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We study corrections to the conformal hyperscaling relation in the conformal window of the large Nf

QCD by using the ladder Schwinger-Dyson (SD) equation as a concrete dynamical model. From the

analytical expression of the solution of the ladder SD equation, we identify the form of the leading mass

correction to the hyperscaling relation. We find that the anomalous dimension, when identified through the

hyperscaling relation neglecting these corrections, yields a value substantially lower than the one at the

fixed point ��
m for large mass region. We further study finite-volume effects on the hyperscaling relation,

based on the ladder SD equation in a finite space-time with the periodic boundary condition. We find that

the finite-volume corrections on the hyperscaling relation are negligible compared with the mass

correction. The anomalous dimension, when identified through the finite-size hyperscaling relation

neglecting the mass corrections as is often done in the lattice analyses, yields almost the same value as

that in the case of the infinite space-time neglecting the mass correction, i.e., a substantially lower value

than ��
m for large mass. We also apply the finite-volume SD equation to the chiral-symmetry-breaking

phase and find that when the theory is close to the critical point such that the dynamically generated mass

is much smaller than the explicit breaking mass, the finite-size hyperscaling relation is still operative. We

also suggest a concrete form of the modification of the finite-size hyperscaling relation by including the

mass correction, which may be useful to analyze the lattice data.

DOI: 10.1103/PhysRevD.85.074502 PACS numbers: 11.15.Ha

I. INTRODUCTION

Technicolor model [1,2] has been considered as an
interesting possibility for the dynamical origin of the
electroweak symmetry breaking. However, it has fatal
phenomenological difficulties (especially with the strong
suppression of flavor-changing neutral current processes).
The problems can be solved by the walking technicolor
[3,4] having approximate scale invariance with large mass-
anomalous dimension, �m ’ 1, which was proposed based
on the ladder Schwinger-Dyson (SD) equation. Modern
technicolor models often utilize asymptotically free gauge
theories with an approximate infrared fixed point (IRFP) to
achieve the walking behavior.

The SUðNÞ gauge theory with a large number of mass-
less fermions is one of the theories that are expected to
possess such a property [5]. In the case of SU(3) gauge
theory, for example, the two-loop running coupling has an
IRFP in the range of 9 � Nf � 16ð<NAF

f Þ, where Nf is the

number of massless fermion with fundamental representa-
tion, and NAF

f is the value of Nf above which a theory loses

its asymptotic freedom nature [6,7]. Within this range of
Nf, the larger the number of Nf becomes, the smaller does

the value of the running coupling at the IRFP. Because of
this, it is expected that there is a critical value of flavor,Ncr

f ,

below which the theory is in the confining hadronic phase

with broken chiral symmetry, while above which it is in the
deconfined phase with unbroken chiral symmetry. An
analysis based on the SD equation with the improved
ladder approximation estimates that the value of Ncr

f lies

between 11 and 12 [8]. Therefore, for 12 � Nf � 16

(often called ‘‘conformal window’’), the theory possesses
an exact IRFP, while for 9 � Nf � 11, the chiral symme-

try is spontaneously broken, i.e., the IRFP disappears and
the scale invariance is only approximate. In Ref. [9,10],
this chiral phase transition at Ncr

f was further identified

with the ‘‘conformal phase transition,’’ which was charac-
terized by the essential singularity scaling (Miransky
scaling).
Considering the intrinsically nonperturbative nature

of the problem, the lattice gauge theory should play an
important role for the study of the phase structure of
such theories. In addition to pioneering works such as
Refs. [11–14], there is growing interest in this subject in
recent years [15]. A straightforward way of investigating
the infrared behavior of a given theory is to calculate the
running coupling constant of the theory. Though it requires
simulations in a wide range of parameter space, since an
extensive range of the energy scale has to be covered to
trace the running of the coupling by step-scaling proce-
dure, there are many groups that devote their efforts to such
a direction.

PHYSICAL REVIEW D 85, 074502 (2012)

1550-7998=2012=85(7)=074502(13) 074502-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.074502


Alternatively, infrared conformality of the theory can
also be investigated by deforming the theory with the
introduction of a small fermion bare mass, m0, as a probe,
and study the relation between some low-energy physical
quantities (such as the meson masses and the decay con-
stants) and m0. In Ref. [16,17], it is shown that the scaling
relation between a low-energy quantity and m0 can be
expressed in terms of the mass-anomalous dimension at
the IRFP, ��

m.
1 In the case of the mass ðMÞ of a meson with

certain spin and quantum numbers, for example, the scal-
ing relation (‘‘hyperscaling relation’’) is expressed as

M�m1=ð1þ��
mÞ

0 : (1)

When one considers a theory in a finite space-time, the
scaling relation is modified to the ‘‘finite-size hyperscaling
relation’’ as follows:

M ¼ L�1fðxÞ; (2)

where L is the size of space and time, and f is some
function of scaling variable x, which is defined as

x � L̂m̂1=ð1þ��
mÞ

0 : (3)

Here, we introduced dimensionless quantities, L̂ � L�
and m̂0 � m0=�, where we take � as the UV scale at
which the infrared conformality terminates. Several groups
[18–21] tried to judge whether candidate theories posses an
IRFP or not by measuring the low-energy quantities on the

lattice for various combination of input values of L̂ and m̂0,
then checking whether Eq. (2) is satisfied for a certain
value of ��

m.
However, a couple of questions arise here regarding use

of (finite-size) hyperscaling relation for the study of infra-
red conformality: One of them is related to the fact that the
bare fermion mass, m0, which is introduced as a probe,
itself necessarily breaks the infrared conformality of the
original theory. How small does m0 has to be so that the
hyperscaling relation is approximately satisfied? What is
the form of correction if it is not small enough? When the
anomalous dimension is measured for mass not so small,
can it be regarded as ��

m at IR fixed point at face value?
Another question is, when the theory in question does not
have an IRFP (namely, in the phase where the chiral
symmetry is spontaneously broken) in the first place,
how and how much is the hyperscaling relation violated?

The ladder SD equation, which is the birthplace of the
walking technicolor, is actually a concrete dynamical
model to study such questions. In the framework of the
ladder SD equation, we know whether a given theory is
infrared-conformal or not, and also the value of the anoma-

lous dimension as well. Therefore, we can quantitatively
study the (finite-size) hyperscaling relation and its viola-
tion by using the ladder SD equation in a self-consistent
manner. Numerical calculations can be easily done in a
wide range of parameter space, and to a certain extent, even
an analytical understanding can be obtained by investigat-
ing the solution of the ladder SD equation.
In this paper, we study the (finite-size) hyperscaling

relation and its violation, based on the ladder SD equation
by taking the example of SU(3) gauge theory with various
number of fundamental fermions (which is often called the
large Nf QCD).

In the next section, from the analytical expression of the
solution of the ladder SD equation, we identify the form of
the leading correction to the hyperscaling relation. We find
that the anomalous dimension �m for off the IRFP (with
finite mass scale) is substantially smaller than ��

m, the value
at IR fixed point (with vanishing mass) for the larger mass.
Our result may shed some light on the value of the anoma-
lous dimension often reported by the lattice simulations
done with relatively large masses.
In Sec. III, for the purpose of studying the finite-size

hyperscaling relation, we formulate the SD equation in a
finite space-time with the periodic boundary condition.
By numerically solving it for various values of the input

parameters ðm̂0; L̂Þ, finite-size, as well as mass deformation
effects on the finite-size hyperscaling relation is studied in
the conformal window. The result suggests that the correc-
tion due to the finite-size effect on the finite-size hyper-
scaling relation is negligible compared with that coming
from large mass corrections. Then we find that the anoma-
lous dimension, when identified through the finite-size
hyperscaling relation neglecting the mass corrections, is
almost the same as that obtained through the hyperscaling
in the infinite space-time neglecting the mass corrections
and hence is substantially smaller than ��

m. We also use the
ladder SD equation in a finite space-time to study the
chiral-symmetry-breaking phase, and show how the effect
of spontaneous breaking of the chiral symmetry affects the
(finite-size) hyperscaling relation. In the case of Nf ¼ 11,

which is close to the criticality so that the dynamically
generated mass is small compared with the explicit mass,
the finite-size hyperscaling relation is still operative. We
further suggest a concrete form of the modification of the
finite-size hyperscaling relation taking account of the mass
correction, which may be useful for the analysis of the
lattice data.
Finally, Sec. 5 concludes the paper.

II. CORRECTION TO THE HYPERSCALING
RELATION

We start from the study of the hyperscaling relation in
the infinite space-time, namely, the one in Eq. (1). In this
section, from the analytical expression of the solution of
the ladder SD equation, we identify the form of the leading

1This ��
m is identified with the anomalous dimension �m

relevant to the walking technicolor, which is �m measured at
ultraviolet (UV) limit (instead of IR limit), or near the scale of
(pseudo-) UV fixed point, usually identified with the extended
technicolor (ETC) scale. See discussions below Eq. (28).
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correction to the hyperscaling relation. Here, we take the
example of the large Nf QCD in the conformal window to

study infrared-conformal theories.
The two-loop running coupling of the large Nf QCD is

shown in Fig. 1. In the figure, the two-loop running cou-
pling (and its approximated form) in the case of SU(3)
gauge theory with 12 massless fundamental fermion is
plotted as an example. The solid curve represents the
two-loop running coupling, which is obtained from the

following renormalization group equation for �ð�2Þ�
ð¼ �g2ð�2Þ

4� Þ:

�
d

d�
�ð�2Þ ¼ �ð�ð�2ÞÞ ¼ �b�2ð�2Þ � c�3ð�2Þ; (4)

where

b ¼ 1

6�
ð11Nc � 2NfÞ;

c ¼ 1

24�2

�
34N2

c � 10NcNf � 3
N2

c � 1

Nc

Nf

�
: (5)

�� is the value of the running coupling at the IRFP, which
is determined as

�� ¼ �b

c
: (6)

Values of �� in the case of SU(3) gauge theories with
various number of fundamental fermion (in the confor-
mal window) are shown in Table I. �, which appears
in Fig. 1, is a renormalization group invariant scale,

� ¼ � expð�R
�ð�Þ d�

�ð�ÞÞ, the two-loop analogue of �QCD

of the ordinary QCD, which is taken as [8]

� � � exp

�
� 1

b��
log

�
�� � �ð�2Þ

�ð�2Þ
�
� 1

b�ð�2Þ
�
;

�ð�2Þ ’ 0:78��; (7)

in such a way that the scale � plays the role of the ‘‘UV

cutoff ’’ where the infrared conformality we are interested
in terminates, i.e., �ð�2Þ � constð’ ��Þ for �2 <�2,
while �ð�2Þ � 1= logð�2=�2Þ for �2 >�2 as in the usual
asymptotically free theory. Actually, in the walking techni-
color, � is taken to be of order of (or even larger than) the
UV scale �ETC (‘‘ETC scale’’) where the technicolor
theory no longer makes sense as it stands and is actually
converted into a more fundamental theory such as ETC.
In this paper, we use the following form of the running

coupling as an approximation of the two-loop running
coupling (dashed line in Fig. 1):

�ð�2Þ ¼ �g2ð�2Þ
4�

¼ ���ð�2 ��2Þ: (8)

In this approximation, the coupling takes the constant
value �� (the value at the IR fixed point) below the scale
� and entirely vanishes in the energy region above this
scale. Therefore, the physical picture of the large Nf QCD

with this approximation is the same as that in constant
coupling gauge theory with UV cutoff �, which was ex-
tensively studied a long time ago [22–24]. We note that it is
possible, at least numerically, to solve the SD equation
without this approximation for the two-loop running cou-
pling. However, we adopt this simplification so that we can
analytically study the solution of the SD equation to a
certain extent.

A. SD equation

Let us first write down the SD equation for SUðNcÞ
gauge theory with fundamental fermions

iS�1
F ðpÞ¼ 6p�m0þ

Z d4k

ið2�Þ4C2 �g
2ððp�kÞ2Þ 1

ðp�kÞ2

�
�
g���

ðp�kÞ�ðp�kÞ�
ðp�kÞ2

�
��iSFðkÞ��: (9)

Here, iS�1
F � Aðp2Þ6p� Bðp2Þ is the full fermion propa-

gator, C2 ¼ N2
c�1
2Nc

is the quadratic Casimir, and �gððp� qÞ2Þ
is the running coupling constant. In the above expression,
we took the Landau gauge, and adopted the improved
ladder approximation, in which the full-gauge boson
propagator is replaced by the bare one and the full vertex
function is replaced by a simple ��-type vertex with the
running coupling constant associated with it. From this
equation, we obtain the following two independent
equations:

2

α

α

2
2

log

 0.6

60 40 0  20
 0

 0.2

−60 −40 −20

 0.4

 0.8

FIG. 1 (color online). Two-loop running coupling (solid curve)
compared with the approximate form in Eq. (8) (dashed line) in
the case of SU(3) gauge theory with 12 massless fundamental
fermions.

TABLE I. Values of �� and also listed are the corresponding
��
m for SU(3) gauge theory with fundamental fermions in the

conformal window to be given by Eq. (28).

Nf 12 13 14 15 16

�� 0.75 0.47 0.28 0.14 0.042

��
m 0.80 0.36 0.20 0.095 0.027
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Aðp2Þ ¼ 1þ
Z d4k

ð2�Þ4
C2 �g

2ððp� kÞ2Þ
k2Aðk2Þ2 þ Bðk2Þ2 Aðk

2Þ

�
� ðp � kÞ
p2ðp� kÞ2 þ 2

fp � ðp� kÞgfk � ðp� kÞg
p2ðp� kÞ4

�
;

(10)

Bðp2Þ ¼ m0 þ
Z d4k

ð2�Þ4
3C2 �g

2ððp� kÞ2Þ
k2Aðk2Þ2 þ Bðk2Þ2

Bðk2Þ
ðp� kÞ2 : (11)

These are coupled equations for Aðp2Þ and Bðp2Þwritten in
Euclidean momentum space. (Note that we have dropped
the subscript ‘‘E’’ for Euclidean momentum variables.)

To further simplify the SD equation, we adopt a simpli-
fied form for the argument of the running coupling,
�g2ððp� kÞ2Þ: we take it to be a function of only p2 and
k2 instead of ðp� kÞ2. With this simplification, it becomes
possible to carry out the angular integration (in the mo-
mentum space), then the SD equation becomes an equation
for a single variable x � p2

E. Also, in this case, AðxÞ ¼ 1 is
obtained from Eq. (10). Therefore, the SD equation be-
comes a single integral equation for the mass function
�ðxÞð� BðxÞ=AðxÞ ¼ BðxÞÞ.

For the analytical study we adopt a practically simple
ansatz for the running coupling [25]

�g 2ððp� kÞ2Þ ) �g2ðmaxfp2; k2gÞ: (12)

Then the ladder SD equation with Eq. (8) reads

�ðxÞ ¼ m0 þ ��
3C2

4�

Z �2

0
dy

1

maxfx; yg
�ðyÞ

yþ �2ðyÞ ; (13)

which can readily be converted into an equivalent (non-
linear) differential equation with boundary conditions [23]

ðx�ðxÞÞ00 þ ��
3C2

4�

�ðxÞ
xþ�ðxÞ2 ¼ 0; (14)

lim
x!0

x2�ðxÞ0 ¼ 0; (15)

ðx�ðxÞÞ0jx¼�2 ¼ m0: (16)

We may further simplify Eq. (14) by replacing �ðxÞ in the
denominator of the second term in the left-hand side by a
constant, mP, which is customarily defined by

mP � �ðx ¼ m2
PÞ: (17)

Then the SD equation reads [26]

ðx�ðxÞÞ00 þ ��
3C2

4�

�ðxÞ
xþm2

P

¼ 0: (18)

We should note that it is known that the solution obtained
from this linearized equation well approximates that ob-
tained (by numerical calculation) from the equation with-
out linearization. Later we shall show that, particularly for
the anomalous dimension, there is a remarkable agreement

between the analytical result obtained from the asymptotic
solution of the linearized equation Eq. (18) and the nu-
merical one from the full nonlinear integral SD equation
under a slightly different ansatz for the argument of the
running coupling (to be mentioned later).
mP, defined in Eq. (17), is often called the ‘‘pole mass,’’

though of course mP is not the real pole mass (remember
that x is the Euclidean momentum square). Still, mP is
useful quantity for the investigation of the hyperscaling
relation since it is known, from the study with the Bethe-
Salpeter equation [27], that mP is proportional to meson
masses. Therefore, in this paper, we use mP, which is
obtained from the solution of the SD equation as low-
energy physical quantity that appears in the hyperscaling
relation.

B. Leading correction to the hyperscaling relation

Before we proceed to the investigation of the solution of
the SD equation to derive the relation between mP and m0,
we note that it is known [22] that there is a critical value of
��, �crð� 0Þ, such that spontaneous symmetry-breaking
solution (�ðxÞ � 0), which satisfies Eqs. (18), (15), and
(16) for the chiral limit m0 ¼ m0ð�Þ � 0 does not exists
for

�� � �cr; (19)

where [23]

�cr ¼ �

3C2

¼ �

4
ðNc ¼ 3Þ: (20)

Namely, a nontrivial solution (�ðxÞ � 0) for �< �cr is
the explicit breaking solution, which exists only for
m0 ¼ m0ð�Þ � 0. Then the pole mass mP is nothing but
a renormalized mass (‘‘current mass’’) mR

mP ¼ mR ¼ Z�1
m m0; (21)

where mR ¼ mRð� ¼ mPÞ, and Zm ¼ Zmð��Þj�¼mP
is the

mass renormalization constant. This means that, in the
chiral limit mR ¼ 0, there is no mass gap (dynamically
generated mass) mD ¼ 0, and therefore the IRFP of the
theory is exact for �� <�cr. This is exactly the region in
which one expects that the hyperscaling relation should be
satisfied. Therefore, in the rest of this section, we concen-
trate on studying the SD equation in the region of�� <�cr,
or equivalently [through the relation in Eq. (6)] NAF

f �
Nf � Ncr

f (conformal window), where NAF
f ¼ 16:5 and

Ncr
f ’ 11:9 for Nc ¼ 3.

A solution of Eq. (18) that satisfies boundary condition
Eq. (15) can be expressed in terms of the hypergeometric
function as [26]

�ðxÞ ¼ �mPF

�
1þ!

2
;
1�!

2
; 2;� x

m2
P

�
; (22)

where
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! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

�cr

s
: (23)

� is a numerical coefficient that is determined from the
definition of mP in Eq. (17)

��1 ¼ F

�
1þ!

2
;
1�!

2
; 2;�1

�
: (24)

In the limit of x 	 m2
P, the solution can be expanded as

�ðxÞ ’ �mP

�
�ð!Þ

�ð!þ1
2 Þ�ð!þ3

2 Þ
�
x

m2
P

�ð!�1Þ=2 þ ð! $ �!Þ
�
:

(25)

By inserting the above expression of �ðxÞ into the
remaining boundary condition in Eq. (16), we obtain the
following relation between mP and m0:

m0 ¼ �mP

�
�ð!Þ

�ð!þ1
2 Þ2

�
�2

m2
P

�ð!�1Þ=2 þ ð! $ �!Þ
�
: (26)

From this we have the mass renormalization constant Zm in
Eq. (21) as

Zm�m0

mR

¼m0

mP

¼�

�
�ð!Þ

�ð!þ1
2 Þ2

�
�2

m2
P

�ð!�1Þ=2þð!$�!Þ
�
;

(27)

where we note again mP ¼ mR in the conformal window.
Then we can obtain the mass-anomalous dimension at

IRFP, ��
m, as

��
m ¼ lim

mP=�!0

@ logZm

@ logðmP=�Þ ¼ 1�!

�
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

�cr

s �
;

(28)

where the limit is taken asmP ! 0with� fixed. In Table I,
we show values of ��

m, which can be calculated from the
above expression combined with Eqs. (5), (6), and (20), in
the case of SU(3) gauge theory with various numbers of
fundamental fermion in the conformal window.

It should be noted that this ��
m at IRFP is actually the

same as the anomalous dimension in the UV limit (� ! 1
with mP fixed) �ðUVÞ

m � lim�=mP!1
@ logZm

@ logðmP=�Þ ¼ 1�!

[28]. �ðUVÞ
m is the quantity relevant to the walking techni-

color with �ðUVÞ
m ¼ 1 [the value at (pseudo-) UV fixed point

in the broken phase �� >�cr in the chiral limit mR ¼ 0:
mP ¼ mD] [3]: The technifermion condensate h �c c ij�
at the UV scale � ¼ �ETCð>103 TeVÞ 	 �ð¼ OðmPÞ ¼
OðTeVÞ) is enhanced by �ðUVÞ

m ¼ 1 as h �c c ij� ¼
Z�1
m h �c c ij� with Z�1

m ¼ ð�=�Þ�ðUVÞ
m ¼ ð�=�Þ1 	 1.

By using this ��
m, we can rewrite the expression in

Eq. (26) in terms of ��
m

m0

�
¼�

�
�ð1���

mÞ
�ð2���

2 Þ2
�
mP

�

�
1þ��

m þ�ð�1þ��
mÞ

�ð��
2 Þ2

�
mP

�

�
3���

m
�
:

(29)

This is the expression that should be compared with the
hyperscaling relation in Eq. (1). It is obvious that if we
drop the second term in the rhs of Eq. (29), it reduces to the
hyperscaling relation [16]. Therefore, the second term
should be identified as the leading correction to the hyper-
scaling relation.
To see the significance of the correction term, in Fig. 2,

we plot ratios of the second term to the first term in the rhs
of Eq. (29) as functions of mP=� for various values of ��

m

in the range of 0 � ��
m � 1:0, which corresponds to

NAF
f � Nf � Ncr

f . When mP is much smaller than �, (ex-

cept in the case of ��
m ¼ 1:0) the effect of the second term

is very small since in the range of 0< ��
m < 1:0, the power

of ðmP=�Þ in the second term is always greater than that in
the first term. This is reasonable considering the fact that
small mP (or equivalently, small m0) means small mass
deformation. Another limit in which Eq. (29) approximates
well the hyperscaling is ��

m ! 0. In this limit, the coeffi-
cient of the second term goes to 0 while that of the first
term goes to 1. Also, the power suppression of the second
term becomes strong in this limit as well. However, we
should remember that phenomenologically motivated
theories have large ��

m. In the limit of ��
m ! 1, the power

of ðmP=�Þ, as well as coefficients of the two terms asymp-
tote to the same values. Therefore, we have to take the
second term seriously when we study the anomalous di-
mension of the candidate theories for viable walking tech-
nicolor models with �m ’ 1 through the hyperscaling
relation from the numerical data on the lattice.
For checking the reliability of our ansatz Eq. (12) and

the linearization of the differential equation, as well as
the asymptotic expansion Eq. (25), we show in Fig. 3 the
log-scale plot of m0 �mP in Eq. (29) for Nf ¼ 12 in

= 0.2
=  0

= 1.0
= 0.9
= 0.8
= 0.6
= 0.4

0.00001

−0.6

−0.4

−0.2

 0

−1

 0.5 0.1 0.01 0.001 0.0001

−0.8

FIG. 2 (color online). Ratios of the second term to the first
term in the rhs of Eq. (29) as functions of mP=� for various
values of ��

m.
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comparison with that obtained by directly solving numeri-
cally the full nonlinear SD equation with more natural
(angle-averaged) ansatz

�g 2ððp� kÞ2Þ ) �g2ðp2 þ k2Þ: (30)

The SD equation in this case with Eq. (8) reads:

�ðxÞ¼m0þ��
3C2

4�

Z �2�x

0
dy

1

maxfx;yg
�ðyÞ

yþ�2ðyÞ ; (31)

which differs from Eq. (13) by�2 � x in the UVend of the
integral. The slope in Fig. 3 corresponds to �m þ 1. The
agreement is remarkable, irrespectively of the different
ansatz and the additional approximations.

C. Effective anomalous dimension

In the literature, the hyperscaling relation is often used
as a tool to judge whether a theory is infrared-conformal or
not. However, the importance of the corrections to the
hyperscaling relation due to the mass deformation are often
underestimated, or even completely neglected. This is not
surprising because, in practical situations, it is very diffi-
cult to notice that data (for example, hadron mass, MH,
obtained from lattice simulations with various values of
input m0a) need to be fitted by a function with correction
term. Even in the situation that the correction term is not
very small compared to the leading term, data could be

easily fitted by a simple function of a form m0 �M1þ�
H

unless data are taken in a wide range of m0 (or, equiva-
lently, MH). Especially when the data are associated with,
say, a few percent of error bars, it is very possible that one
succeeds in fitting the data with a function of a form

m0 �M1þ�
H . However, the best-fit value of � obtained by

this fitting must be numerically different from the actual
mass-anomalous dimension at the IRFP. To make the dif-
ference clear, we introduce effective mass-anomalous di-
mension, �eff

m , which is defined as the value of � one
obtains as a best-fit value when one forces to do fitting
by using a fit function that has a form of hyperscaling
relation. Since the significance of the correction term is
different for different values of MH, the value of �eff

m

should change depending on the range of MH one uses
for fitting to obtain it.
In the framework of the SD equation with the impro-

ved ladder approximation, we can identify �eff
m as �m ¼

�mð�=�Þj�¼mP
obtained from Eq. (27) with Eq. (28) [or

equivalently Eq. (29)]

�eff
m ¼ �m ¼ @ logZm

@ logðmP=�Þ (32)

¼ @

@ logðmP=�Þ log
�
�

�
�ð1� ��Þ
�ð2���

2 Þ2
�
mP

�

�
��
m

þ �ð�1þ ��Þ
�ð��

2 Þ2
�
mP

�

�
2���

m
��

(33)

It is obvious that were it not for the second term, �eff
m would

coincide with ��
m. Note again that the significance of the

correction term is different for different values of mP.
Therefore, the effective mass-anomalous dimension be-
comes a function of mP. In Fig. 4, �eff

m for SU(3) gauge
theories with 12, 13, 14, 15 and 16 fundamental fer-
mions are plotted as a function of mP. For the purpose of
making it easier to see the deviation of the effective mass-
anomalous dimension from the value at the IRFP, we also
plot �eff

m =��
m in Fig. 5. From these figures, as we expected,

we see that the deviation between �eff
m and ��

m becomes
more significant in larger mP=� region. We can also see
that the deviation of the effective mass-anomalous dimen-
sion is larger for smaller Nf (or, in other words, for Nf

closer to Ncr
f ’ 11:9). This is also expected from the dis-
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FIG. 3 (color online). Analytical asymptotic solution of the
linearized SD equation vs numerical solution of the full non-
linear one (for Nf ¼ 12). Analytic result (blue dotted line) is the

plot of Eq. (29), which is from the asymptotic expansion of the
linearized SD equation Eq. (18) with the ansatz Eq. (12), while
the numerical one (denoted by red plus) is that of the solution
of the full nonlinear integral SD equation Eq. (31) with ansatz
Eq. (30).
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FIG. 4 (color online). Effective mass-anomalous dimension as
a function of mP=� for SU(3) gauge theories with 12, 13, 14, 15
and 16 fundamental fermions.
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cussion below Eq. (29) because smaller Nf means larger

��
m, with which the correction term to the hyperscaling

relation becomes important. As we mentioned earlier,
phenomenologically interesting theory is the one with
large mass-anomalous dimension. Therefore, it is impor-
tant to keep this effect of correction term to the hyper-
scaling relation in mind when one study such theories.

III. EFFECT OF THE CORRECTIONS ON THE
FINITE-SIZE HYPERSCALING

So far we have concentrated on the study of the hyper-
scaling relation in the infinite space-time. However, since
the lattice simulations are done in a finite space-time, the
hyperscaling relation in a form of Eq. (2) are used more
often. Therefore, it is important to study the effect of
correction due to mass deformation on the finite-size hy-
perscaling relation. For the purpose of studying the finite-
size hyperscaling relation, we formulate the SD equation in
a finite space-time with the periodic boundary condition.
By numerically solving it for various values of input pa-

rameters ðm̂0; L̂Þ, mass deformation effects on the finite-
size hyperscaling relation is studied in large Nf QCD.

A. SD equation in a finite space-time

To formulate the SD equation in a finite space-time, we
start from the SD equation in the infinite space-time in
Eqs. (10) and (11). To put these equations in a finite space-
time, all one needs to do is to replace the continuum
momentum variables by the discrete ones

pi ! ~pi ¼ 2�ni
L

; ðni 2 NÞ; (34)

where, pi is the ith component of the momentum variable.
We adopted the periodic boundary condition for all direc-
tions, though it is easy to implement the antiperiodic
boundary condition. We also assumed that the size of
all space-time directions are the same. It is also

straightforward to introduce different sizes for spacial
and temporal directions. However, we took the same length
for every direction just for simplicity. ni’s are integers that
label discrete momentum variables. With this replacement
of the momentum variables, the SD equation in Eqs. (10)
and (11) turn into the following form2:

~Að~pÞ ¼ 1þ 1

L4

X
m0;1;2;3

C2 �g
2ðð~p� ~kÞ2Þ

~k2 ~Að~kÞ2 þ ~Bð~kÞ2
~Að~kÞ

� ð~p � ~kÞ
~p2ð~p� ~kÞ2

þ 2
f~p � ð~p� ~kÞgf~k � ð~p� ~kÞg

~p2ð~p� ~kÞ4
�
; (35)

~Bð~pÞ ¼ m0 þ 1

L4

X
m0;1;2;3

3C2 �g
2ðð~p� ~kÞ2Þ

~k2 ~Að~kÞ2 þ ~Bð~kÞ2
~Bð~kÞ

ð~p� ~kÞ2 ; (36)

where

~p ¼ 2�

L

n0

n1

n2

n3

0
BBBBB@

1
CCCCCA; ~k ¼ 2�

L

m0

m1

m2

m3

0
BBBBB@

1
CCCCCA: (37)

Here, ni andmi are integers, though we should note that the
SD equation is not defined at ~p ¼ 0 since one of the two
independent equations is derived by requiring coefficients
of 6p in the left-hand side and the right-hand side (rhs) are
the same in Eq. (9). In the above expressions, Aðp2Þ and
Bðp2Þ were replaced by ~Að~pÞ and ~Bð~pÞ. This is because
they are no longer functions of momentum-squared since
the rotational symmetry is broken (except some residual
discrete rotational symmetry) due to the hypercubic shape
of the finite-size space-time. However, at the practical
level, the effect of such rotational-symmetry violation is
negligible, as long as L is taken large enough compared to
the scale of relevant physics. This is true in the case of the
current study. We first numerically solve, by using iteration

method, Eqs. (35) and (36) as coupled equations for ~Að~pÞ
and ~Bð~pÞ. Then, to obtain the value of mP [see Eq. (17)],

we plot ~�ð~pÞ � ~Bð~pÞ= ~Að~pÞ as a function of ~p2. There are
always multiple ~p’s that give the same value of ~p2, and

those do not necessarily give a degenerate value of ~�
unless those are related by the residual discrete rotationalf
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FIG. 5 (color online). Effective mass-anomalous dimension
that is normalized by the value of it at the IRFP as a function
of mP=� for SU(3) gauge theories with 12, 13, 14, 15 and 16
fundamental fermions.

2During the summations of mi, one encounters singularities at
mi ¼ ni. Also, in the limit of ~B ! 0, the contribution from
ðm0; m1; m2; m3Þ ¼ ð0; 0; 0; 0Þ diverges. However, these can be
identified as unphysical artifacts considering the fact that these
are integrable singularities in the case of infinite space-time.
Therefore, in the numerical calculation of the SD equation, we
simply drop the singular points from summations. (The latter
singularity can also be avoided by adopting the antiperiodic
boundary condition. We did the numerical calculations with
the antiperiodic boundary condition in the temporal direction,
and compared the solution with the one obtained from the
periodic boundary condition with the prescription explained
above. We found that the difference between two are negligible.)
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symmetry. However, we confirmed that such differences
are negligible in the region where mP is determined. We
should also note that, when we estimate the value of mP

from Eq. (17), we used a function that is obtained by

interpolating ~�ð~pÞ in momentum space. However, we
never did extrapolation to the scale below 2�=L since
there is no reliable information below that scale.
Therefore, we obtain data only when the value of m2

P is
greater ð2�=LÞ2.

B. Finite-size hyperscaling and its corrections

In this subsection, by numerically solving the finite-
volume SD equation formulated in the previous subsection,
we generate data ofmP for various sets of input parameters
(L�, m0=�). We take SU(3) gauge theory with 12 funda-
mental fermion as an example here. Then, by using those
generated data, we do the analysis based on the finite-size
hyperscaling in Eq. (2). This is a kind of ‘‘simulation’’ of
the practical situation we often encounter when we study a
theory by using data obtained from lattice simulations. An
interesting point about doing hyperscaling analysis using
data generated by the SD equation is that we know that the
SU(3) gauge theory with 12 fundamental fermions, in the
framework of the SD equation, is the infrared-conformal
theory, and we also know the value of the mass-anomalous
dimension at the IRFP, which is estimated as ��

m ’ 0:80 in
this case. (See Table I.) Therefore, we clearly see how the
finite-size hyperscaling is violated due to the effect of the
mass deformation.

In Fig. 6, we plot the values of mP=� (horizontal axis)
for various values of m0=� (vertical axis) and L� (indi-
cated by different symbols). When we solved the finite-
volume SD equation, we adopted an angle-averaged form
[as in Eq. (30)] for the argument of the running coupling.
As we explained in the previous section, this is the proce-
dure that is needed to make the angular integration (in
momentum space) possible in the case of infinite-volume
SD equation, and it is actually not needed for finite-volume
SD equation since we numerically solve them by iteration
without doing angular integration. However, for the pur-
pose of putting finite- and infinite-volume SD equations on
the same ground, we adopted angle-averaged argument for
finite-volume SD equation as well. We note that when we
adopt the angle-averaged form for the argument of the
running coupling, summations in the finite-volume SD

equation are restricted in the range of ~p2 þ ~k2 � �2.
In Fig. 6, in each L�, one notices that data are plotted in

the range of mP=�, which is larger than a certain value.
This lower limit comes from the IR cutoff effect that was
explained at the end of the previous subsection. The dashed
curve in the figure is mP as a function of m0, which is
obtained from the numerical solution of the SD equation in
the infinite space-time [Eqs. (10) and (11) with the ansatz
Eq. (30) and (8)]. In the figure we see that data for L� ¼
20, 25, 30 are almost degenerate, and take values close to

the dashed curve for the infinite space-time. This means
that L� ¼ 20 is large enough that the finite-size effect is
negligible for the determination of mP in this mass range.
Now, let us do the finite-size hyperscaling analysis by

using data shown in Fig. 6. In Fig. 7, we plot the values of

mPL as a function of x � L�ðm0=�Þ1=ð1þ�Þ for � ¼ 0:2,
0.4, 0.5, 0.6, 0.7 and 0.8. If the theory is infrared-conformal,
and if the effect of the mass deformation is negligible, this
kind of plot should show good alignment of data when
input value of � is chosen to be ��

m, the value of mass-
anomalous dimension at the IRFP. Here, we know that, in
the framework of the SD equation, the theory is infrared-
conformal, and the value of the mass-anomalous dimen-
sion at the IRFP is ��

m ’ 0:8. However, the plot in Fig. 7
shows no alignment for � ¼ 0:8, instead, data are well
aligned for � ¼ 0:5 and 0.6. This suggests that the effect
of the correction to the hyperscaling relation due to the
large mass deformation appears also in the case of finite-
size hyperscaling relation. Note that data we used here are
in the range of mP=� * 0:3. In that range, from Fig. 4, we
see that the effective anomalous dimension takes the value
�eff
m ¼ 0:5� 0:6. This is the reason why the data show

good finite-size hyperscaling with input value of �eff
m ¼

� ¼ 0:5� 0:6. We have done the same analysis for SU(3)
gauge theory with Nf ¼ 14 and 16, and found similar

results.
It is interesting to ask whether there is a function that can

be fitted to all the data shown in Fig. 6. We tried the
following form of fit function, and found that it can be
globally fitted to all the data fairly well:

m0ðL;mPÞ ¼
�
AmPð1þ Bm2�2�

P Þ1=ð1þ�Þ þ C

L

�
1þ�

: (38)
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FIG. 6 (color online). Values of mP=� (horizontal axis) for
various values of m0=� (vertical axis) and L� (indicated by
different symbols) for SU(3) gauge theory with 12 fundamental
fermions. Dashed curve ismP as a function ofm0 that is obtained
from the numerical solution of the SD equation in the infinite
space-time [Eqs. (10) and (11)].
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Here, A, B, C and � are fit parameters, and it is understood
that all the dimensionful quantities are normalized by �.
This fit function is similar to the form of finite-size hyper-
scaling relatinon in Eq. (2): When one takes B ¼ 0, LmP is

expressed by a function of x ¼ Lm1=ð1þ�Þ
0 . The term pro-

portional to B represents the effect of mass correction to
the hyperscaling relation. The best-fit values we obtained
for fit parameters are: A ¼ 1:52, B ¼ �0:512, C ¼ 0:323
and � ¼ 0:794. It is remarkable that we obtained a value of
� that is quite close to the value of ��

m ¼ 0:8. For com-
parison, we also did fitting with fixing B ¼ 0, and found
that the best-fit value of � ¼ 0:52. This is consistent with

Fig. 7, in which it was shown that finite-size scaling
(without correction term) is approximately satisfied when
� ¼ 0:5� 0:6. Of course, the power of the second term in
the rhs of Eq. (38), namely 2� 2�, is specific to the
ladder SD analysis, though it is worth trying to do fitting
lattice data with using the above fit function. One could
also make the power of the second term in the rhs of
Eq. (38) as free parameter. If the chi-square of the fitting
significantly reduces by the inclusion of the correction
term, or even if the chi-square does not change very much
but the value of � significantly changes, it is very
possible that the best-fit value of � that is obtained
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FIG. 7 (color online). Values of mPL obtained from the finite-volume SD equation as a function of x � L�ðm0=�Þ1=ð1þ�Þ for � ¼
0:2, 0.4, 0.5, 0.6, 0.7 and 0.8 in SU(3) gauge theory with 12 fundamental fermions. Data for L� ¼ 12, 16, 20, 25 and 30 are plotted as
different symbols.
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with correction term into consideration is close to the
actual value of ��

m.

C. Violation of the hyperscaling relation in theories
with spontaneous chiral symmetry breaking

Here, by the same procedure used in the previous sub-
section, we study the finite-size hyperscaling relation in
theories with spontaneous chiral symmetry breaking. In the
case of theories with spontaneous chiral symmetry break-
ing, mass gap exists even in the chiral limit, and therefore
an IRFP is only approximate. Here, we show two ex-
amples: one is SU(3) gauge theory with Nf ¼ 9, and the

other is that with Nf ¼ 11. The former is an example of a

theory that is far away from the conformal window, in
which the infrared conformality is expected to be largely
violated. The latter is an example of a theory that resides
close to the conformal window, and the breaking of the
infrared conformality due to the spontaneous chiral sym-
metry breaking is expected to be small.

In Fig. 8, we show the plots of mPL obtained from
the finite-volume SD equation in SU(3) gauge theory
with nine fundamental fermions as a function of

x � L�ðm0=�Þ1=ð1þ�Þ for � ¼ 0, 0.5, 1.0, 1.5 and 2.0.
Data for L� ¼ 12, 16, 20, 25 and 30 are plotted as differ-
ent symbols. As we expected, since the infrared confor-
mality is largely broken due to the spontaneous chiral
symmetry breaking, large violation of hyperscaling rela-
tion is observed. Note that the dynamically generated mass
for Nf ¼ 9 is mD=� ’ 0:58, where mD is the value of mP

obtained by the spontaneously broken solution of the lad-
der SD equation in the chiral limit m0 � 0. (mD is esti-
mated by the SD equations, Eq. (31), in the chiral limit
m0 ¼ 0.) This is compared with the typical values in Fig. 8:
mP=� ¼ 0:58–0:77 for L� ¼ 30.
On the other hand, a similar plot for SU(3) gauge theory

with 11 fundamental fermions is given Fig. 9. We show the
result for � ¼ 1:0, with which we found data are best
aligned each other. Again, as we expected, since the theory
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FIG. 8 (color online). Values of mPL obtained from the finite-volume SD equation as a function of x � L�ðm0=�Þ1=ð1þ�Þ for � ¼ 0,
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is close to the chiral restoration point, and the effect of
the spontaneous chiral symmetry breaking is small, the
violation of hyperscaling relation is small. Note that
mD=� ’ 0:05 for Nf ¼ 11, while typical values of mP in

Fig. 9 are mP=� ¼ 0:28–0:69ð	 mD=�Þ for L� ¼ 30.
Of course, one can see that there is a small amount of
misalignment. However, let us imagine those were data
obtained from lattice simulations, and each data point
has, say, a few percent error bar, in which case, the data
might look consistent with conformal hyperscaling.
Therefore, when one obtained data that look consistent
with conformal hyperscaling with a large mass-anomalous
dimension, there is a possibility that the theory is exactly
the one the technicolor model favors, namely, the dynamics
with spontaneous chiral symmetry breaking at hierarchi-
cally small scale compared to � with large anomalous
dimension.

IV. SUMMARYAND DISCUSSION

In this paper, we studied corrections to the conformal
hyperscaling relation by taking the example of SU(3)
gauge theories with various numbers of fundamental fer-
mions. From the analytical expression of the solution of the
ladder SD equation, we identified the form of the leading
correction to the hyperscaling relation. We found that the
anomalous dimension, when identified through the hyper-
scaling relation neglecting these corrections (which we
denoted as �eff

m ), tends to be lower than the real value at
the fixed point.

We further studied finite-size hyperscaling relation
through the ladder SD equation in a finite space-time
with the periodic boundary condition. We found that the
anomalous dimension, when identified through the

finite-size hyperscaling relation neglecting the mass cor-
rections as is often done in the lattice analyses, yields
almost the same value as that in the case of the infinite
space-time neglecting the mass correction, i.e., a lower
value than ��

m. The introduction of the finite size of
space-time should also break the infrared conformality,
though we found that the correction to the hyperscaling
relation due to the finite-volume effect seems to be negli-
gible at least in the range of Lwe studied in this paper. This
can be seen from the fact that the finite-size hyperscaling
relation is approximately satisfied with �eff

m , which is ob-
tained from the infinite-volume analysis. If 1=L correction
were large, there must have been a visible violation of
hyperscaling relation caused by it. The smallness of cor-
rection coming from finite-size effect can also be under-
stood from the fact that a function with a form shown in
Eq. (38), in which only mass correction is taken into
account, can be fitted to all the data in Fig. 6 pretty well.
We also applied the finite-volume SD equation to the

chiral-symmetry-breaking phase and found that when the
theory is close to the critical point such that the dynami-
cally generated mass is much smaller than the explicit
breaking mass, the finite-size hyperscaling relation is still
operative, with the mass corrections to the anomalous
dimension being somewhat involved, however.
From a lattice simulation point of view, there are

several things we can learn from the results of the present
paper. When the input bare mass is not small enough, and
data are not precise enough to find the mass correction,
finite-size hyperscaling plot might give fairly good
aligned picture with a value of the mass-anomalous di-
mension that is much smaller than the value at the IRFP.
If data are precise enough, one could notice misalignment
of data that is caused by the fact that the value of �eff

m is
different for different values of the meson mass M.
However, if one did not know that the misalignment is
fake coming from the correction term, one could draw the
conclusion that the theory is not infrared-conformal, even
though it actually is. As we mentioned at the end of the
previous section, the opposite could also happen, namely,
even if a theory is actually in the chiral-symmetry-
breaking phase, one could draw the conclusion that it is
infrared-conformal especially when the amount of spon-
taneous chiral symmetry breaking is very small and/or
data is not precise enough. Thus, a careful attitude is
important when one judges whether a theory is infrared-
conformal or not by using hyperscaling analysis.
However, the main message of our analysis is that if
one observes a certain type of the finite-size hyperscaling
relation (with some finite mass corrections), it already
hints the remnant of the IR-conformal theory no matter
it may be in the broken phase (applicable to the walking
technicolor) or the conformal window: It implies a new
situation of the 4-dimensional non-supersymmetric gauge
theories and a new phenomenological application.
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FIG. 9 (color online). Values of mPL obtained from the finite-
volume SD equation as a function of x � L�ðm0=�Þ1=ð1þ�Þ for
� ¼ 1:0 in SU(3) gauge theory with 11 fundamental fermions.
Data for L� ¼ 12, 16, 20, 25 and 30 are plotted as different
symbols.
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In this paper, we studied large Nf QCD as a concrete

example for the study of hyperscaling relation, though the
extension to different number of color and different fer-
mion representation is straightforward. This is because, in
the context of the SD equation with the improved ladder
approximation, C2 �g

2 appearing in the equation is the only
quantity that differentiates different theories, and with the
simplification of the running coupling adopted in the cur-
rent study, this is proportional to ��=�cr. Therefore the
only relevant thing is how close the value of the running
coupling at the IRFP is to the critical coupling.

It is also interesting to ask what is the best way of
analyzing data to extract the correct picture. The SD
equation gives us a nice playground to try to find an
analysis method that works well for finding correct pic-
ture of a given theory, since it can generate as many data
as we like, and we know the ‘‘answer,’’ namely, whether
the theory possesses an IRFP, and also the value of the
mass-anomalous dimension in that theory. We can try
several different analysis methods with those generated
data, and compare the results with the answer. By doing

so, we can tell which analysis method produces the
answer rather correctly. We tried fitting using the fit
function shown in Eq. (38) as an example of such studies,
and found that it works quite well extracting the true
value of ��

m of the theory. Of course, it is worth inves-
tigating further in this direction. Various different analysis
methods should be studied for the purpose of finding a
practical method that can extract a more correct picture
from lattice data.
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