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Recently it has been recognized that in compactified string=M theories that satisfy cosmological

constraints, it is possible to derive some robust and generic predictions for particle physics and cosmology

with very mild assumptions. When the matter and gauge content below the compactification scale is that

of the minimal supersymmetric standard model (MSSM), it is possible to make precise predictions. In this

case, we predict that there will be a single standard model-like Higgs boson with a calculable mass

105 GeV & Mh & 129 GeV depending on tan� (the ratio of the Higgs vevs in the MSSM). For tan�> 7,

the prediction is 122 GeV & Mh & 129 GeV.
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I. MOTIVATION

Most physicists agree that understanding the origin of
electroweak symmetry breaking is essential for progress in
going beyond the standard model. The LHC experiments
have made tremendous progress in constraining the Higgs
mass in the past year or so. The combined results from the
LEP, the Tevatron, and the LHC will soon cover the entire
region below about 500 GeV. We will demonstrate that,
with some broad and mild assumptions motivated by cos-
mological constraints, generic compactified string=M
theories with stabilized moduli and low-scale supersym-
metry imply a standard model-like single Higgs boson with
a mass 105 GeV & Mh & 129 GeV if the matter and
gauge spectrum surviving below the compactification scale
is that of the minimal supersymmetric standard model
(MSSM), as seen from Fig. 1. For an extended gauge
and/or matter spectrum, there can be additional contribu-
tions to Mh. Furthermore, in G2-MSSM models [1], we
find that the range of possible Higgs masses is apparently
much smaller, 122 GeV & Mh & 129 GeV.

The standard model suffers from ‘‘naturalness’’ or
‘‘hierarchy’’ problem(s). In addition to the well-known
technical naturalness problem of the Higgs, there is the
basic question of the origin of the electroweak scale. In the
context considered here, the embedding of the (supersym-
metric) standard model in a UV complete microscopic
theory like string=M theory has to explain why the elec-
troweak scale is so much smaller than the natural scale in
string theory, the string scale, which is usually assumed to
be many of orders of magnitude above the TeV scale. The
� parameter (which sets the masses of Higgsinos and
contributes to the masses of Higgs bosons) must also be
around TeV scale. The models we describe here, with
softly broken supersymmetry, include solutions for all of
these problems. Although understanding phenomenologi-
cally relevant supersymmetry breaking in string theory is a
challenging task, many results, including those needed to
calculate the Higgs boson mass, can be obtained with

rather mild, well motivated assumptions. The rest of this
section outlines and motivates these simple assumptions.
In connecting string=M theory to low-energy particle

physics, one has to compactify the extra dimensions.
Motivated by grand unification and its successful embed-
ding into string=M theory, we assume that the string=M
scale, the Kaluza-Klein scale, and the unification scale are
all within an order of magnitude of 1016 GeV. Within the
theoretical precision desired, numerical results for Mh are
not sensitive to variations of an order of magnitude or so in
these scales.
Even though the energy scale of the extra dimensions is

assumed to be much above the center-of-mass energy of
collisions at the LHC, the extra dimensions still manifest
themselves at lower energies through the presence of
‘‘moduli’’ fields. These are modes of the extra dimensional
graviton whose vacuum-expectation values (vevs) deter-
mine the shapes and sizes that the extra dimensions take.
Being modes of the extra dimensional graviton, the moduli
couple to matter with Planck suppressed interactions uni-
versally. The moduli have to be stabilized since all cou-
plings and masses are determined from their vevs.
In recent years, significant progress has been made in

understanding moduli stabilization and supersymmetry
breaking in different corners of string=M theory, see
[2–11]. In this work, we will be interested in supersymme-
try breaking mechanisms which give rise to TeV-scale
supersymmetry, and hence solve the naturalness problems
in the standard model. The basic mechanisms were de-
scribed in [7,8] for M theory and in [3,4,6] for type IIB
compactifications, where it was shown that all moduli can
be stabilized and supersymmetry can be broken with
�TeV-scale superpartners with a natural choice of pa-
rameters—in which the only dimensionful scale is Mpl.

In a vacuum with broken supersymmetry and vanishing
cosmological constant, the mass of the gravitino (m3=2),

which is the superpartner of the massless graviton, is the
order parameter of supersymmetry breaking and sets the
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mass scale for all superpartners and also indirectly
the Higgs mass.

A natural prediction of such compactifications is that the
mass of the lightest modulus is close tom3=2. In fact, this is

a generic result for compactified string=M theories with
stabilized moduli within the supergravity approximation.
In vacua in which the superpotential W is not tuned, it
essentially arises from the fact that there is a relationship
between the dynamics stabilizing the moduli and the dy-
namics breaking supersymmetry due to the extremely tiny
value of the cosmological constant. Thus, the modulus
mass becomes related to the gravitino mass. For more
details, see [12,13]. For the generic case with many moduli,
at least some of the moduli are stabilized by perturbative
effects in the Kähler potential [6,8]. Then, it can be shown
that the lightest modulus1 has a mass of the same order as
m3=2 [14,15].

Generic predictions

The fact that, generically, the lightest modulus mass
is of the same order as the gravitino mass has significant
implications for the phenomena described by a typical
string=M theory vacuum, with some rather mild assump-
tions. In addition to the requirement of stabilizing all
moduli in a vacuum with TeV-scale supersymmetry (as
described in the previous section) which picks the set
of string compactifications we choose to study, the
assumptions are essentially that the supergravity approxi-
mation is valid and that the Hubble scale during inflation is
larger than m3=2.

In particular, the above implies that the light moduli
fields (of order m3=2) are generically displaced during

inflation, causing the Universe to become moduli domi-
nated shortly after the end of inflation due to coherent
oscillations of the moduli. Requiring that these decay
before big-bang nucleosynthesis (BBN) so as to not ruin
its predictions, puts a lower bound onm3=2 of about 25 TeV

or so. Thus, the cosmological moduli problem [16] generi-
cally requires that m3=2 > 25 TeV. Since m3=2 ’ F

Mpl
for

vacua with a vanishingly small cosmological constant,
this further implies that the supersymmetry breaking scaleffiffiffiffi
F

p
has to be ‘‘high,’’ as is natural in gravity mediation

models. Low-scale supersymmetry breaking scenarios like
gauge mediation do not seem to be compatible with these
cosmological constraints.

Historically, other approaches have been suggested to
solve the moduli problem, but they have largely been
shown to not work, or to be very nongeneric. Most recently,
[13] excluded a number of approaches involving late in-
flation [17]. One approach involving saxion inflation was
not yet excluded but fails for M theory [18]. A recent

highly speculative proposal assumes an otherwise un-
known ad hoc interaction [19].
As an aside, the requirement of stabilizing a large num-

ber of moduli in a realistic compactification with a simple
mechanism naturally picks mechanisms in which many
axions2 are exponentially lighter than m3=2, one of which

can naturally be the QCD axion [6,20]. Hence, this pro-
vides a string theory solution of the strong-CP problem
with stabilized moduli and axions, and also naturally pre-
dicts an Oð1Þ fraction of dark matter (DM) in the form of
axions, the abundance of which must now be computed
with a nonthermal cosmological history [20].
Generically, within high-scale supersymmetry breaking

mechanisms such as gravity mediation, the squark, slepton,
and heavy Higgs masses are also of order m3=2. It has been

argued that in special cases, squarks and sleptons may be
‘‘sequestered’’ from supersymmetry breaking, giving rise
to a suppression in their masses relative to m3=2. However,

it was shown in [21] that, in string=M theory compactifi-
cations with moduli stabilization, the squark and slepton
masses are generically not sequestered from supersymme-
try breaking once all relevant effects are taken into ac-
count. This has important implications for collider physics,
implying, in particular, that squarks and sleptons should
not be directly observed at the LHC [15,22].
While scalar superpartner masses are tied to m3=2, gau-

gino masses need not be. Within many classes of string
compactifications which satisfy all the requirements stated
above, it can be shown that the gaugino masses [1,23] and
� [24] are suppressed by 1 to 2 orders of magnitude
relative to m3=2. The gaugino masses are suppressed com-

pared to scalar masses because they do not get mass from
some of the mechanisms that break supersymmetry, and �
may be suppressed because it must vanish by symmetry
argument when supersymmetry is unbroken or moduli are
not stabilized. In this case, it can be shown that the lightest
supersymmetric particle could naturally provide the DM
abundance with a nonthermal mechanism [25,26].
However, it is not clear at present if this is a generic feature
of all realistic compactifications. For example, it is pos-
sible in classes of string compactifications to stabilize
moduli in such a way that the gaugino masses are of the
same order asm3=2 [27]. Similarly, it is possible for� to be

generated at the same order as m3=2 [28]. A review of

particle physics and cosmology in this general framework
will appear shortly in [29].

II. THE HIGGS AND BEYOND STANDARD
MODEL PHYSICS

We are interested in making predictions for the Higgs
mass arising from realistic compactifications satisfying the
conditions above. In a supersymmetric theory, two Higgs

1More precisely, we mean the real part of the chiral superfield
making up the complex modulus in the 4D theory. 2The axions are the imaginary parts of the complex moduli.
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doublets are required for anomaly cancellation; so by the
‘‘Higgs mass’’ we mean the mass of the lightest CP-even
neutral scalar in the Higgs sector. A remarkable fact about
the Higgs mass in general supersymmetric theories is that
an upper limit on Mh of order 2MZ exists just from the
requirement of validity of perturbation theory up to the
high scale of order 1016 GeV [30]. This is due to the fact
that the Higgs mass at tree level only depends on SM gauge
couplings (which have been measured), and possibly other
Yukawa or gauge couplings (which are bounded from
above by perturbativity). However, in addition to the gauge
and matter spectrum, the precise value of the Higgs mass
depends crucially on radiative effects, which in turn de-
pend on all the soft parameters including the � and B�
parameters.

In this work we assume that the visible sector consists of
the SM gauge group with the MSSM matter content below
the unification scale, as suggested by gauge coupling
unification and radiative electroweak symmetry breaking
(EWSB) in the MSSM. In addition, we consider compac-
tifications in which the gravitino mass m3=2 is not too far

above the lower bound of�25 TeV from the moduli decay
constraint, and the gaugino masses are suppressed by 1 to 2
orders of magnitude relative to m3=2. For � we study two

cases, one in which � is suppressed by 1 to 2 orders of
magnitude relative to m3=2 as predicted in [24], and the

other in which � is of the same order as m3=2 [28]. We

denote these two cases as ‘‘Small’’ � and ‘‘Large’’ �,
respectively (the Higgs mass in the Large � scenario was
studied within the M-theory framework in [1]). The two
cases are studied as they pick out different regions of tan�
and, hence, give different predictions for the Higgs mass as
seen from Fig. 1. For more discussion, see Sec. IV.

Note that only one of the five scalars in the Higgs sector
of the MSSM is light, the rest are all of order m3=2. Hence,

we are in the ‘‘decoupling limit’’ of the MSSM where the
lightest CP-even Higgs scalar has precisely the same prop-
erties as the SM Higgs.3 The low-energy theory arising
from M theory studied in [1] naturally gives rise to these
features, but the results apply to all compactifications with
scalars heavier than about 25 TeV and & TeV gauginos.
The Higgs mass can then be reliably computed with a small
and controlled theoretical uncertainty. This will be the
subject of the following sections.

From a bottom up point of view, some authors have
noted that heavy scalars have some attractive features
[32] and related phenomenology has been studied in
[33,34]. Their conclusions are consistent with ours where
they overlap. The framework considered here is quite
different from split supersymmetry [35] and high-scale

supersymmetry [36] which have much heavier scalars. In
split supersymmetry both gaugino masses and trilinears are
suppressed relative to scalars by a symmetry—in this case
an R symmetry, together with supersymmetry breaking of
the D type as described in [35]. In contrast, in the class of
compactifications considered here, the gaugino masses are
suppressed by dynamics, since the F term for the modulus
determining the gaugino masses is suppressed relative to
the dominant F term. Hence, gaugino masses can only be
suppressed by 1 to 2 orders of magnitude, not arbitrarily as
in split supersymmetry. For the same reason, the gluinos
are not ‘‘long lived’’ in the realistic string=M theory vacua
under consideration here. Also, the trilinears are not sup-
pressed at all. With large trilinears, one has to be careful
about charge and color breaking minima, and we have
confirmed the absence of these in models of interest.
Another notable difference from split supersymmetry and
high-scale supersymmetry is that, in those models, (radia-
tive) electroweak symmetry breaking is not implemented

FIG. 1 (color online). The prediction for the Higgs mass at two
loops for realistic string=M theory vacua defined in the text, as a
function of tan� for three different values of the gravitino mass
m3=2, and varying the theoretical and experimental inputs as

described below. SPHENO 2.2.3 was used to evolve grand unified
theory scale parameters toMSUSY. For precise numbers and more
details, see Sec. IV. The central band within the dashed curves
for which scatter points are plotted corresponds to m3=2 ¼
50 TeV. This band includes the total uncertainty in the Higgs
mass arising from the variation of three theoretical inputs at the
unification scale, and from those in the top mass mt and the
SUð3Þ gauge coupling �s within the allowed uncertainties.
The innermost (white) band bounded by solid curves includes
the uncertainty in the Higgs mass for m3=2 ¼ 50 TeV only from

theoretical inputs. The upper (dark gray) band bounded by solid
curves corresponds to the total uncertainty in the Higgs mass for
m3=2 ¼ 100 TeV while the lower (light gray) band bounded by

solid curves corresponds to that for m3=2 ¼ 25 TeV. For m3=2 ¼
50 TeV, the red scatter points (with tan� less than about 4.5) and
blue scatter points (with tan� greater than about 4.5) correspond
to Large � and Small �, respectively, as described in Secs. II
and IV. The lower bound of the Higgs mass is from [46]. We
assume the currently almost excluded regime 117.5–118.5 GeV
will soon be fully excluded.

3In the decoupling limit, the Higgs mixing angle denoted by �
in [31] is given by � ¼ �� �

2 , where � � tan�1ðvu

vd
Þ. vu, and vd

are the vacuum expectation values (vevs) of the two neutral
Higgs fields H0

u and H0
d in the MSSM.
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when computing the Higgs mass since a huge fine-tuning is
present by assumption. In contrast, in the string=M theory
models considered in this work, (radiative) electroweak
symmetry breaking occurs naturally in a large subset of
the parameter space. However, the ease in obtaining the
correct value of the Higgs vev (or Z-boson mass) depends
on the value of �. For Small �, it can be shown that the
fine-tuning involved in obtaining the correct Higgs vev is
significantly reduced compared to the naive expectation for
heavy scalars due to an automatic cancellation between
scalar masses and trilinears which are both close tom3=2 in

this setup; for details see [34]. This can naturally give rise
to � & TeV, even when the scalar mass parameters are
* 30 TeV. For Large �, the fine-tuning is quite severe as
one would expect. We include both cases here.

III. COMPUTATION OF THE HIGGS MASS

Computing the Higgs mass in the MSSM with scalar
masses and trilinears at Msusy * 25 TeV, and gauginos

and � suppressed by 1 to 2 orders of magnitude relative
to the scalar masses, is nontrivial. Although conceptually
quite different, some of the technical issues involved have
an overlap with split-supersymmetry and high-scale
supersymmetry.

Since the scalar masses are much larger than a TeV, they
could lead to nontrivial quantum corrections in the
gaugino-Higgsino and Higgs sectors enhanced by ‘‘large
logarithms’’ of the ratio between the electroweak scale and
the scalar mass scale. Many numerical codes tend to
become less reliable for scalar masses larger than a few
TeV for the above reason. However, in contrast to split
supersymmetry and high-scale supersymmetry models, the
scalar masses here are 25–100 TeV which is not that large,

since logðMsusy

MEW
Þ is not large. So, numerical codes should still

provide a reasonable estimate. The ratio of the two Higgs
fields vevs, tan� cannot yet be calculated accurately, and
significantly affects the value of Mh if tan� & 10, so we
include the variation from tan�. This dependence actually
allows an approximate measurement or useful limit on
tan� which is otherwise very difficult to do.

In light of the above, we adopt the following procedure.
At the unification scale around 1016 GeV, in accord with
theoretical expectations we fix the soft parameters—the
scalar masses equal to m3=2, the trilinears A close to m3=2,

and the gaugino masses suppressed by 1 to 2 orders
of magnitude relative to the scalar masses as described
in [1]. Then, for a given value of tan�, the numerical
codes SOFTSUSY 3.2.4 [37] and SPHENO 2.2.3 [38] are used
to renormalize these quantities down to Msusy � m3=2,

where electroweak symmetry breaking is implemented.
This determines � and B�. The quantities are chosen
such that the values of � and B� are consistent with
the theoretical expectations. One consequence of this
is that tan� is not expected to span the fully phenomeno-

logically allowed range from �2 to �60, but only a
restricted range from �2 to �15 [34]. In any case,
from Fig. 1, since the Higgs mass saturates for tan� *
12, plotting higher values of tan� will not provide new
information.
Then, we compute the Higgs mass in the ‘‘match-and-

run’’ approach using values of gaugino masses, � and B�
at Msusy determined from above. We follow a procedure

similar to that in [39] except that we only consider those
parameters at the unification scale which after renormal-
ization group evolution toMsusy give rise to viable electro-

weak symmetry breaking. We also compute the Higgs
mass directly with SOFTSUSY using theoretical inputs at
the unification scale, and compare to the results obtained
with the ‘‘match-and-run’’ approach, the detailed proce-
dure for which is described below.

A. Matching at Msusy

At the scale Msusy, the full supersymmetric theory is

matched to a low-energy theory with fewer particles, con-
sisting of the SM particles, the gauginos, and the Higgsinos
for the Small � case, and only the SM particles and the
gauginos for the Large� case. The matching condition for
the quartic coupling of the Higgs in the low-energy theory
is given at Msusy by

� ¼ 1
4½g22 þ 3

5g
2
1�cos22�þ ��

th; (1)

where g1, g2 are the Uð1ÞY and SUð2ÞL gauge couplings
evaluated atMsusy. The threshold corrections to the quartic

coupling at one loop consist of leading log (LL) as well as
finite corrections. The above matching condition is strictly
valid only in the DR scheme, so there is an additional

correction if one wants to convert to the MS scheme as
explained in the Appendix of [40]. We use the standard

choiceMsusy ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M~t1M~t2

p
, whereM~t1 ,M~t2 are the masses of

the two stop squarks, and include all the relevant LL and
finite threshold corrections. The dominant finite threshold
effects to the Higgs quartic coupling comes from stop
squarks, and is given by

��
th �

3y4t
8�2

�
A2
t

m2
~t

� A4
t

12m4
~t

�
: (2)

Since the trilinears A are of the same order as scalars, this is
a nontrivial correction when the scalars and trilinears are
around 25 TeV. Other finite threshold corrections are
smaller, and have been neglected as they do not affect
the result to within the accuracy desired.
The matching conditions for the gaugino-Higgsino-

Higgs couplings (denoted by � in general) at Msusy in the

DR scheme are given by

�2u ¼ g2 sin�; �2d ¼ g2 cos�;

�1u ¼
ffiffi
3
5

q
g1 sin�; �1d ¼

ffiffi
3
5

q
g1 cos�;

(3)

GORDON KANE et al. PHYSICAL REVIEW D 85, 075026 (2012)

075026-4



where the gauge couplings are to be evaluated atMsusy. As

for the Higgs quartic coupling, additional corrections are

present in the MS scheme, which can be obtained from
[40].

B. Two-loop RGEs and weak scale matching

We use two-loop renormalization group equations
(RGEs) computed in [39] for the gauge couplings, third-
generation Yukawa couplings yt, yb, y�, the Higgs quartic
�, and the gaugino-Higgsino-Higgs (�) couplings (for
Small �), to renormalize them down to the weak scale.
For Large �, the � couplings are not present in the low-
energy theory, and (3) is used to compute the threshold
correction from Higgsinos at Msusy.

Note that unlike the � couplings and the quartic cou-
pling, the boundary conditions for which are defined at
Msusy, the boundary conditions for the gauge and Yukawa

couplings yb, y� are defined atMZ—the Z pole—while that
for the top Yukawa coupling yt is defined at the top pole
mass mt ¼ 173:1� 0:9 GeV [41]. In particular, the
boundary values of the running gauge and Yukawa cou-

plings in the MS scheme are extracted from experimental
observables at the weak scale by including threshold ef-
fects, as explained in [40]. For the top Yukawa coupling yt,
nontrivial three-loop QCD corrections, and one-loop elec-
troweak and superpartner threshold corrections are also
included as they are non-negligible and play an important
role in the precise prediction for the Higgs mass. Since the
boundary conditions are given at different scales, an iter-
ative procedure is required to solve the coupled differential
RGE equations. We follow a procedure similar to that in
[39,40,42]. Then, the Higgs mass is given by

Mh ¼
ffiffiffi
2

p
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðQÞ þ ��ðQÞ þ ~��ðQÞ

q
; (4)

where v ¼ 174:1 GeV, �� stands for the corrections from

the SM particles, and ~�� stands for the corrections from the
supersymmetric fermions at the weak scale, and all cou-

plings are evaluated at the MS scale Q ¼ mt. The expres-
sions are given in [39]. Finally, as mentioned earlier, since
numerical codes are expected to give a good estimate of the
Higgs mass, we compute the Higgs mass directly with
SOFTSUSY. We find very good agreement between the two

results, to within 1 GeV.

IV. RESULT

Figure 1 gives the Higgs mass as a function of tan� by
varying the theoretical inputs at the unification scale in
ranges predicted by the theory, and mt and �s within the
allowed uncertainties. The values of the Higgs mass shown
are in the ‘‘match-and-run’’ approach. The ranges of the
theoretical and experimental inputs, and the resulting un-
certainties are discussed in detail below. The � and B�

parameters are related by electroweak symmetry breaking
to tan�, so by varying tan� one is effectively varying �
and B�. As pointed out in Sec. I, theoretical considerations
typically give rise to two different classes of phenomeno-
logically viable predictions for �—one in which � is
suppressed by 1 to 2 orders of magnitude relative to
m3=2, and the other in which � is comparable to m3=2. As

seen from Fig. 1, the two classes of predictions for � give
rise to different values of tan� because of the EWSB
constraints that relate them; hence, a measurement of the
Higgs mass will not only determine or constrain tan�, it
will also favor one class of �-generating mechanisms over
the other. For instance, in G2-MSSM models arising from
M theory, Witten’s solution to the doublet-triplet splitting
problem [43] results in � being suppressed by about an
order of magnitude. Hence, in these vacua, the Higgs mass
sits in the range 122 GeV & Mh & 129 GeV.
It is important to understand the origin of the spread in

the Higgs mass for a given value of m3=2 and tan�, seen in

Fig. 1. This spread arises from theoretical and experimen-
tal uncertainties schematically shown in Table I. The two
cases in Table I correspond to Small � and Large � as
mentioned in Sec. II. As the name suggests, ‘‘Theoretical’’
in the second column corresponds to the variation of input
quantities from the theory at the unification scale. For a
given m3=2, this includes the variation in the trilinears A

and those in the gaugino mass parameters M1, M2, M3

consistent with theoretical expectations. ‘‘Experimental,’’
on the other hand, stands for the variation of the experi-
mental inputs, the top mass mt and the SUð3Þ gauge
coupling �s, within the current uncertainties. The precise
variations in the theoretical and experimental inputs are
shown in Table II.
The variations in the bino and wino mass parametersM1

andM2 have a negligible effect on the Higgs mass, and are

TABLE I. Uncertainties in the calculation of the Higgs mass
for a given value of m3=2 and tan�, as shown in Fig. 1. All

masses are in GeV. Uncertainties from higher loops are about the
same order, not included in the table.

Case Variation of input �Mh

Small � theoretical �0:5
0:05m3=2 � � � 0:15m3=2 theoreticalþ experimental �1:1

Large � theoretical �0:5
0:5m3=2 � � � 1:5m3=2 theoreticalþ experimental �1:25

TABLE II. Variation of the theoretical and experimental in-
puts. All masses are in GeV.

Theoretical Experimental

600 � m~g � 1200 172:2 � mt � 174 [41]

0:8m3=2 � At � 1:5m3=2 0:1177 � �MS
s ðmZÞ � 0:1191 [44]
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not shown above. Although we have not fully estimated
uncertainties arising from higher-loop effects in the RGE
and threshold effects, which should be about 1–2 GeV [45],
the fact that our results agree so well with SOFTSUSY/

SPHENO suggests that these are at most of the same order

as those listed in Table I. Finally, let us discuss the uncer-
tainty in the gravitino mass scale. Figure 1 shows the Higgs
mass for three different values of m3=2—25, 50, and

100 TeV. As explained at the end of Sec. I, the lower limit
on m3=2 of about 25 TeVarises from the general result that

the lightest modulus mass is generically of the same order
as m3=2. The modulus decays with a decay constant which

is effectively suppressed by the string scale, and the re-
quirement of generating a sufficiently high reheat tempera-
ture so that BBN occurs in the usual manner, puts a lower
bound on m3=2. Therefore, the lower limit on m3=2 is

uncertain only by a small amount. Although the upper limit
is less tightly constrained, theoretical expectations con-
strain it to be not much above 100 TeV. This is because
in the string=M theory vacua considered here, gaugino
masses are suppressed only by 1 to 2 orders of magnitude
relative to m3=2 in accord with theoretical expectations

[1,23]. Therefore, the requirement of gauginos to be light
enough (with masses& TeV) such that they are part of the
low-energy theory at Msusy, as assumed in Sec. III A, puts

an upper limit on m3=2 of about 100 TeV. A similar upper

bound also arises in realistic moduli stabilization mecha-
nisms satisfying the supergravity approximation [1].
Improvements in data as well as theory in the future will
be extremely helpful in constraining the gravitino mass.

V. CONCLUSIONS

Recent progress in string=M theory compactifications
which stabilize the moduli and give rise to low-scale
supersymmetry imply that once cosmological constraints
are imposed, generically the gravitino mass is heavier than
about 25 TeVand the scalar masses and trilinears are close
to the gravitino mass. This in turn implies that the two-
doublet Higgs sector of supersymmetric models is a de-
coupling one, i.e. the physical mass spectrum has one light
standard model-like Higgs boson, with the additional states
being heavier, also of order the gravitino mass. The result-
ing effective low-scale theory depends only on a few input
quantities from which many effects relevant for collider
physics can be computed. With current understanding,
these quantities are constrained by the theory but not yet
fully calculable. The Higgs mass, in particular, depends on
these inputs mainly through tan�, which is equivalent to a
particular combination of the inputs, and to the gravitino
mass scale m3=2 to a smaller extent. The dependence on

other combinations of input quantities turns out to be rather
mild. It is, therefore, possible to calculate the predictions
for the observable Higgs boson mass as a function of tan�
quite accurately. The resulting value holds generically in

all corners of four-dimensional string=M theory vacua
which satisfy the criteria and assumptions outlined in
Sec. I.
We evaluate Mh by writing the effective four-

dimensional theory at the compactification scale, and car-
rying out the renormalization group running down to the
weak scale, including two-loop effects in the RGEs and all
relevant threshold corrections. This gives an absolute pre-
diction ofMh as a function of tan� to an accuracy of about
2 GeV for a given m3=2 when all relevant theoretical and

experimental uncertainties are included. The uncertainty
mainly arises from the uncertainty in the top mass and the
variation of the soft parameters at the unification scale
within the theoretically allowed limits. tan� is not yet
accurately calculable from string=M theory, although theo-
retical arguments suggest that within the framework con-
sidered, it should lie in the range from around 2 to 15. Since
� and B� are related by the EWSB constraint, one finds
that in these vacua, low tan� & 5 is only possible when �
is comparable to m3=2, while tan� * 5 is possible for �

suppressed by 1 to 2 orders of magnitude relative to m3=2.

This is an important result as the measurement of the Higgs
mass would determine (or constrain) tan� and, hence, the
value of �.
The dependence on tan� is quite valuable. If the experi-

mental result for Mh lies within the range predicted in
Fig. 1, then the value of tan� is measured within this
framework, something which is extremely difficult to do
by other methods. Initially the measurement will be of
limited precision but will improve fast as the experimental
resolution and the accuracy of the theory improve. IfMh is
greater than about 125 GeV, it puts a lower limit on tan�
which is also quite useful. Depending on the value and the
accuracy with whichMh is measured, it may be possible to
draw conclusions about the gravitino mass and the associ-
ated scalar masses and trilinear couplings as well. The
knowledge of tan� (and possibly scalar masses and tri-
linears) obtained from the Higgs mass measurement can be
used as a consistency check and to look for correlated
observables such as gluino pair production with enhanced
branching ratios to third-generation final states (top and
bottom quarks) [1,22].
Note that our result is strictly only valid when the matter

and gauge spectrum below the compactification scale is
precisely that of the MSSM and gauginos are suppressed
by an order of magnitude or so relative to the scalars. As is
well known, extended gauge groups can give new D-term
contributions to the Higgs mass. Similarly, existence of
additional states [such as SM singlets, SUð2Þ triplets,
SUð3Þ charged states, etc.] with Yukawa couplings to the
Higgs sector can give rise to new tree-level and radiative
contributions to the Higgs mass. Even if the matter and
gauge content is exactly that of theMSSM but gauginos are
not suppressed, then the beta function for the Higgs quartic
below Msusy would be different and would lead to a
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different prediction for the Higgs mass in general. Such
alternatives can be studied in a straightforward manner if
necessary.

If the prediction for the Higgs mass turns out to be
correct, it would be an extremely important step forward
in relating the string=M theory framework to the real world
and would open up many opportunities for learning about
the string vacuum we live in. In addition to learning about
tan� and � as described earlier, it could tell us that the
gauge and matter content of nature is indeed that of
the MSSM. If not, this would imply that one or more
of the attractive assumptions in the paper have to be
relaxed.
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