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In this paper, we present a new method to calculate the n-Loop n-particle irreducible effective action.

The key is an organizational trick that involves the introduction of a set of fictitious bare vertices that are

set to zero at the end of the calculation. Using these fictitious vertices, we prove that the Schwinger-Dyson

equations are the same as the equations of motion obtained from the n-particle irreducible effective action,

up to the level at which they respect the symmetries of the original theory. This result allows us to obtain

the effective action directly from the Schwinger-Dyson equations, which are comparatively easy to

calculate. As a check of our method, we reproduce the known results for the n-Loop n-particle irreducible

effective action with n ¼ 4 and n ¼ 5. We also use the technique to calculate the 6-Loop 6-particle

irreducible effective action.
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I. INTRODUCTION

An n-Loop n-particle irreducible (nPI) effective theory
is defined in terms of n functional arguments which corre-
spond to a set of n-point functions that are determined self-
consistently through a variational procedure. The idea was
introduced in Refs. [1,2] and first discussed in the context
of relativistic field theories in Ref. [3]. The variational
procedure resums certain classes of diagrams, and repre-
sents a reorganization of perturbation theory. nPI approxi-
mation schemes are especially interesting because they can
be used to study far-from-equilibrium systems [4–9],
which is of interest in the context of heavy ion collisions
and cosmology. The potential importance of nPI theories is
demonstrated by the fact that they can be used to formulate
the calculation of transport coefficients [10–12]. To date
however, numerical calculations have only been done for
2PI theories where it has been shown that the convergence
of perturbative approximations is improved (see [13–15]
and references therein). In addition, there are unresolved
issues for gauge theories [16,17]. The renormalizability of
a theory is related to the existence of symmetry constraints
on the n-point functions. For nPI effective theories, sym-
metries and renormalizabilty are connected to the fact that
proper n-point functions can be defined in more than one
way. All definitions are completely equivalent for the exact
theory, but they are not the same at finite approximation
order. These issues are well understood for scalar theories
and QED at the 2PI level. For scalar theories, one can
define a 2-point function that satisfies Goldstone’s theorem
in the broken phase [18,19]. For QED, one can define
n-point functions that obey Ward identities [20–22].
These symmetry constraints allow one to construct a re-
normalized theory that preserves the symmetries of the

original theory [19,23–26]. For non-Abelian theories, the
situation is more involved. It has been shown that at any
order in the approximation scheme, the gauge dependence
of the effective action always appears at higher approxi-
mation order [27,28]. However, the gauge symmetries of
the n-point functions are more complicated than for
Abelian theories, and renormalizability remains an open
question.
In this paper, we introduce a newmethod to calculate the

nPI effective action. While it is true in principle that the
effective action can always be obtained from a series of
Legendre transforms, this method is extremely compli-
cated for n > 3, and probably prohibitively tedious beyond
n ¼ 5. The 3-Loop 4PI effective action was calculated
in Refs. [1,2,29,30], the 4-Loop 4PI effective action in
Ref. [12], and the 5-Loop 5PI effective action in
Ref. [31]. The key to our method is the introduction of a
set of fictitious bare vertices: to obtain the n-Loop nPI
effective action we include in the Lagrangian the vertices
Voo
j for j ¼ 3; 4; 5; 6; � � � ; n. The inclusion of the nonre-

normalizable interactions (j � 5) is an organizational
trick, and these vertices will be set to zero at the end of
the calculation. Using these fictitious vertices, we can show
that the equations of motion (eom’s) and Schwinger-Dyson
(sd) equations are equivalent to the order at which the
truncated theory respects the symmetries of the original
theory. This result allows us to construct the n-Loop nPI
effective action directly from the sd equations.
This paper is organized as follows. In Sec. II ,we define

our notation. In Sec. III, we discuss the basic structure of
the nPI effective action. In Sec. IV, we prove that the eom’s
and sd equations are equivalent to the truncation order. Our
new method to calculate the effective action is explained in
detail in Sec. V. In Secs. VI and VII, we show how to
reproduce, with comparatively little effort, the known re-
sults for the n-Loop nPI effective action with n ¼ 4 and
n ¼ 5. This provides a check of the procedure. In
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Sec. VIII, we use the technique to calculate the 6-Loop 6PI
effective action which is, realistically speaking, impossibly
tedious to obtain using Legendre transforms.

We make one further comment. Our method is based on
the fact that using fictitious vertices in intermediate steps of
the calculation, the sd equations can be rewritten so that
they have the same structure as the eom’s. It is important to
realize that this result is important only because it allow us
to obtain the effective action without taking a series of
Legendre transforms. It is not true that the nonperturbative
solutions of a truncated set of sd equations are the same as
the solutions of the eom’s obtained from the nPI effective
action.

II. NOTATION

Throughout this paper, we useL to indicate the loop order
in the skeleton expansion. We also use ‘‘n-Loop’’ to mean
terms in the skeleton expansion with L � n loops, and
‘‘n-loop’’ tomean terms in the skeleton expansionwithL ¼
n loops. We consider only scalar theories. The generaliza-
tion of the method to other theories is straightforward.

In most equations in this paper, we suppress the argu-
ments that denote the space-time dependence of functions.
As an example of this notation, the quadratic term in the
action is written [see Eq. (4)]:

1

2

Z
d4xd4y’ðxÞ½iðDooÞ�1ðx� yÞ�’ðyÞ ! i

2
ðDooÞ�1’2:

(1)

We define several different kinds of vertex functions and
use the letter V for all of them, with a single subscript
denoting the number of legs:

Voo
j bare vertex-Eq.ð4Þ;

V0
j effective bare vertex-Eq.ð6Þ;

Vc
j connected vertex-Eq.ð8Þ;

Vj proper vertex-Eq.ð9Þ;
~Vj tilde vertex-Eq.ð10Þ: (2)

Unless stated otherwise, the indices fj; k; l; � � �g, which
indicate the number of legs on a bare, effective bare,
connected, proper, or tilde vertex, run from 3 to n. In
diagrams, bare vertices and proper vertices are denoted

by open circles and solid dots, respectively [32]. Many of
the equations we will write in this paper are easier to
understand as diagrams. In some cases, we will give only
the diagrammatic form of an equation.
To illustrate a limitation of our notation, we write the

equation that relates the 4-point connected vertex to proper
vertices without suppressing space-time arguments. We
use a single index to denote a space-time variable, and
the summation convention to mean integration. The stan-
dard result is

Vc
ijkl ¼ Dit1Djt2Dkt3Dlt4Vt1t2t3t4

þDit1Djt2Dkt3Dlt4Dt5t6Vt1t6t3Vt2t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Vt1t2t6Vt3t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Vt1t5t4Vt6t2t3 : (3)

Using our notation in which indices are suppressed, the
distinction between the s, t, and u channels is lost and the
second, third, and fourth terms on the right side become
ð3ÞD5V2

3 . We indicate that all three channels are included

in one term by writing the factor (3) in brackets. In all
calculations, contributions to a given vertex that corre-
spond to different permutations of external legs must be
treated correctly. The abbreviated notation only allows us
to present results in a simpler form.
We introduce some terminology for different types of

graphs that could appear in the effective action.
Basketballs: Graphs with two Vj vertices which are

connected by j propagators. A generic example is shown
in part (a) of Fig. 1.
Tadpoles: Graphs that would produce disconnected con-

tributions to the equation of motion of one of the vertices in
the graph (which we call the ‘‘tadpole vertex’’). Some
examples are shown in part (b) of Fig. 1. Tadpole graphs
with only 1 vertex [for example, part (b1) in Fig. 1] are type
(1), and all other tadpole graphs [for example, part (b2) in
Fig. 1] are type (2).
Flowers: Graphs that would produce nonproper (1PR)

contributions to the equation of motion of one of the
vertices in the graph (which we call the ‘‘flower vertex’’).
Some examples are shown in part (c) of Fig. 1.
The effective action is calculated using a trick which

involves introducing a set of fictitious bare vertices as an
organizational tool. At the end of the calculation, the bare
vertices are set to zero for j � 5. The classical action is

FIG. 1. Some of graphs that could appear in the effective action. In graph (b1), the 8-point vertex is the tadpole vertex. In graph (b2),
the 6-point vertex is the tadpole vertex. In graph (c1), the 4-point vertex is the flower vertex. In graph (c2), the 5-point vertex is the
flower vertex.

M. E. CARRINGTON AND YUN GUO PHYSICAL REVIEW D 85, 076008 (2012)

076008-2



Scl½’� ¼ 1

2
’½iðDooÞ�1�’� Xn

j¼3

i

j!
Voo
j ’j: (4)

It will be useful to define an effective bare propagator and
effective j-point vertex as

ðD0ð�ÞÞ�1 ¼ �i
�2Scl½��
��2

; V0
j ð�Þ ¼ i

�jScl½��
��j :

(5)

From now on, we suppress the argument and write
D0ð�Þ ! D0 and V0

j ð�Þ ! V0
j . The general relation be-

tween bare vertices Voo
j and effective bare vertices V0

j is

V0
l ¼ Xn

j¼l

1

ðj� lÞ!V
oo
j �j�l: (6)

III. STRUCTURE OF THE EFFECTIVE ACTION

The nPI effective action is defined as the nth Legendre
transformation of the connected generating functional
which is constructed by coupling the field to n source
terms:

Z½Rj� ¼
Z

d’Exp

�
i

�
Scl½’� þ

Xn
j¼1

1

j!
Rj’

j

��
;

W½Rj� ¼ �iLnZ½Rj�;

�½�;D; V0
j ; Vk� ¼ W � Xn

j¼1

Rj

�W

�Rj

: (7)

The last line in (7) gives the effective action as an implicit
function of effective bare and proper vertices. We define
connected green functions:

Vc
j ¼ h’jic ¼ �ð�iÞjþ1 �

jW

�Rj
1

: (8)

The equations that relate the connected and proper vertices
are obtained from their definitions using the chain rule [34]

Vj ¼ i
�j

��j �1PI ¼ i
�j

��j ðW½R1� � R1�Þ: (9)

We organize the calculation of the effective action using
the method of subsequent Legendre transforms [29,30].
This method involves starting from an expression for the
2PI effective action and exploiting the fact that the source
terms Rj for j � 3 can be combined with the correspond-

ing bare vertices by defining a set of modified interaction
vertices which we call tilde vertices:

~V j :¼ Voo
j þ iRj: (10)

Using these tilde vertices, we can rewrite the effective
action in (7) as

�½�;D; V0
j ; Vk� ¼: ~�2PI �

X
j¼3

Rj

�W

�Rj

: (11)

We will refer to ~�2PI as the tilded 2PI effective action. It is
constructed from the complete set of n-Loop 2PI diagrams
for a theory with bare vertices Voo

j (3 � j � nÞ by replac-

ing all bare vertices with tilde vertices [35].
The 2PI effective action has the form

�2PI½�;D; Voo
j � ¼ Scl½�� þ i

2
Tr LnD�1 þ i

2
Tr½ðD0Þ�1D�

� i�½�;D; Voo
j � þ const; (12)

where�½�;D; Voo
j � contains all contributions to the effec-

tive action with two or more loops. It is convenient to

divide the 0-loop and 1-loop contributions to ~�2PI into
pieces that do and do not contain tilde vertices:

~�2PI :¼ �2PI½�;D; ~Vj� ¼ �oo
0 þ ~�0 þ �oo

1 þ ~�1 � i ~�;

�oo
0 ¼ i

2
ðDooÞ�1�2 contains 0-loop graphs with no tilde vertices,

~�0 ¼ �Xn
j¼3

i

j!
~Vj�

j contains 0-loop graphs with tilde vertices,

�oo
1 ¼ i

2
TrððDooÞ�1DÞ þ i

2
Tr LnD�1 contains 1-loop graphs with no tilde vertices,

~�1 ¼ i

2
Tr½ðð ~D0Þ�1 � ðDooÞ�1ÞD� contains 1-loop graphs with tilde vertices, ~� ¼ �½�;D; ~Vj�: (13)

Using Eqs. (7), (8), (10), and (11), we have

h�ji ¼ j!
�W

�Rj

¼ j!
�~�2PI

�Rj

¼ ij!
�~�2PI

� ~Vj

¼: Vc
j þ �j: (14)

The term �j contains all disconnected contributions to the
expectation value, and is a function of connected vertices.
A general expression for these terms is given in
Appendix B. Substituting (10) and (14) into (11), we have
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�½�;D; V0
j ; Vk� ¼ ~�2PI þ

Xn
j¼3

i

j!
ðVc

j þ �jÞð ~Vj � Voo
j Þ:

(15)

Using (13), Eq. (15) becomes

�½�;D; V0
j ; Vk� ¼ �oo

0 þ ~�0 þ �oo
1 þ ~�1 � ið ~�basketball

þ ~�ð1Þ
tadpole þ ~�ð2Þ

tadpole þ ~�flower þ ~�restÞ

þ Xn
j¼3

i

j!
ðVc

j þ �ð0Þ
j þ �ð1Þ

j þ �ð2Þ
j

þ �ð3Þ
j Þð ~Vj � Voo

j Þ; (16)

where we have separated contributions from the different
types of graphs in ~� as discussed in Sec. II. The terms �ðiÞ

j

for i ¼ 0, 1, 2 refer to specific pieces of�j and�
ð3Þ
j includes

all other contributions. We give some examples that will be
useful in the discussion below (see Appendix B):

j ¼ 3: �ð0Þ
3 ¼ �3; �ð1Þ

3 ¼ ð3ÞD�;

�ð2Þ
3 ¼ �ð3Þ

3 ¼ 0; j ¼ 4: �ð0Þ
4 ¼ �4;

�ð1Þ
4 ¼ ð6ÞD�2; �ð2Þ

4 ¼ ð3ÞD2;

�ð3Þ
4 ¼ ð4ÞVc

3�; j ¼ 5: �ð0Þ
5 ¼ �5;

�ð1Þ
5 ¼ ð10ÞD�3; �ð2Þ

5 ¼ ð15ÞD2�;

�ð3Þ
5 ¼ ð5ÞVc

4�þ ð10ÞVc
3�

2 þ ð10ÞVc
3D: (17)

We define a functional that contains all terms in
�½�;D; V0

j ; Vk� that have bare vertices:

�0½�;D; V0
j ; Vk� :¼ �oo

0 þ �oo
1 � Xn

j¼3

i

j!
ðVc

j þ �jÞVoo
j :

(18)

The right side of (18) does not contain tilde vertices, and it
is straightforward to convert connected vertices to proper
ones, and bare vertices to effective bare vertices. The result
has the form

�0½�;D;V0
j ;Vk�¼: Scl½��þ i

2
TrLnD�1þ i

2
Tr½ðD0Þ�1D�

� i�0½V0
j ;Vk�; (19)

where �0½V0
j ; Vk� contains all diagrams with more than

one loop. The procedure is discussed in detail in
Appendix C.

Using (B9) and the definitions in Eq. (13), it is straight-
forward to show

~�0 þ
Xn
j¼3

i

j!
�ð0Þ
j

~Vj ¼ 0;

~�1 þ
Xn
j¼3

i

j!
�ð1Þ
j

~Vj ¼ 0;

�i ~�ð1Þ
tadpole þ

Xn
j¼3

i

j!
�ð2Þ
j

~Vj ¼ 0: (20)

Substituting (18) and (20) into (16), we have

�½�;D; V0
j ; Vk� ¼ �0½�;D; V0

j ; Vk� � ið ~�basketball

þ ~�ð2Þ
tadpole þ ~�flower þ ~�restÞ

þ Xn
j¼3

i

j!
ðVc

j þ �ð3Þ
j Þ ~Vj: (21)

Equation (21) is a formal result for the effective action as
an implicit function of proper vertices. The right side is a
function of tilde vertices and connected vertices.
Comparing (21) with (15), we have

~� 2PI ¼ �ið ~�basketball þ ~�ð2Þ
tadpole þ ~�flower þ ~�restÞ

þ Xn
j¼3

i

j!
ð�ð3Þ

j � �jÞ ~Vj þ � � � ; (22)

where the dots represent terms that do not depend on ~Vj.

Substituting into (14), we obtain

Vc
j ¼ j!

�

� ~Vj

ð ~�basketballþ ~�ð2Þ
tadpoleþ ~�flowerþ ~�restÞ��ð3Þ

j :

(23)

A generic basketball graph is shown in Fig. 1(a). The
associated symmetry factor for a graph with two ~Vj verti-

ces is ð1=2Þð1=j!Þ. The first term on the right side of (23)
therefore gives Dj ~Vj. Equation (23) can be solved itera-

tively to obtain an expression of the form

~V j ¼ D�jVc
j þ fj½D;Vc

k �; (24)

which is valid to any desired loop order.
We define the interacting part of the effective action

through the equation

�½�;D; V0
j ; Vk� ¼: �0½�;D; V0

j ; Vk� � i�int½Vj�: (25)

Using (21), we obtain

�int½Vj� ¼ ð ~�basketball þ ~�ð2Þ
tadpole þ ~�flower þ ~�restÞ

� Xn
j¼3

1

j!
ðVc

j þ �ð3Þ
j Þ ~Vj: (26)

We comment that Eq. (26) formally expresses�int½Vj� as a
functional of tilde and connected vertices. The procedure
to obtain a functional of proper vertices is explained below.
The first step is to use Eq. (24) to remove the tilde

vertices. We see immediately that this substitution gives
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Xn
j¼3

1

j!
Vc
j
~Vj ! 2

Xn
j¼3

½1
2

1

j!
Vc
jD

�jVc
j � þ � � �

¼ 2�c
basketball þ � � � ; (27)

which causes the sign flip in the basketball diagrams on the
right side of (26). We argue below that when all tilde
vertices are removed the result is

�int½Vj� ¼ ��c
basketball þ�c

flower þ�c
rest: (28)

The function �c
basketball represents the same set of basket-

ball diagrams as ~�basketball with tilde vertices replaced by
connected vertices ( ~Vj ! D�jVc

j ). The function �c
flower

contains only graphs with flower topology, but not the

same set of flower graphs as ~�flower. Similarly, �c
rest con-

tains only graphs that are not basketball, tadpole, or flower

topologies, but not the same set of graphs as ~�rest. Recall
that the tadpole graphs are those that produce disconnected
contributions to the eom that corresponds to the tadpole
vertex. It is clear that if a term of the form�c

tadpole survived

in Eq. (28), therewould be a disconnected contribution to the
eom for any connected vertex Vc

j which is a tadpole vertex.

Since disconnected terms do not appear in the perturbative
expansion [from the definition of connected vertices in
Eq. (8)], they also do not appear in the skeleton expansion.

The connected vertex can be written in terms of proper
vertices Vj using Eqs. (8) and (9). We will argue below that

when we replace connected vertices with the appropriate
expressions containing proper vertices, the flower graphs
cancel and we obtain

�int½Vj� ¼ ��basketball þ�rest: (29)

The function �basketball contains basketball graphs which
are functions of proper vertices. �rest contains only graphs
that are not basketball, tadpole, or flower topologies, but

they are not the same graphs as in �c
rest or

~�rest.
Consider the form of the eom obtained by functionally

differentiating the effective action with respect to the ver-
tex Vj. The effective action is obtained from Eqs. (25) and

(29). For purposes of illustration, we rewrite the result as

�½�;D;V0
j ;Vk�¼�0½�;D;V0

j ;Vk�� ið��basketballþ�restÞ
¼Scl½��þ i

2
TrLnD�1þ i

2
Tr½ðD0Þ�1D�

� ið�0
basketballþ�0

nobasketballs

��basketballþ�restÞ;

where we have split �0½V0
j ; Vk� into two parts: �0

basketball

and�0
no basketballs. In Appendix D, we show that, in�int½Vj�,

the vertex Vj appears in one basketball diagram, and other

diagrams which are higher loop order. Similarly, in
�0½V0

j ; Vk� (see Appendix C) the vertex Vj appears in the

basketball diagram with one proper vertex and one effec-
tive bare vertex, and other diagrams which are higher loop
order. Using these results, and the fact that �rest does not
contain flower diagrams, the eom for the vertex Vj for j �
3 has the form

��½�;D; V0
j ; Vk�

�Vj

¼ 0;

) j!D�j ��basketball

�Vj

¼ j!D�j ��
0
basketball

�Vj

þ j!D�j ��
0
no basketballs

�Vj

þ j!D�j ��rest

�Vj

;

) Vj ¼ V0
j þ fcn0j½V0

l ; Vk� þ fcnj½Vk�; (30)

where both fcn0j½V0
l ; Vk� and fcnj½Vk� contain only 1PI loop

diagrams. The terms in the second and third lines of Eq.
(30) are written in the same order. For example, the term Vj

on the left side of the last equation comes from functionally
differentiating the basketball diagram in �int. If the flower
topologies did not cancel when the effective action is
written as a function of proper vertices, there would be a
1PR contribution to the eom for any proper vertexVj which
is a flower vertex. Since 1PR terms do not appear in the
perturbative expansion [from the definition of proper ver-
tices in Eq. (9)], they also do not appear in the skeleton
expansion [36].

Note that, for j � 3, there is no contribution from func-
tionally differentiating the 1-Loop terms in �0½�;D; V0

j ; Vk�
with respect to Vj. However, for j ¼ 2, the 1-Loop terms in

�0½�;D; V0
j ; Vk� do contribute, and produce the terms in the

eom that correspond toVj andV
0
j on the left and right sides of

Eq. (30), respectively.

IV. PROOF OF EQUIVALENCE OF THE EOM
AND SD EQUATIONS

From this point on, we consider � ¼ 0 for simplicity,
which means that the bare vertices Voo

j are equivalent to the

effective bare vertices V0
j , and the bare propagator Doo is

equivalent to the effective bare propagator D0.
In this section, we show that the eom’s produced by the

n-Loop nPI effective theory are equivalent to the sd equa-
tions, up to the order at which they are consistent with the
underlying symmetries of the original theory [37]. We
comment that although both the nPI eom’s and the sd
equations are sets of coupled nonlinear integral equations
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that contain nonperturbative physics, there are significant
differences between them. For an nPI effective theory, the
effective action is truncated, and the resulting eom’s form a
closed set. In contrast, the sd equations form an infinite
hierarchy of coupled equations which must be truncated in
order to do calculations. In addition, there are fundamental
differences in the basic structure of the two sets of equa-
tions. In the sd equation, all graphs contain one bare vertex
and are not symmetric with respect to permutations of exter-
nal legs. The nPI eom’s are symmetric and (for n > 2) some
graphs contain no bare vertices.

The first step is to compare the perturbative expansions of
the sd equations and the eom’s. In order to do this, we must
use the equations ofmotion in (30), and also the correspond-
ing equation for the 2-point functionwhich is obtained from
��=�D ¼ 0. The complete set of equations can be written

Vj ¼ V0
j þ fcn0j½V0

l ; Vk� þ fcnj½Vk�; fj; k; lg � 2:

(31)

The definitions of the functions fcn0j½V0
l ; Vk� and fcnj½Vk�

are given in Eq. (30) for j � 3. For j ¼ 2, we have

j ¼ 2: fcn02½V0
l ; Vk� ¼ �2

��0½V0
l ; Vk�

�D
;

fcn2½Vk� ¼ �2
��int½Vk�

�D
:

(32)

If we define both terms in the 1-loop effective action to be 1-
loop basketballs, the terms Vj and V

0
j in (31) come from the

functional derivative acting on the (j� 1)-loop basketball
graph, for each value of j. The sign difference for the 2-
point function and themissing factorD�2 occurs because of
the fact that it is conventional towrite the effective action as
a function of the propagatorD instead of the inverse propa-
gatorD�1 (see [34]). To illustrate the notation, wewrite out
Eq. (31) for j ¼ 2 and j ¼ 3:

��½Vk�
�D

¼ 0 ! D�1

¼ ðD0Þ�1 � 2
��0½V0

l ; Vk�
�D

� 2
��int½Vk�

�D

¼: ðD0Þ�1 ��½Vk�;
��½Vk�
�V3

¼ 0 ! V3

¼ V0
3 þ 3!D�3 ��

0
no basketballs½V0

l ; Vk�
�V3

þ 3!D�3 ��rest

�V3

¼ V0
3 þ fcn03½V0

l ; Vk� þ fcn3½Vk�:

(33)

We can generate the perturbative expansion of any func-
tional of proper vertices by repeatedly substituting (31).
We can also repackage a perturbative set of diagrams as
skeleton diagrams that contain proper vertices by repeat-
edly using the same equation in the form

V0
j ¼Vj� fcn0j½V0

l ;Vk�� fcnj½Vk�; fj;k;lg�2: (34)

In the rest of this section, we use fj; k; lg � 2.
item 1: If we convert a set of skeleton diagram for the

vertex Vj into a series of perturbative diagrams using (31),

the leading loop order of the new set of diagrams is greater
than or equal to the leading loop order of the original set.
item 2: If we include fictitious vertices V0

j for 5 � j � n,

we can convert skeleton diagrams to perturbative diagrams
using (31), or perturbative diagrams to skeleton diagrams
using (34), and the leading loop order of the new set
of diagrams is equal to the leading loop order of the
original set.
We illustrate these statements with an example. We use

Lpt to indicate the loop order of the perturbative expansion.

Consider the skeleton diagram shown in part (a) of Fig. 2,
which is of order L ¼ 2. We can expand this diagram as a
series of perturbative diagrams using equations of the form
(31) which are shown for this example in part (b) of the
figure [38]. The leading order term is shown in part (c), and
is of order Lpt ¼ 2. Thus, we have L ¼ Lpt ¼ 2. Now,

consider the result if we set V0
5 ¼ 0, which means we

remove the first diagram on the right side of part (b2). In
this case, the leading order term is shown in part (d) and is
of order Lpt ¼ 3. Thus, we see that if the fictitious vertex

V0
5 is set to zero we have Lpt > L.

We consider truncating the nPI effective action at
m-loop order [39]. The functional derivative of an
m-loop graph with respect to the variational vertex Vj

opens j� 1 loops. This means that an arbitrary m-loop
graph in the effective action which contains the vertex Vj

produces a term with L½m; j� loops in the skeleton expan-
sion of the eom for the vertex Vj, where we define

L ½m; j� :¼ m� jþ 1: (35)

Note that the order of the original m-loop graph in the
effective action corresponds to j ¼ 1.
Now, we consider the effect of adding an arbitrary

(mþ 1) loop graph to the skeleton expansion of the
m-Loop nPI effective action. This (mþ 1) loop graph
will produce new contributions to the skeleton expansions

FIG. 2. Diagrams used to explain items 1 and 2.
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of the eom’s for each vertex contained in the graph. There
are two kinds of contributions:

(1) Taking the functional derivative of this added graph
with respect to Vj produces new terms in the skel-

eton expansions of the Vj eom of orderL½mþ 1; j�.
These new terms contribute at L ¼ L½mþ 1; j�
loops in the skeleton expansion and (using item 1)
Lpt � L½mþ 1; j� loops in the perturbative

expansion.
(2) We also need to consider lower loop diagrams in the

skeleton expansion of Vj of order L½m0; j� (m0 �
m), with an arbitrary variational vertex Vk replaced
by a term in its eom which was produced by func-
tional differentiation of the (mþ 1) loop graph that
was added to the effective action. For any k, the new
contributions to the vertex Vk from this added graph
are of order L½mþ 1; k�. The substitution of vertex
Vk produces terms of order L ¼ L½m0; j� þL½mþ
1; k� in the skeleton expansion of Vj. Using Eq. (35)

and kmax ¼ m0 þ 1 (see Appendix D), we obtain
L � L½m0; j� þL½mþ 1; kmax� ¼ L½mþ 1; j�.
Thus, we have shown that these terms also contrib-
ute to the eom of the vertex Vj at L ¼ L½mþ 1; j�
loops in the skeleton expansion and (using item 1)
Lpt � L½mþ 1; j� loops in the perturbative

expansion.
We conclude that if we add an arbitrary (mþ 1) loop

graph to the skeleton expansion of them-loop nPI effective
action, this graph will produce terms at L½mþ 1; j� loops
or higher in both the skeleton and perturbative expansions
of the eom for the vertex Vj. Furthermore, we know that

without truncation, the expanded effective action and equa-
tions of motion for the vertices Vj must exactly match the

1PI perturbative expansion. The conclusion is
item 3: The m-Loop nPI effective action produces all

terms in the perturbative expansions of the effective action
and the equations of motion for the vertices Vj up to Lpt ¼
L½m; j� loops.

Equivalently, the vertex functions have the correct cross-
ing symmetry to Lpt ¼ L½m; j� loops. We say that the

variational vertex functions respect crossing symmetry to
the ‘‘truncation order.’’

Now, we consider the Schwinger-Dyson equations,
which form an infinite hierarchy of coupled nonlinear
integral equations. They have the form

Vsd
j ¼ V0

j þ fcnsdj ½V0
l ; V

sd
k �: (36)

Although the structure of the sd equations is very different
from the eom, when we truncate the sd equations by setting
Vsd
mþk ¼ V0

mþk for k � 1, the vertex Vsd
j also matches the

perturbative expansion up to Lpt ¼ L½m; j� loops [31].
If we truncate at some given number of loops, the most

general effective action is obtained by considering the
same number of variational vertices (see [39]). For this

reason, from this point on, we consider only m ¼ n. Using
item 3, we have that
item 4: The perturbative expansions of the n-loop nPI

eom’s and the sd equations truncated by setting Vsd
nþk ¼

V0
nþk for k � 1 both match the perturbative expansion

obtained from the 1PI effective action, and therefore each
other, to order Lpt ¼ L½n; j�.
We can formally write Eq. (36) as

Vsd
j ¼ V0

j þ fcn0j½V0
l ; V

sd
k � þ Ij½V0

l ; V
sd
k �;

Ij½V0
l ; V

sd
k � :¼ fcnsdj ½V0

l ; V
sd
k � � fcn0j½V0

l ; V
sd
k �: (37)

We can rewrite Ij½V0
l ; V

sd
k � as

Ij½V0
l ; V

sd
k � ¼ fcnj½Vsd

k � þ extra; (38)

where the functional fcnj½Vsd
k � can be taken to be the same

functional as in (31), since the extra term is defined to
absorb any leftovers. Comparing (31) and (37) and using
item 4, it is clear that fcnj½Vk� and Ij½V0

l ; V
sd
k � must match

each other in the perturbative expansion to order Lpt ¼
L½n; j�.Therefore, we know that the extra term is of order
Lpt ¼ L½n; j� þ 1. Using item 2, the extra term can be

rewritten as a series of skeleton diagrams of order L ¼
L½n; j� þ 1. Thus, we have shown
item 5: The sd equations can be rearranged to have the

same form as the nPI eom’s, plus additional terms of order
L ¼ L½n; j� þ 1 in the skeleton expansion.
In the next section, we use the result in item 5 to

calculate the effective action, without taking a Legendre
transform. We emphasize that the proof of this result
depends on the use of fictitious bare vertices V0

j for 5 �
j � n. Specifically, items 1, 3, and 4 are true with or
without fictitious vertices, but items 2 and 5 are only true
when these vertices are included.

V. A NEWAPPROACH TO THE CALCULATION OF
THE EFFECTIVE ACTION

In this section, we explain the technique of a new
approach to calculate (the interacting part of) the n-Loop
nPI effective action. The basic idea is to calculate the sd
equations, using standard techniques (see Refs. [40–42]),
and then exploit the fact that they can be rearranged to have
the same form as the nPI equations of motion, up to the
truncation order (see Sec. IV). One joins the legs of each
graph in the rearranged sd equations, to get the structure of
the graphs in the effective action. It is clear that this
procedure will produce all of the graphs in the effective

FIG. 3. �0 for a theory with bare vertices V0
3 and V0

4 .
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action, at a given order. The trick is to obtain the correct
symmetry factor. In order to see how this can be done,
consider starting from a known result for the effective
action �int, taking derivatives of each graph with respect
to each variational vertex, and trying to reconstruct the
effective action by joining the legs in each of these eom’s.
There are two potential difficulties:

(1) A given graph in the effective action will produce
contributions to the eom’s of each vertex it contains.
In order to produce the correct symmetry factor

when joining legs, we must drop the corresponding
contribution in all but one eom, which we take to be
the eom for the largest vertex present. For example,
the TARGET graph (see Fig. 4) gives a contribution
to the eom of the vertices V3 and V4. We drop the
contribution to the V3 eom and recover the TARGET
graph by joining the legs of the contribution to the
V4 eom. If we did not drop contributions to the V3

eom from the TARGET graph, we would produce
unwanted copies of the TARGET graph when we
joined the legs in the graphs in the full V3 eom.

FIG. 4. 4-Loop diagrams contributing to �int.

FIG. 6. Schwinger-Dyson equation for the 4-point vertex with V0
3 and V0

4 .

FIG. 5. Schwinger-Dyson equation for the 3-point vertex with V0
3 and V0

4 .
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(2) If the largest vertex in a given diagram in the effec-
tive action appears more than once, the graph that is
produced by joining the legs will have a symmetry
factor that is too large by a factor equal to the
number of times the vertex appears. For example,
consider the LOOPY graph (see Fig. 4). The largest
vertex is V4 which appears 3 times. If we join the
legs on the contributions of the LOOPY graph to the
V4 eom, we recover the LOOPY graph, but with a
symmetry factor which is 3 times too big.

For any diagram in the equation of motion for the largest
vertex Vj, the correct symmetry factor for the contribution

to the effective action that we get by joining legs is

S½j� ¼ sð1=vjÞð1=j!Þ; (39)

where s is the numerical factor in front of the diagram in
the eom, and vj � 1 is the number of times the vertex Vj

appears in this diagram.
We give two examples of how to use this formula. In the

TARGET graph, the largest vertex is V4 which appears
only once, and there are three contributions to the eom for
the vertex V4, all of which have s ¼ 1 and v4 � 1 ¼ 0.
Joining legs and using (39) we recover the TARGET graph
with symmetry factor 3 � ð1Þ � ð1=4!Þ ¼ 1=8 (see Fig. 4). In
the LOOPY diagram, there are 3 contributions to the eom
for the vertex V4 (which correspond to the s, t, and u
channels), all of which have s ¼ 1=2 and v4 � 1 ¼ 2.
Joining legs and using (39), we recover the LOOPY graph

with symmetry factor 3=2 � ð1=3Þ � ð1=4!Þ ¼ 1=48 (see
Fig. 4).
The complete set of rules to generate the interacting part

of the n-Loop nPI effective action from the sd equations is
given below. In Secs. VI and VII, we describe in detail how
the procedure works for the 4-loop 4PI effective action and
the 5-loop 5PI effective action.
Step 1: In the classical action, include bare vertices V0

j

for 3 � j � n.
Step 2: Using this new classical action, derive�0 and the

sd equations for the vertices Vj for 3 � j � n, using

standard techniques.
Step 3: Extract from �0 the functions fcn0j½V0

l ; V
sd
k �

which are defined in (30). Once these functions have
been obtained, set the fictitious vertices to zero in �0

(and thus remove the nonrenormalizable interactions).
The resulting expression for �0 is the same for all nPI
effective actions with n � 4.
Step 4: Rearrange (36) in the form (from this point on,

we suppress the superscript ‘‘sd’’ on vertices):

V0
j ¼ Vj � fcnsdj ½V0

l ; Vk�: (40)

Following the procedure described below, use (40) to re-
move the bare vertices in the functionals Ij½V0

l ; Vk� defined
in (37) for j ¼ n; n� 1; � � � ; 3.
Level 1: Use (40) to remove bare vertices in In until all

terms with L½n; n� :¼ 1 loop contain no bare vertices.

FIG. 8. The 1-loop terms in I4 with bare vertices removed. The
numbers in brackets under each diagram indicate the corre-
sponding diagrams in the sd equation (see Fig. 6).

FIG. 9. The 1-loop terms in I3. The numbers in brackets under
each diagram indicate the corresponding graph in the sd equation
in Fig. 5, and fcn03 is shown in Fig. 7.

FIG. 7. The result for fcn03½V0
l ; Vk�. Joining the legs produces

the HAIR graph, and calculating the symmetry factor using Eq.
(39) gives ð3=2Þð1=2Þ1=3! ¼ 1=8, which agrees with Fig. 3.

FIG. 10. The result of iterating Eq. (40) so that 1-loop graphs
do not contain bare vertices.

FIG. 11. The diagram obtained by substituting Fig. 10 into
Fig. 9.
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Drop terms in In with more than L½n; n� loops and terms
containing Vk with k � nþ 1 (because these vertices do
not contribute to the nPI effective action). Join the legs of
the remaining terms and calculate the symmetry factor
S½n� using (39).

Level 2: Use (40) to remove bare vertices in In�1 until all
terms with L½n; n� 1� :¼ 2 Loops contain no bare verti-
ces. Drop terms in In�1 with more than L½n; n� 1� loops
and terms containing Vk with k � n. Join the legs of the
remaining terms and calculate the symmetry factor S½n� 1�
using (39).

..

.

Level j: Use (40) to remove bare vertices in In�jþ1 until

all terms with L½n; n� jþ 1� Loops contain no bare
vertices. Drop terms in In�jþ1 with more than L½n; n�
jþ 1� loops and terms containing Vk with k � n� jþ 2.
Join the legs of the remaining terms and calculate the
symmetry factor S½n� jþ 1� using (39).

..

.

Level n� 2: Use (40) to remove bare vertices in I3 until
all terms with L½n; 3� :¼ n� 2 Loops contain no bare
vertices. Drop terms in I3 with more than L½n; 3� loops
and terms containing Vk with k � 4. Join the legs of the

remaining terms and calculate the symmetry factor S½3�
using (39).
Step 5: Add the basketball diagrams with two proper

vertices Vj for 3 � j � n. The symmetry factor for each

graph is �1=ð2ðjÞ!Þ.

VI. EXAMPLE OF 4-LOOP 4PI
EFFECTIVE ACTION

In this section, we calculate the 4-Loop 4PI effective
action and verify that our technique produces the known
result [12], which is reproduced in Figs. 3 and 4 for
convenience.

FIG. 12. 5-loop diagrams contributing to �int for the 5PI effective action.

FIG. 13. 1-Loop terms in the Schwinger-Dyson equation for the 5-point vertex with V0
j for 3 � j � 6.

FIG. 14. Some extra terms in the sd equations for V3 and V4

containing V0
5 .
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We follow the procedure outlined in the previous
section.

Step 1: Start with a classical action that includes bare 3-
point and 4-point vertices: V0

3 and V0
4 .

Step 2: Calculate �0 and the sd equations using this
action. The sd equations for V3 and V4 are reproduced from
[31] in Figs. 5 and 6.

Step 3: Extract fcn03½V0
l ; Vk� and fcn04½V0

l ; Vk�. The result
for fcn03½V0

l ; Vk� is shown in Fig. 7 and fcn04½V0
l ; Vk� ¼ 0.

Step 4:
Level 1: We want to obtain a 1-Loop expression for I4

that does not contain bare vertices. Since fcn04 ¼ 0, we
simply take the 1-loop diagrams in Fig. 6 and set V0

j ¼
Vj and Vj�5 ¼ 0. The three graphs that are produced are

shown in Fig. 8. The numbers in brackets under each dia-
gram indicate the corresponding diagrams in the sd equa-
tion. For example, the first diagram in Fig. 8 comes from the
graph marked (2) in Fig. 6 with V0

3 ¼ V3. Joining legs, the

three diagrams in Fig. 8 produce, respectively, the TARGET,
EYEBALL, and LOOPY topologies. We calculate the sym-
metry factors for each graph using (39). For the three graphs
in Fig. 8 we have v4 ¼ 1, v4 ¼ 2, and v4 ¼ 3. The sym-
metry factors are 3ð1Þð1=4!Þ ¼ 1=8; 6ð1=2Þð1=4!Þ ¼ 1=8,
and 3=2ð1=3Þð1=4!Þ ¼ 1=48, which reproduces the result
in Fig. 4 for the TARGET, EYEBALL, and LOOPY graphs.
Level 2:Wewant to obtain an expression for I3 that does

not contain bare vertices at the 2-Loop level. We start with

the 2-Loop diagrams in Fig. 5 and subtract fcn03 (see

Fig. 7). We set Vj�4 ¼ 0 (recall that vertices with j � 5

are set to zero because they are not part of the 4PI effective

action, and vertices V4 are set to zero to avoid double

counting contributions that were obtained in Level 1

above). This produces graphs that we refer to as ‘‘explicit

1-loop’’ and ‘‘explicit 2-loop.’’ After the bare vertices are

removed using (40), the explicit 1-loop graphs will produce

2-loop contributions.

FIG. 15. Results for fcn03 and fcn04.

FIG. 17. 5-Loop contributions to �0 that contain the bare vertices V0
5 and V0

6 .

FIG. 16. One-loop contributions to I5. The numbers in brackets under each diagram indicate the corresponding graph in the sd
equation in Fig. 13.
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explicit 2-loop: We remove bare vertices in the explicit
2-loop graphs by setting V0

j ¼ Vj. Using Vj�4 ¼ 0, all 2-

loop graphs drop out.
explicit 1-loop: The explicit 1-loop contributions to I3

with Vj�4 ¼ 0 are shown in Fig. 9. We remove bare

vertices using (40), iterated so that there are no bare
vertices in the 1-Loop terms. These iterated expressions
with Vj�4 ¼ 0 are shown in Fig. 10. The result of sub-

stituting Fig. 10 into Fig. 9 is shown in Fig. 11. Note that
the 2 graphs which would produce a 4PR contribution to
the effective action cancel identically. The final step is to
join the legs and calculate the symmetry factor using
(39). The surviving diagram from the top line in Fig. 11
produces the MERCEDES graph, and the survivor from
the second line produces the TWISTED graph (see
Fig. 4).

Step 5: Add the basketball diagrams which are the EGG
and BBALL diagrams (see Fig. 4).

VII. 5-LOOP 5PI EFFECTIVE ACTION

For n � 5, we need to introduce fictitious bare vertices.
We illustrate the role of these vertices by describing the 5-
loop 5PI calculation. Some details are left to Appendix A.
The result of the calculation is known [31]. For conve-
nience, we reproduce in Fig. 12 the 5-loop diagrams. We
follow the steps in Sec. V.

Step 1: We include bare vertices V0
3 , V

0
4 , and V0

5 in the

Lagrangian.
Step 2: We calculate �0 and the sd equations for the

vertices Vj, 3 � j � 5. The result for �0 is given in Fig. 3

and the first line of Fig. 17, excluding the basketball
diagram with the vertex V0

6 .

The fictitious vertices produce many contributions to the
sd equations, but not all are needed to calculate the 5-loop
5PI effective action.
In Step 4, we will need to calculate I5 to 1-Loop level,

which means we only need 1-Loop terms in the sd equation
for V5. These 1-loop diagrams are the first 10 graphs on the
right side of Fig. 13.
In addition, the sd equations for the vertices V3 and V4 in

Figs. 5 and 6 receive extra contributions from diagrams
with the vertex V0

5 . For V4, we need 1-loop diagrams with

Vj�5 ¼ 0 and 2-loop diagrams with V0
j ¼ Vj and Vj�5 ¼

0. For V3, we need 2-Loop diagrams with Vj�4 ¼ 0 and 3-

loop diagrams with V0
j ¼ Vj and Vj�4 ¼ 0. These extra

diagrams are shown in Fig. 14.
Step 3: From �0, we extract fcn0i with i ¼ 3 and 4. The

results are shown in Fig. 15. We have fcn05 ¼ 0 at the

5-Loop 5PI level.
Step 4:
Level 1: We construct I5 at the 1-loop level. The 1-loop

terms in the sd equation are shown in Fig. 13, and fcn05 ¼ 0.
We replace bare vertices with proper ones V0

j ¼ Vj and set

Vj�6 ¼ 0, which removes the last two diagrams. The sur-

viving terms are shown in Fig. 16.
The final step is to join the legs and calculate the

symmetry factor from (39). The fourth graph has v5 ¼ 2
and S ¼ 10 � ð1=2Þ � ð1=5!Þ ¼ 1=24, which reproduces
EGG2, and the fifth has v5 ¼ 2 and S ¼ 5 � ð1=2Þ �
ð1=5!Þ ¼ 1=48, which reproduces EIGHT3 (see Fig. 12).
Note that the graphs marked (10) and (11) in Fig. 13, which
contain the vertex V0

5 , are needed to obtain these results.

This is an example of the role of the fictitious bare vertices.
The first three graphs in Fig. 16 produce the TARGET2,
MERCEDES2, and EIGHT4 graphs, respectively, (see
Fig. 12).
Levels 2 and 3: We need to construct I4 at the 2-Loop

level and I3 at the 3-Loop level. Some details of the
calculation are given in Appendix A.

FIG. 18. 3-Loop contributions to the sd equation for � from
terms with V0

5 and V0
6 .

FIG. 19. 6-loop diagrams with highest vertex V6 and the basketball with V6.
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Step 5: We add the 2-, 3-, and 4-loop basketballs.
Combining all pieces, we reproduce the 5-Loop

5PI effective action, which was obtained through a
much more lengthy calculation in [31], using Legendre
transforms.

VIII. RESULT FOR 6-LOOP 6PI

The 6-Loop 6PI effective action can be calculated using
the same method.

Step 1: We include bare vertices V0
j for 3 � j � 6 in the

Lagrangian.

Step 2: The additional terms in �0 and the sd equation
for the self-energy which contain V0

5 and V0
6 are shown in

Figs. 17 and 18, respectively.
Using these expressions, it is straightforward to generate

the corresponding results for the sd equations for Vj for

3 � j � 6. After combining permutations of external in-
dices, the sd equation for the vertex V6 contains 20 1-loop
terms, the equation for V5 contains 12 1-loop terms, and 62
2-loop terms, the equation for V4 contains 7 1-loop terms,
27 2-loop terms, and 88 3-loop terms, and the equation for
V3 contains 5 1-loop terms, 12 2-loop terms, 31 3-loop
terms, and 49 4-loop terms [43].

FIG. 21. 6-loop diagrams with highest vertex V4.

FIG. 20. 6-loop diagrams with highest vertex V5.
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It is straightforward to follow the procedure outlined in
Sec. V and illustrated in Secs. VI and VII. The calculation
can be done using MATHEMATICA. We give only the result
below. Diagrams with highest Vj equal to V6, V5, V4, and

V3 are shown in Figs. 19–22, respectively.

IX. CONCLUSIONS

The nPI effective action at higher orders is a potentially
useful tool to study nonequilibrium systems, like the quark
gluon plasma and the early Universe. In this paper, we have
introduced a new method to calculate the n-Loop nPI
effective action which does not require a Legendre trans-
form and makes it possible to calculate the effective action
at higher orders than was previously possible. The key to
our method is the introduction of a set of fictitious bare
vertices which are used only as an organizational trick.
Using these fictitious vertices, we have shown that the nPI
equations of motion and Schwinger-Dyson equations are
equivalent to the order at which the truncated theory re-
spects the symmetries of the original theory. This result
makes it possible to systematically construct the n-Loop
nPI effective action directly from the sd equations, which
are relatively easy to calculate. The known results for the
n-Loop nPI effective action with n ¼ 4 and n ¼ 5 can be
obtained with comparatively little effort using our method,
which provides a check of the procedure. In addition, we
have used the technique to calculate the 6-Loop 6PI effec-
tive action, which is essentially impossible to obtain using
the standard method employing Legendre transforms.

APPENDIX A: THE 5-LOOP 5PI EFFECTIVE
ACTION—SOME DETAILS

In this Appendix, we give some details of the calculation
of the 5-loop 5PI effective action.

We show how to construct I4 at the 2-Loop level.
explicit 2-loop: We start with terms that are explicitly 2-

loop in the sd equation, and set V0
j ¼ Vj and Vj�5 ¼ 0. The

survivors are the diagrams in parts (5, 6, 7, 9, 10, 11, 12, 13,
14) of Fig. 6 with V0

j ¼ Vj.

explicit 1-loop: Now, we look at terms that are explicitly
1-loop and set Vj�5 ¼ 0. These graphs are shown on the left

side of Fig. 23. The numbers under the diagrams indicate the
corresponding contribution in the sd equation (Fig. 6). The
new graph which contains the fictitious vertex V0

5 has coef-

ficient 3=2� 4 ¼ �1=2 because there are contributions
from the sd equation (Fig. 14) and fcn04 (Fig. 15).
We remove bare vertices using (40) iterated to 1-Loop

order with Vj�5 ¼ 0. The equations we obtain from (40)

are shown in Fig. 24, and the 2-loop diagrams obtained by
substituting these expressions into the explicit 1-loop
diagrams in I4 are shown on the right side of Fig. 23. The
1-loop diagrams can be ignored since they are, by construc-
tion, the same as in Fig. 8, and therefore produce the
TARGET, EYEBALL, and LOOPY diagrams as in Sec. VI.
We add the diagrams on the right side of Fig. 23 and the

explicit 2-loop terms [diagrams (5), (6), (7), (9), (10), (11),
(12), (13), and (14) in Fig. 6 with V0

j ¼ Vj]. The terms that

cancel are i1 þ i2, j1 þ j2, ð5Þ þ k, l1 þ l2, m1 þm2,
ð11Þ þ ð12Þ þ n1 þ n2, o1 þ o2, ð6Þ þ p1 þ p2, ð10Þ þ q,
r1 þ r2, ð13Þ þ s1 þ s2, ð14Þ þ t. The survivors are A,
B1 þ B2, C, D1 þD2, E, F, ð7Þ þG, ð9Þ þH and are
shown in Fig. 25 [44].
The last step is to join the legs of each graph in Fig. 25

and calculate the symmetry factor using (39). The first two
diagrams in Fig. 25 both give the same contribution to the
effective action: the diagram 4A in Fig. 12. For the first
graph, the symmetry factor is �3=2 � ð1=3Þ � ð1=4!Þ ¼
�1=48, and for the second graph we have �3 � ð1=3Þ �
ð1=4!Þ ¼ �1=24. Summing these factors, we obtain
�1=16, which agrees with Fig. 12. The last 6 diagrams
give, in order, the graphs labeled 2B, 3D, 5A, 3A, BEAN,
and PEA in Fig. 12.
Next, we construct I3 at the 3-Loop level.
I3 is given by the terms (2, 4, 5, 6, 7, 8) in Fig. 5, plus the

additional terms in Fig. 14 which contain the bare vertex
V0
5 , minus the terms in fcn03 in Fig. 15, with V4 ¼ 0. We use

(40) to iterate the sd equations to 2-Loop level, setting
Vj�4 ¼ 0. This procedure produces the results in Fig. 24

with V4 ¼ 0, plus the 2-loop diagrams in Fig. 26. As
mentioned in the discussion about Fig. 23, we do not
need to separate graphs that correspond to different per-
mutations of external legs, since we will join legs to obtain
the corresponding contribution to the effective action. In
Fig. 26, we do not indicate contributions to the numerical
factor from permutations of external legs.
explicit 3-loop: Setting V0

j ¼ Vj and Vj�4 ¼ 0, there are

no surviving terms in I3.
explicit 2-loop: We take terms in I3 that are explicitly

2-loop and set Vj�4 ¼ 0. Then, we replace bare vertices

using the 1-Loop expressions in Fig. 24.

FIG. 22. 6-loop diagrams with highest vertex V3.
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FIG. 23. 2-loop terms from the explicit 1-loop part in I4 with bare vertices removed using Fig. 24.

FIG. 24. The result obtained from (40) which will be used to replace the bare vertices in the diagrams on the left side of Fig. 23.
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explicit 1-loop: We take terms in I3 that are explicitly
1-loop and set Vj�4 ¼ 0. Then, we replace bare vertices

using the 2-Loop expressions in Figs. 24 and 26.
The 1-and 2-loop graphs that are produced by this proce-

dure can be ignored, since they reproduce the MERCEDES
and TWISTED diagrams obtained previously (Sec. VI).
After all cancellations have been identified, the surviving
3-loop diagrams are shown in Fig. 27. Joining the legs
produces the graphs labeled 1A and 1B in Fig. 12.

APPENDIX B: FORMULA FOR DISCONNECTED
PIECES OF CORRELATION FUNCTIONS

We give a general expression for the function �j of the

form

�j ¼
X
k

a½k�
Yj�1

i¼1

ðVc
i Þf

½k�
i : (B1)

The index k represents different solutions to the equation

Xj�1

i¼1

if½k�i ¼ j; j � 3: (B2)

The symmetry factor a½k� for each term is given by

a½k� ¼ Yj�1

i¼1jf½k�i �0

�i; �i ¼ 1

f½k�i !

Yf½k�i �1

m¼0

Ci
j0i�im;

j0i ¼ j�Xi�1

l¼0

lf½k�l ;

(B3)

where we have defined Cj
m � m!=ðj!ðm� jÞ!Þ. We illus-

trate this formula with an example. For j ¼ 5, the possible
solutions to (B2) are

k¼ 1: f½1�1 ¼ 5; f½1�2 ¼ 0; f½1�3 ¼ 0; f½1�4 ¼ 0;

k¼ 2: f½2�1 ¼ 3; f½2�2 ¼ 1; f½2�3 ¼ 0; f½2�4 ¼ 0;

k¼ 3: f½3�1 ¼ 1; f½3�2 ¼ 2; f½3�3 ¼ 0; f½3�4 ¼ 0;

k¼ 4: f½4�1 ¼ 2; f½4�2 ¼ 0; f½4�3 ¼ 1; f½4�4 ¼ 0;

k¼ 5: f½5�1 ¼ 1; f½5�2 ¼ 0; f½5�3 ¼ 0; f½5�4 ¼ 1;

k¼ 6: f½6�1 ¼ 0; f½6�2 ¼ 1; f½6�3 ¼ 1; f½6�4 ¼ 0:

(B4)

(i) For the k ¼ 6 solution in (B4), there are two nonzero

values f½6�2 ¼ 1 and f½6�3 ¼ 1, which means a½6� ¼
�2 � �3.

(ii) For the �2 term, we have j02 ¼ 5� f½6�1 ¼ 5 and

C2
5�2m ¼ ð5� 2mÞ!=ð2!ð3� 2mÞ!Þ. The limits on

the m product are 0 to f½6�2 � 1 ¼ 0, and therefore
m ¼ 0 is the only term that contributes. The m ¼ 0

term is C2
5 ¼ 10. We multiply by a factor 1=f½6�2 ! = 1

and obtain �2 ¼ 10.

(iii) For the �3 term, we have j03 ¼ 5� f½6�1 � 2f½6�2 ¼
3 and C3

3�3m ¼ ð3� 3mÞ!=ð3!ð�3mÞ!Þ. The limits

on the m product are 0 to f½6�3 � 1 ¼ 0, and there-

fore m ¼ 0 is again the only term that contributes,

FIG. 25. 2-loop contributions to I4. The labels under the diagrams indicate the corresponding pieces of Figs. 23 and 6.

FIG. 26. 2-loop contributions to V3, V4, and V5 obtained from
(40) with Vj�4 ¼ 0.

FIG. 27. 3-loop diagrams in I3.
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which gives C3
3 ¼ 1. We multiply by a factor

1=f½6�3 ! ¼ 1 and obtain �3 ¼ 1.
(iv) Multiplying these factors together, the result is

a½6� ¼ �2 � �3 ¼ 10 � 1.
(v) Substituting into (B1), the contribution to �5 from

the k ¼ 6 solution in (B4) is 10DVc
3 .

In the same way, we calculate the a½k� for k ¼ 1, 2, 3, 4,
5. We give a summary of the results.

k ¼ 5: �1 ¼ 5; �4 ¼ 1; a½5� ¼ 5;

k ¼ 4: �1 ¼ 10; �3 ¼ 1; a½4� ¼ 10;

k ¼ 3: �1 ¼ 5; �2 ¼ 3; a½3� ¼ 15;

k ¼ 2: �1 ¼ 10; �2 ¼ 1; a½2� ¼ 10;

k ¼ 1: �1 ¼ 1; a½1� ¼ 1: (B5)

Combining these results, Eq. (14) for j ¼ 5 becomes

h�5i ¼ Vc
5 þ ð5ÞVc

4�þ ð10ÞVc
3�

2 þ ð10ÞVc
3D

þ ð10ÞD�3 þ ð15ÞD2�þ�5: (B6)

In Sec. III, we divide the term �j into different pieces by

defining

�j ¼ �ð0Þ
j þ �ð1Þ

j þ �ð2Þ
j þ �ð3Þ

j : (B7)

We explain this notation below. It is clear that (B2) always
has three solutions which we write

k¼ 1: f½1�1 ¼ j; f½1�l ¼ 0; l� 2;

k¼ 2: f½2�1 ¼ j� 2; f½2�2 ¼ 1; f½2�l ¼ 0; l � 3;

k¼ 3: f½3�1 ¼ j� 2d; f½3�2 ¼ d; f½3�l ¼ 0;

l� 3 and j=2� d � 2: (B8)

From (B3), it is easy to see that a½1� ¼ 1, a½2� ¼ C2
j , and

a½3� ¼ j!=ððj� 2dÞ!d!2dÞ. These three solutions give,
respectively,

�ð0Þ
j ¼ �j for j � 3;

�ð1Þ
j ¼ C2

jD�j�2 for j � 3;

�ð2Þ
j ¼ j!

ðj� 2dÞ!d!2d D
d�j�2d for j � 4 and

j=2 � d � 2: (B9)

The term �ð3Þ
j is defined to be everything that is not con-

tained in �ð0Þ
j þ �ð1Þ

j þ �ð2Þ
j .

APPENDIX C: BARE VERTEX PART OF THE
EFFECTIVE ACTION

In this section, we discuss how to calculate the part of
the effective action that contains bare vertices. We look at
the example Voo

j�5 ¼ 0. Using (4), (5), (13), and (B9), we

obtain

�oo
0 � X4

j¼3

i

j!
�ð0Þ
j Voo

j ¼ Scl;

�oo
1 � X4

j¼3

i

j!
�ð1Þ
j Voo

j ¼ i

2
Tr LnD�1 þ i

2
Tr½ðD0Þ�1D�;

�X4
j¼3

i

j!
�ð2Þ
j Voo

j ¼ �iEIGHT;

�X4
j¼3

i

j!
�ð3Þ
j Voo

j ¼ � i

4!
ð4ÞVc

3�Voo
4 ¼ �iEGGa

0 ;

�X4
j¼3

i

j!
Vc
j V

oo
j ¼ � i

3!
V3D

3Voo
3

� i

4!
D4½V4 þ 3ðV3DV3Þ�Voo

4

¼ �iEGGb
0 � iBBALL0 � iHAIR:

(C1)

The terms in the square bracket in the last line come from
rewriting the connected vertex Vc in terms of proper
vertices. Adding the EGG contributions, we get the dia-
gram with one effective bare vertex: EGGa

0 þ EGGb
0 ¼

EGG0½V0
3 ; V3�. Combining all contributions, we obtain

the result for �0½�;D; V0
j ; Vk� in Eq. (19) with

�0½V0
j ; Vk� ¼ EIGHTþ EGG0 þ HAIRþ BBALL0:

(C2)

The diagrams denoted EIGHT, EGG0, HAIR, and
BBALL0 are shown in Fig. 3. Equation (C2) is the usual
result for the part of the effective action that contains bare
vertices (see, for example, [31]).
It is straightforward to calculate �0½�;D; V0

j ; Vk� for a
theory with fictitious vertices. The classical action will
contain additional terms [see Eq. (4)]. The effective bare
propagator and effective bare vertices are correspondingly
modified [see Eq. (5)]. The 1-loop piece will have the same
functional form; the only change is that it will depend on
the modified effective bare propagator. All of the graphs in
Fig. 3 will be present in the same form; the only change is
that they now depend on the modified effective bare verti-
ces. There will also be new contributions to �0. For the
example Voo

5 and Voo
6 nonzero, the new graphs are shown in

Fig. 17.

APPENDIX D: kmax AND BASKETBALLS

In this Appendix, we show that in the m-Loop nPI
effective action, the largest vertex that appears is Vkmax

with kmax ¼ mþ 1, and the vertex Vmþ1 appears only in
the m-loop basketball diagram.
Using I for the number of internal lines, E for the

number of external legs, and vk for the number of
k-point vertices, the standard topological relations are
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m ¼ I � Xn
k¼3

vk þ 1; 2I þ E ¼ Xn
k¼3

kvk: (D1)

Eliminating I and setting E ¼ 0, we get

m ¼ 1þ Xkmax

k¼3

�
1

2
k� 1

�
vk: (D2)

Our goal is to find kmax for fixedm. We note that every term
in the sum in (D2) is positive.

Case 1: It appears that kmax corresponds to vk ¼ 0 for
k � kmax and vkmax

¼ 1. Substituting into (D2), we obtain

kmax ¼ 2m. However, diagrams with only one vertex are
type 1 tadpoles [see part (b1) of Fig. 1], and we know that
tadpole graphs do not appear in the effective action (see
Sec. III).

Case 2: We consider the solution vk ¼ 0 for k � kmax

and vkmax
¼ 2, which corresponds to a m-loop basketball

diagram. Substituting into (D2), we obtain kmax ¼ mþ 1.
Case 3: In order to conclude that kmax ¼ mþ 1 is the

biggest solution for kmax, we must check the case vkmax
¼ 1

and vk � 0 for some values k < kmax. We need to deter-
mine maximum number of legs from the vertices Vk�kmax

that are available to connect with the lone Vkmax
vertex

without producing a tadpole graph. It is clear that no vertex
can have two legs that connect to each other [to avoid
creating a tadpole like the graph shown in part (b3) of
Fig. 1], and each vertex must connect to at least two other
vertices [to avoid creating a tadpole like the graph shown in
part (b2) of Fig. 1]. Thus, themaximumnumber of legs from
the vertices Vk�kmax

that can connect to the Vkmax
vertex is

kmax ¼
Xkmax�1

k¼3

ðkvk � 2vkÞ þ 2: (D3)

A graph that corresponds to Eq. (D3) is given in Fig. 28.
Rearranging (D2) in the form

m ¼ 1þ 1

2

Xkmax�1

k¼3

ðk� 2Þvk þ kmax

2
� 1; (D4)

and substituting (D3) into (D4) we obtain kmax ¼ mþ 1, as
inCase 2 above. This result appears to indicate that there is a
large set of diagrams of the form shown in Fig. 28, in
addition to the m-loop basketball diagram, that contains
the vertex Vkmax¼mþ1. However, all diagrams of the form

shown in Fig. 28 are flower topologies, which we know do
not appear in the effective action (see Sec. III).
Since all terms in the sum in (D2) are positive, it is clear

that solutions that correspond to vkmax
> 2, or vkmax

¼ 2 and

vk � 0 for some values k < kmax, will produce a smaller
value of kmax. We conclude that in the m-Loop nPI effec-
tive action, the largest vertex that appears is Vkmax

with

kmax ¼ mþ 1, and the vertex Vmþ1 appears only in the
m-loop basketball diagram.

APPENDIX E: EQUIVALENCE OF THE EOM AND
SD EQUATION FOR THE SELF-ENERGY

The equation of motion for the 2-point vertex function
obtained from the n-Loop nPI effective action can be
rearranged to have the same form as the sd equation,
without the use of fictitious vertices. In this Appendix,
we prove this result. The sd equation for the 2-point
function is shown in Fig. 29.
The eom for the 2-point function is obtained from

Eq. (33). For the moment, we continue to use the abbre-
viated notation in which the indices which indicate the
coordinates of each leg are suppressed. Using this notation,
the eom can be written

� ¼ 1

2
V0
4Dþ 2

1

2!
V3D

2V0
3 þ 2

1

3!
V4D

3V0
4

� Xn
j¼3

1

ðj� 1Þ!VjD
j�1Vj þ

X
i

�½diagðiÞ�: (E1)

The first three terms in this expression come from differ-
entiating the EIGHT, EGG0, and BBALL0 diagrams in�0,
respectively, (see Fig. 3). The first sum gives the contribu-
tions from the basketball diagrams in �int which we will
call� basketballs. The second sum contains contributions
from the HAIR diagram in �0 and all nonbasketball dia-
grams in �int. We can replace one of the vertices in each
�-basketball diagram using Eq. (30). Rewriting (30) as

Vj ¼ V0
j þ fcn0j½V0

l ; Vk� þ fcnj½Vk� ¼: V0
j þ

X
i

fj½diagðiÞ�;

(E2)

we obtain

� ¼ 1

2
V0
4Dþ 1

2!
V3D

2V0
3 þ

1

3!
V4D

3V0
4 þ

X
i

EXðiÞ;

EXðiÞ ¼ �Xn
j¼3

1

ðj� 1Þ!VjD
j�1fj½diagðiÞ� þ�½diagðiÞ�:

(E3)
FIG. 28. The maximum number of legs that are available to be
connected to Vkmax

.
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The first three terms on the right side of the first line of (E3)
are the diagrams labeled (1), (2), and (4) in Fig. 29. It is

straightforward to show that EXðHAIRÞ is the diagram
labeled (3) in Fig. 29. We show below that EXðiÞ ¼ 0 for
any diagram except for the HAIR diagram.

An arbitrary diagram with symmetry factor S, I internal
lines, and vk vertices Vk for k � 3 can be written

diag ðiÞ ¼ SDI�kV
vk

k : (E4)

Using (32), (33), and (E4), we have

�½diagðiÞ� ¼ 2I½SDI�1
Y
k

Vvk

k � ¼ 2I
1

D
diagðiÞ;

fj½diagðiÞ� ¼ j!D�j½vjSD
IV

vj�1
j

Y
k�j

Vvk

k �

¼ j!vjD
�j 1

Vj

diagðiÞ: (E5)

Substituting (E5) into the last line of (E3), we have

EX ðiÞ ¼
�
�Xn

j¼3

jvj þ 2I

�
diagðiÞ

1

D
¼ 0; (E6)

where we have used (D1) with E ¼ 0 in the last step.
The discussion above does not take into account the fact

that Eq. (E5) can contain terms with different topologies
and permutations [see (3) and the discussion which follows
this equation]. For an arbitrary diagram in the effective
action, the contribution to the self-energy that is produced
by opening one line can be different, depending on which
line is opened. We must show that each topology that is
produced cancels individually. It is straightforward to see

how this works. Consider the example where diagðiÞ is
taken to be the graph EIGHT4 in Fig. 12. We consider

the contribution to EXðEIGHT4Þ from one line in the diagram
and the two vertices this line attaches to, where the con-
tribution to fj from these vertices is divided by the numeri-

cal factor j. If we can show that these contributions cancel,

then it is clear that the contributions from any and all lines
and their vertex partners cancel. Note that the vertex con-
tribution must be divided by the factor j because each
vertex must partner with j different lines.
We consider the case where the designated line is the

horizontal line in the EIGHT4 diagram. This diagram is
redrawn in Fig. 30(a). The corresponding contribution to
the self-energy is shown in part (b) of Fig. 30. The con-
tributions to the functions f5 and f3 from the vertices which
attach to each end of the designated line are shown in parts
(c) and (d), where the index x indicates the leg of the vertex
that was attached to the designated line in the original
diagram in part (a). We substituting the graph in part (c)
into the right side of the �-basketball diagram that con-
tains two V5’s and the graph in part (d) into the right side of
the �-basketball diagram that contains two V3’s. These
two substitutions produce the two different permutations
that are indicated by the factor (2) in front of the diagram in
part (b). The numerical factors are ð2Þ � 1=8� 1=4! � 1=8 �
5! � ½1=5� � 1=2! � 1=8 � 3! � ½1=3� ¼ 0.
The procedure above can be applied to any line in any

diagram. It is easy to see that the numerical factors are
always correct to produce a cancellation. In the first line of
Eq. (E5), a factor I is removed since only one line is
differentiated. In the second line of Eq. (E5), a factor jvj

is removed because only one vertex is differentiated, and
the contribution is divided by 1=j (so it can be used j� 1
more times in partnership with the j� 1 other lines that
connect to it). We obtain

�½diagði;lÞ� ¼ 2
1

D
diagði;lÞ;

fj½diagði;lÞ� ¼ ðj� 1Þ!D�j 1

Vj

diagði;lÞ; (E7)

where the notation diagði;lÞ indicates that an arbitrary line
labeled (l) in the diagram labeled (i) is considered. Using
these results, (E6) becomes

FIG. 30. The cancellation of one part of EXðEIGHT4Þ. The square brackets indicate the factors 1=j discussed in the text under Eq. (E6).

FIG. 29. Schwinger-Dyson equation for the 2-point vertex.
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EX ði;lÞ ¼ ð�1� 1þ 2Þdiagði;lÞ 1
D

¼ 0: (E8)

The two terms�1 in the equation above correspond to the
two nonzero terms in the sum in (E6) which come from the
two vertices that attach to the designated line.

Thus, we have proved that EXðiÞ ¼ 0 in (E3).
Equivalently, we have shown that when we substitute
(E2) into the vertex on the right side of each � basketball
in (E1), the sum of all terms produced by the functionals fj
cancel with the second sum in (E1).

We must also consider the term produced by the bare
vertex from the first term on the right side of (E2). This

term produces the two�-basketball topologies which have
a bare V0

3 and V
0
4 on the right side. However, the second and

third terms on the right side of (E1) contain two graphs
each, which are �-basketball topologies with the bare
vertex on the left and right sides. The result is that the
graphs with bare vertices on the right side cancel, and we
are left with the graphs labeled (2) and (4) in Fig. 29.
Note that the HAIR diagram contains a bare vertex V0

4 ,

and therefore the lines that attach to the bare vertex do not

have partner contributions from a term of the form fðHAIR;lÞ4 ,

which means that EXðHAIRÞ�0. As mentioned above, it is

straightforward to show that EXðHAIRÞ is diagram (3) in
Fig. 29.
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