinity of NGFP is also gov-

erned by a pair of complex conjugate critical exponents

0, =6 + 0" = 0 with 6’ > 0 and a single real, positive
critical exponent 5 > 0. It may be expressed as
(Ao 80 BT = (A, g4, B)T + 2{[ReC cos(8"t)

+ ImCsin(6"t)]ReV + [ReCsin(6"t)
— ImC cos(0"t)[ImV}e 0" + C;V3e 05
a7
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with arbitrary complex C = C; = (C,)* and arbitrary real
Cs, and with V = V! = (V2)* and V? the right eigenvec-
tors of the stability matrix with eigenvalues —6; = —6;
and —0j5, respectively. The conditions for UV stability,
0’ >0 and 65 > 0, are satisfied for all cutoffs, but since
0; > ¢, it is difficult to imagine that the renormalized
flow is strongly affected by the presence of the R* term in
the Lagrangian. On the other hand, we know from the work
of [22] that the values of 6’ and 6" are not significantly
changed by the presence of higher-order polynomial up to
R? in the action.

It should be remarked that our discussion eventually
breaks down in the IR, around the Gaussian fixed-point,
where possibly a new set of IR-relevant operators can show

up.
The author would like to thank Gianluca Calcagni,

Leonardo Senatore and Filippo Guarnieri for useful
discussions.
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