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The s-wave pion-kaon (�K) scattering lengths at zero momentum are calculated in lattice QCD with

sufficiently light u=d quarks and strange quark at its physical value by the finite size formula. The light

quark masses correspond to m� ¼ 0:330–0:466 GeV. In the Asqtad improved staggered fermion for-

mulation, we measure the �K four-point correlators for both the isospin I ¼ 1=2 and 3=2 channels, and

analyze the lattice simulation data at the next-to-leading order in the continuum three-flavor chiral

perturbation theory, which enables a simultaneous extrapolation of �K scattering lengths at the physical

point. We adopt a technique with the moving wall sources without gauge fixing to obtain substantiable

accuracy; moreover, for the I ¼ 1=2 channel, we employ the variational method to isolate the contami-

nation from the excited states. Extrapolating to the physical point yields the scattering lengths as

m�a3=2 ¼ �0:0512ð18Þ and m�a1=2 ¼ 0:1819ð35Þ for the I ¼ 3=2 and 1=2 channels, respectively. Our

simulation results for �K scattering lengths are in agreement with the experimental reports and theoretical

predictions, and can be comparable with other lattice simulations. These simulations are carried out with

MILC Nf ¼ 2þ 1 flavor gauge configurations at lattice spacing a � 0:15 fm.

DOI: 10.1103/PhysRevD.85.074501 PACS numbers: 12.38.Gc

I. INTRODUCTION

Pion-kaon (�K) scattering at low energies is the sim-
plest reaction including a strange quark, and it allows for
an explicit exploration of the three-flavor structure of the
low-energy hadronic interactions, which is not directly
probed in the �� scattering. The measurement of �K
scattering lengths is one of the cleanest processes and a
decisive test for our understanding of the chiral SU(3)
symmetry breaking of the quantum chromodynamics
(QCD). In the present study, we will concentrate on the
s-wave scattering lengths of the �K system, which have
two isospin eigenchannels (I ¼ 3=2, 1=2) in the isospin
limit, and the low-energy interaction is repulsive for the
I ¼ 3=2 channel, and attractive for the I ¼ 1=2 case,
respectively.

Experimentally, �K scattering lengths are obtained
through �K scattering phases using the Roy-Steiner equa-
tions. The experiments at low energies are an important
method in the study of the interactions among mesons
[1–3], and these experiments have reported that
the s-wave scattering length (a0) in the I ¼ 3=2
channel, m�a3=2, has a small negative value, namely,

�0:13–�0:05. Moreover, the ongoing experiments pro-
posed by the DIRAC Collaboration [4] to examine �K
atoms will provide the direct measurements or constraints
on �K scattering lengths.

At present, theory predicts �K scattering lengths with a
precision of about 10%, and it will be significantly im-
proved in the near future. Through the scalar form factors
in semileptonic pseudoscalar-to-pseudoscalar decays,
Flynn and Nieves [5] extracted the �K scattering length
in the I ¼ 1=2 channel as m�a1=2 ¼ þ0:179ð17Þð14Þ.

Three-flavor chiral perturbation theory (�PT) [6–9] has
been used to predict the scattering lengths in the study of
the low-energy �K scattering, and a small negative value
was claimed asm�a3=2 ¼ �0:129–�0:05. However, if the
scattering hadrons contain strange quarks, �PT predictions
usually suffer from considerable corrections due to the
chiral SU(3) flavor symmetry breaking, as compared with
the case of the �� scattering. Therefore, a lattice QCD
calculation is needed to offer an alternative important,
consistent check of the validity of �PT in the presence of
the strange quarks.
To date, four lattice studies of �K scattering length have

been reported [10–13]. The first lattice calculation of �K
scattering length in the I ¼ 3=2 channel was explored by
Miao et al. [10] using the quenched approximation, and the
value of m�a3=2 was found to be �0:048. The first fully

dynamical calculation using Nf ¼ 2þ 1 flavors of the

Asqtad-improved [14,15] staggered sea quark [16,17]
was carried out in [11] to calculate the I ¼ 3=2 scattering
length for m� ¼ 0:29–0:60 GeV, and further indirectly
evaluate the I ¼ 1=2 scattering length on the basis of
�PT. Beane et al. [11] obtained a small negative value of
m�a3=2 ¼ �0:0574 for the I ¼ 3=2 channel and a positive
value of m�a1=2 ¼ 0:1725 for the I ¼ 1=2 channel, re-

spectively. Nagata et al. fulfilled the first direct lattice
calculation on the I ¼ 1=2 channel [12] using the
quenched approximation. They investigated all quark dia-
grams contributing to both isospin eigenstates, and found
that the scattering amplitudes can be expressed as the
combinations of only three diagrams in the isospin limit.
This work greatly inspired us to study �K scattering.
However, they did not observe the repulsive interaction
even for the I ¼ 3=2 channel at their simulation points, and
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their lattice calculations are relatively cheaper. Sasaki et al.
observed the correct repulsive interaction for the I ¼ 3=2
channel and attractive for the I ¼ 1=2 case, and they
obtained the scattering lengths of m�a3=2 ¼ �0:0500ð68Þ
and m�a1=2 ¼ 0:154ð28Þ for the I ¼ 3=2 and 1=2 chan-

nels, respectively [13]. Moreover, to isolate the contami-
nation from the excited states, they constructed a 2� 2
matrix of the time correlation function and diagonalized it
[13]; this method will guide us to study �K scattering for
the I ¼ 1=2 channel in a correct manner. It should be
stressed that, to reduce the computational cost, they em-
ployed a technique with a ‘‘fixed’’ kaon sink operator for
the calculation of �K scattering length in the I ¼ 1=2
channel and then an exponential factor was introduced to
drop the unnecessary t dependence appearing due to the
fixed kaon sink time [13]. In this work, we will improve
this technique by using a ‘‘moving’’ wall source without
gauge fixing where the exponential factor is not needed any
more.1 Thus, there has been no satisfactory direct lattice
calculation for the I ¼ 1=2 channel until now.

In the present study, we will use the MILC gauge con-
figurations generated in the presence ofNf ¼ 2þ 1 flavors

of the Asqtad-improved [14,15] staggered dynamical sea
quarks [16,17] to study the s-wave �K scattering lengths
for both the I ¼ 1=2 and 3=2 channels. Inspired by the
exploratory studies of the �� scattering for the I ¼ 0
channel in Refs. [18,19], we will adopt the same technique,
and use the moving kaon wall source operator without
gauge fixing for the I ¼ 1=2 and 3=2 channels to obtain
the reliable accuracy. We calculated all the three diagrams
categorized in Ref. [12], and observed a clear signal of
attraction for the I ¼ 1=2 channel and that of repulsion for
the I ¼ 3=2 case. Moreover, for the I ¼ 1=2 channel, we
employed the variational method to isolate the contamina-
tion from the excited states. Most of all, we only used the
lattice simulation data of our measured �K scattering
lengths for both isospin eigenstates to simultaneously ex-
trapolate toward the physical point using the continuum
three-flavor �PT at the next-to-leading order. Our lattice
simulation results of the scattering lengths for both isospin
eigenchannels are in accordance with the experimental
reports and theoretical predictions, and are comparable
with other lattice simulations.

This article is organized as follows. In Sec. II we will
describe the formalism for the calculation of �K scattering
lengths including the Lüscher’s formula [20–22] and our
computational technique of the modified wall sources for
the measurement of�K four-point functions. In Sec. III we
will show the simulation parameters and our concrete
lattice calculations. We will present our lattice simulation

results in Sec. IV, and arrive at our conclusions and out-
looks in Sec. V. Some details of the numerical calculation
are provided in the appendixes for reference.

II. METHOD OF MEASUREMENT

In this section, we will briefly review the formulas of the
s-wave scattering length from two-particle energy in a
finite box, with emphasis on the formulas for the isospin
I ¼ 1=2 �K system. Also we will present the detailed
procedure for extracting the energies of the �K system.
Here we follow the original derivations and notations in
Refs. [12,18,19,23,24].

A. �K four-point functions

Let us consider the �K scattering of one Nambu-
Goldstone pion and one Nambu-Goldstone kaon in the
Asqtad-improved staggered dynamical fermion formalism.
Using operators O�ðx1Þ, O�ðx3Þ for pions at points x1, x3,
and operators OKðx2Þ, OKðx4Þ for kaons at points x2, x4,
respectively, with the pion and kaon interpolating field
operators defined by

O �þðx; tÞ ¼ � �dðx; tÞ�5uðx; tÞ;

O�0ðx; tÞ ¼ 1ffiffiffi
2

p ½ �uðx; tÞ�5uðx; tÞ � �dðx; tÞ�5dðx; tÞ�;

OK0ðx; tÞ ¼ �sðx; tÞ�5dðx; tÞ;
OKþðx; tÞ ¼ �sðx; tÞ�5uðx; tÞ;

(1)

we then represent the �K four-point functions as

C�Kðx4; x3; x2; x1Þ ¼ hOKðx4ÞO�ðx3ÞOy
Kðx2ÞOy

�ðx1Þi; (2)

where h� � �i represents the expectation value of the path
integral, which we evaluate using the lattice QCD
simulations.
After summing over spatial coordinates x1, x2, x3, and

x4, we obtain the �K four-point function in the zero-
momentum state,

C�Kðt4; t3; t2; t1Þ ¼
X
x1

X
x2

X
x3

X
x4

C�Kðx4; x3; x2; x1Þ; (3)

where x1 � ðx1; t1Þ, x2 � ðx2; t2Þ, x3 � ðx3; t3Þ, and x4 �
ðx4; t4Þ, and t stands for the time difference, namely,
t � t3 � t1.
To avoid the complicated Fierz rearrangement of the

quark lines, we choose the creation operators at the time
slices which are different by one lattice time spacing as is
suggested in Ref. [19], namely, we select t1 ¼ 0, t2 ¼ 1,
t3 ¼ t, and t4 ¼ tþ 1. In the �K system, there are two
isospin eigenstates, namely, I ¼ 3=2 and I ¼ 1=2; we
construct the �K operators for these isospin eigenchannels
as [12]

1In fact, we use the same technique in Refs. [18,19] for ��
scattering. We call it a moving wall source, and just want to
emphasize that it is distinguished from the one with a fixed wall
in Ref. [13].
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OI¼ð1=2Þ
�K ðtÞ ¼ 1ffiffiffi

3
p f ffiffiffi

2
p

�þðtÞK0ðtþ 1Þ � �0ðtÞKþðtþ 1Þg;

OI¼ð3=2Þ
�K ðtÞ ¼ �þðtÞKþðtþ 1Þ; (4)

where

OK0ðtÞ ¼ X
x

OK0ðx; tÞ; OKþðtÞ ¼ X
x

OKþðx; tÞ;

O�0ðtÞ ¼ X
x

O�0ðx; tÞ; O�þðtÞ ¼ X
x

O�þðx; tÞ:
(5)

If we assume that the u and d quarks have the same
mass, only three diagrams contribute to �K scattering
amplitudes [12]. The quark line diagrams contributing to
the�K four-point function denoted in Eq. (3) are displayed
in Fig. 1, and labeled as direct (D), crossed (C), and
rectangular (R), respectively. The direct and crossed dia-
grams can be easily evaluated by constructing the corre-
sponding four-point amplitudes for arbitrary values of the
time slices t3 and t4 using only two wall sources placed at
the fixed time slices t1 and t2. However, the rectangular
diagram (R) requires another quark propagator connecting
the time slices t3 and t4, which make the reliable evaluation
of this diagram extremely difficult.

Sasaki et al.. solve this problem through the technique
with a fixed kaon sink operator to reduce the computational
cost [13]. Encouraged by the exploratory works of the ��
scattering at the I ¼ 0 channel in Refs. [18,19], in the same
way, we handle this problem by evaluating T quark propa-
gators on a L3 � T lattice: each propagator, which corre-
sponds to a wall source at the time slice t ¼ 0; � � � ; T � 1,
is denoted byX

n00
Dn0;n00Gtðn00Þ ¼

X
x

�n0;ðx;tÞ; 0 � t � T � 1; (6)

where D is the quark matrix for the staggered Kogut-
Susskind quark action. The combination of GtðnÞ which
we apply for �K four-point functions is schematically
shown in Fig. 1, where short bars stand for the position
of the wall source, open circles are sinks for local pion or
kaon operators, and the thicker lines represent the strange
quark lines. Likely, the subscript t in the quark propagator

G represents the position of the wall source. D, C, and R,
are schematically displayed in Fig. 1, and we can also
expressed them in terms of the quark propagators G,
namely,

CDðt4; t3; t2; t1Þ ¼
X
x3

X
x4

hReTr½Gy
t1ðx3; t3ÞGt1ðx3; t3Þ

�Gy
t2ðx4; t4ÞGt2ðx4; t4Þ�i;

CCðt4; t3; t2; t1Þ ¼
X
x3

X
x4

hReTr½Gy
t1ðx3; t3ÞGt2ðx3; t3Þ

�Gy
t2ðx4; t4ÞGt1ðx4; t4Þ�i;

CRðt4; t3; t2; t1Þ ¼
X
x2

X
x3

hReTr½Gy
t1ðx2; t2ÞGt4ðx2; t2Þ

�Gy
t4ðx3; t3ÞGt1ðx3; t3Þ�i;

(7)

where daggers mean the conjugation by the even-odd
parity ð�1Þn for the staggered Kogut-Susskind quark ac-
tion, and Tr stands for the trace over the color index. The
Hermiticity properties of the propagator G are used to
eliminate the factors of �5.
The �K rectangular diagram in Fig. 1(c) creates the

gauge-variant noise [18,19]. One can reduce the noise by
fixing gauge configurations to some gauge (e.g., the
Coulomb gauge), and select a special wall source to emit
only the Nambu-Goldstone pion [25]; however, the gauge
noninvariant states may contaminate the �K four-point
function. Alternatively, we perform the gauge field average
without gauge fixing since the gauge dependent fluctua-
tions should neatly cancel out among the lattice configu-
rations. Besides these cancellations, the summation of the
gauge-variant terms over the spatial sites of the wall source
further suppresses the gauge-variant noise. In our current
lattice simulation we found that this method works pretty
well.
All three diagrams in Fig. 1 need to be calculated to

study the �K scattering in both the I ¼ 1=2 and 3=2
channels. Three types of the propagators can be combined
to construct the physical correlation functions for �K
states with definite isospin. As investigated in Ref. [12],
in the isospin limit, the�K correlation function for the I ¼
3=2 and 1=2 channels can be expressed as the combina-
tions of three diagrams, namely,

CI¼ð1=2Þ
�K ðtÞ � hOI¼ð1=2Þ

�K ðtÞjOI¼ð1=2Þ
�K ð0Þi

¼ Dþ 1
2NfC� 3

2NfR;

CI¼ð3=2Þ
�K ðtÞ � hOI¼ð3=2Þ

�K ðtÞjOI¼ð3=2Þ
�K ð0Þi ¼ D� NfC;

(8)

where the operator OI
�K denoted in Eq. (4) creates a �K

state with total isospin I and the staggered-flavor factor Nf

is inserted to correct for the flavor degrees of freedom of
the Kogut-Susskind staggered fermion [24]. For pion and
kaon operators it is most natural to choose the ones in the
Nambu-Goldstone channel. This is our choice.

FIG. 1. Diagrams contributing to �K four-point functions.
Short bars stand for wall sources. Open circles are sinks for
local pion or kaon operators. The thicker lines represent the
strange quark lines.
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To calculate the scattering lengths for hadron-hadron
scattering on the lattice, or the scattering phase shifts in
general, one usually resorts to Lüscher’s formula which
relates the exact energy level of two hadron states in a finite
box to the scattering phase shift in the continuum. In the
case of �K scattering, the s-wave �K scattering length in
the continuum is defined by

a0 ¼ lim
k!0

tan�0ðkÞ
k

: (9)

k is the magnitude of the center-of-mass scattering mo-
mentum which is related to the total energy EI

�K of the �K
system with isospin I in a finite box of size L by

EI
�K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ k2
q

; (10)

where m� is pion mass, and mK is kaon mass. We can
rewrite Eq. (10) to an elegant form as

k2 ¼ 1

4

�
EI
�K þm2

� �m2
K

EI
�K

�
2 �m2

�: (11)

In the absence of the interactions between the � and K
particles, k= tan�0ðkÞ ! 1, and the energy levels occur at
momenta k ¼ 2�n=L (n is a integer), corresponding to the
single-particle modes in a cubic box. �0ðkÞ is the s-wave
scattering phase shift, which can be evaluated by the
Lüscher’s finite size formula [20,22],�

tan�0ðkÞ
k

��1 ¼
ffiffiffiffiffiffiffi
4�

p
�L

�Z00

�
1;

k2

ð2�=LÞ2
�
; (12)

where the zeta function Z00ð1; q2Þ is denoted by

Z 00ð1;q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
n2Z3

1

n2 � q2
; (13)

here q ¼ kL=ð2�Þ is no longer an integer, and Z00ð1; q2Þ
can be efficiently calculated by the method described in
Ref. [26]. We also discuss this technique in Appendix A,
where we extend this discussion to the case with the
negative q2. In the case of the attractive interaction, k2

on the bound state has a negative value; therefore k is
purely imaginary, and �0ðkÞ is no longer a physical scat-
tering phase shift [13].Z00ð1; q2Þ, however, still have a real
value even for this case; hence tan�0ðkÞ=k obtained by
Eq. (12) is also real. If jk2j is small enough, we can
consider tan�0ðkÞ=k as the physical scattering length at
the �k threshold [13].

The energy EI
�K of the �K system with isospin I can be

obtained from the �K four-point function denoted in
Eq. (8) with the large t. At large t these correlators will
behave as [27,28]

CI
�KðtÞ ¼ Z�K cosh

�
EI
�K

�
t� T

2

��

þ ð�1ÞtZ0
�K cosh

�
EI0
�K

�
t� T

2

��
þ � � � ; (14)

where EI
�K is the energy of the lightest �K state with

isospin I. The terms alternating in sign are a peculiarity
of the Kogut-Susskind formulation of the lattice fermions
and correspond to the contributions from intermediate
states with opposite parity [27,28]. The ellipsis suggests
the contributions from excited states which are suppressed
exponentially.
We should bear in mind that, for the staggered Kogut-

Susskind quark action, there are further complications in
themselves stemming from the nondegeneracy of pions and
kaons in the Goldstone and other channels at a finite lattice
spacing. Briefly speaking, the contributions of non-
Nambu-Goldstone pions and kaons in the intermediate
states is exponentially suppressed for long periods of
time due to their heavier masses compared to those of
the Nambu-Goldstone pion and kaon [18,19,24]. Thus,
we suppose that the �K interpolator does not couple sig-
nificantly to other �K tastes, and neglect these systematic
errors.
In our concrete calculation, we calculated the pion mass

m� and kaon mass mK through the methods discussed by
the MILC Collaboration in Refs. [29,30] in our previous
study [31]. In this work we evaluate the total energy EI

�K of
the �K system with isospin I from Eq. (14).
In the current study we also evaluate the energy shift

�EI ¼ EI
�K � ðm� þmKÞ from the ratios

RXðtÞ ¼ CX
�Kð0; 1; t; tþ 1Þ

C�ð0; tÞCKð1; tþ 1Þ ; X ¼ D;C; and R;

(15)

where C�ð0; tÞ and CKð1; tþ 1Þ are the pion and kaon two-
point functions, respectively. Considering Eq. (8), we can
write the amplitudes which project out the I ¼ 1=2 and
3=2 isospin eigenstates as

RI¼ð1=2ÞðtÞ ¼ RDðtÞ þ 1
2NfR

CðtÞ � 3
2NfR

RðtÞ;
RI¼ð3=2ÞðtÞ ¼ RDðtÞ � NfR

CðtÞ: (16)

Following the discussions in Ref. [24], we now can
extract the energy shift �EI from the ratios

RIðtÞ ¼ ZIe
��EIt þ � � � ; (17)

where ZI stands for the wave function factor, which is the
ratio of two amplitudes from the �K four-point function
and the square of the pion two-point correlator and
the kaon two-point correlator, and the ellipsis indicates
the terms suppressed exponentially. In RIðtÞ, some of the
fluctuations which contribute to both the two-point and
four-point correlation functions neatly cancel out, hence,
improving the quality of the extraction of the energy shift
as compared with what we can obtain from an analysis
through the individual correlation functions [11].
For the I ¼ 3=2 channel, we can use Eq. (14) or Eq. (17)

to extract the energy shifts �E. We have numerically
compared the fitting values from two methods, and found
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good agreement within statistical errors. In fact, using
Eq. (17) to extract the energy shift �E has been extensively
employed for the study of �K scattering at the I ¼ 3=2
case in Ref. [11]. Hence, in this work, we will only present
the energy shifts �E calculated by Eq. (17), and then their
corresponding scattering lengths.

On the other hand, for the I ¼ 1=2 channel, the presence
of the kappa resonance is clearly shown in the low energy
[13], and therefore it should be necessary for us to separate
the ground state contribution from the contamination stem-
ming from the excited states to achieve the reliable scat-
tering length as investigated in Ref. [13]. For this purpose,
we will construct a 2� 2 correlation matrix of the time
correlation function and diagonalize it to extract the energy
of the ground state.

B. Correlation matrix

For the I ¼ 1=2 channel, to separate the contamination
from the excited states, we construct a matrix of the time
correlation function,

CðtÞ ¼ h0jOy
�KðtÞO�Kð0Þj0i h0jOy

�KðtÞO�ð0Þj0i
h0jOy

�ðtÞO�Kð0Þj0i h0jOy
�ðtÞO�ð0Þj0i

 !
;

(18)

where O�ðtÞ is an interpolating operator for the � meson
with zero momentum, and O�KðtÞ is an interpolating op-
erator for the �K system which is extensively discussed in
Sec. II A. The interpolating operator O� employed here is
exactly the same as those in our previous studies in
Refs. [31–33], and the notations adopted here are also the
same, but to make this paper self-contained, all the neces-
sary definitions will be also presented below.

1. � sector

In our previous studies [31–33], we have presented a
detailed procedure to measure the kappa correlator
h0j�yðtÞ�ð0Þj0i. To simulate the correct number of quark
species, we use the fourth-root trick [34], which automati-
cally performs the transition from four tastes to one taste
per flavor for the staggered fermion at all orders. We
employ an interpolation operator with isospin I ¼ 1=2
and JP ¼ 0þ at the source and sink,

O ðxÞ � 1ffiffiffiffiffi
nr

p
X
a;g

�sagðxÞuagðxÞ; (19)

where g is the indices of the taste replica, nr is the number
of the taste replicas, a is the color indices, and we omit the
Dirac-Spinor index. The time slice correlator for the �
meson in the zero-momentum state can be evaluated by

C�ðtÞ ¼ 1

nr

X
x;a;b

X
g;g0

h�sbg0 ðx; tÞubg0 ðx; tÞ �uagð0; 0Þsagð0; 0Þi;

where 0, x are the spatial points of the � state at source and
sink, respectively. After performing Wick contractions of

fermion fields, and summing over the taste index, for the
light u quark Dirac operator Mu and the s quark Dirac
operator Ms, we obtain [31]

C�ðtÞ ¼
X
x

ð�ÞxhTr½M�1
u ðx; t; 0; 0ÞM�1y

s ðx; t; 0; 0Þ�i;

(20)

where Tr is the trace over the color index, and x ¼ ðx; tÞ is
the lattice position.
For the staggered quarks, the meson propagators have

the generic single-particle form,

C ðtÞ ¼X
i

Aie
�mit þX

i

A0
ið�1Þte�m0

it þ ðt ! Nt � tÞ;

(21)

where the oscillating terms correspond to a particle with
opposite parity. For the � meson correlator, we consider
only one mass with each parity in Eq. (21); namely, in our
concrete calculation, our operator is the state with spin-
taste assignment I � I and its oscillating term with
�0�5 � �0�5 [31]. Thus, the � correlator was fit to the
following physical model:

C�ðtÞ ¼ b�e
�m�t þ bKA

ð�Þte�MKA
t þ ðt ! Nt � tÞ; (22)

where bKA
and b� are two overlap factors. In Fig. 6, we

clearly note this oscillating term.
We should bear in mind that, for the staggered Kogut-

Susskind quark action, our � interpolating operator couples
to various tastes as we examined the scalar a0 and �
mesons in Refs. [35–39], where we investigated two-
pseudoscalar intermediates states (namely, bubble contri-
bution). In Ref. [32], we investigated the extracted �
masses with and without bubble contribution for kappa
correlators. We found that there exist about 2%–5% dif-
ferences in kappa masses, and the bubble contributions are
dominant in the � correlators at a large time region.
Therefore, in the current study, we will investigate whether
the bubble contribution has a large influence on the final
result of the scattering length or not.

2. Off-diagonal sector

The calculations of the off-diagonal elements in corre-

lation matrix CðtÞ in Eq. (18), namely, h0jOy
�KðtÞO�ð0Þj0i

and h0jOy
�ðtÞO�Kð0Þ, are exactly the same as those in our

previous study for nonzero momenta in Ref. [33]; the
notations adopted here are also the same, but to make
this paper self-contained, all the necessary definitions
will also be presented below.
To avoid the complicated Fierz rearrangement of the

quark lines, we choose the creation operators at the time
slices which are different by one lattice time spacing as
suggested in Ref. [19]; namely, we select t1 ¼ 0, t2 ¼ 1,
and t3 ¼ t for the �K ! � three-point function, and
choose t1 ¼ 0, t2 ¼ t, and t3 ¼ tþ 1 for the � ! �K
three-point function.
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The quark line diagrams contributing to �K ! � and
� ! �K three-point functions are plotted in Fig. 2(a) and
Fig. 2(b), respectively, where short bars stand for the
position of wall source, open circles are sinks for local
pion or kaon operators, and the thicker lines represent the
strange quark lines. Likely, the subscript t in the quark
propagator G represents the position of the corresponding
wall source.

The �K ! � three-point function can be easily eval-
uated by constructing the corresponding three-point am-
plitudes for arbitrary values of the time slice t3 using only
two wall sources placed at the fixed time slices t1 and t2.
However, the calculation of the � ! �K three-point func-
tion is almost equally difficult to that of the rectangular
diagram for the �K four-point correlator function, since it
requires another quark propagator connecting time slices t2
and t3. The � ! �K and �K ! � three-point functions
are schematically shown in Fig. 2, and we can also express
them in terms of the quark propagators G, namely,

C�K!�ðt3; t2; t1Þ ¼
X
x3;x1

hReTr½Gt1ðx3; t3ÞGy
t2ðx3; t3Þ

�Gy
t2ðx1; t1Þ�i;

C�!�Kðt3; t2; t1Þ ¼
X
x2;x1

hReTr½Gt1ðx2; t2ÞGy
t3ðx2; t2Þ

�Gy
t3ðx1; t1Þ�i:

(23)

C. Extraction of energies

Through calculating the matrix of correlation function
CðtÞ denoted in Eq. (18), we can separate the ground state
from the first excited state in a clean way. It is very
important to map out ‘‘avoided level crossings’’ between
the � resonance and its decay products (namely, � and K)
in a finite box volume, because the first excited state is
potentially close to the ground state. This makes the ex-
traction of the ground state energy unfeasible if we only
utilize a single exponential fit ansatz. Since we cannot
predict a priori whether our energy eigenvalues are near

to the resonance region or not, we find it always safe in
practice to adopt the correlation matrix to analyze our
lattice simulation data for the isospin I ¼ 1=2 channel.
To extract the ground state, we follow the variational
method [21] and construct a ratio of correlation function
matrices as

Mðt; tRÞ ¼ CðtÞC�1ðtRÞ; (24)

with some reference time slice tR [21], which is assumed to
be large enough such that the contributions to the correla-
tion matrix Mðt; tRÞ from the excited states can be ne-
glected, and the lowest two eigenstates dominate the
correlation function. The two lowest energy levels can be
extracted by a proper fit to two eigenvalues �nðt; tRÞ (n ¼
1, 2) of matrix Mðt; tRÞ. Here we work on the staggered
fermions, and we can easily prove that �nðt; tRÞ (n ¼ 1, 2)
behaves as [33]

�nðt; tRÞ ¼ An cosh

�
�En

�
t� T

2

��

þ ð�1ÞtBn cosh

�
�E0

n

�
t� T

2

��
; (25)

for a large t, which means 0 	 tR < t 	 T=2 to suppress
the excited states and the unwanted contamination from
‘‘wraparound’’’ effects [40–42]. This equation explicitly
contains an oscillating term. For the current study, we are
only interested in eigenvalue �1ðt; tRÞ; here nondegenerate
eigenvalues �1ðt; tRÞ> �2ðt; tRÞ are assumed. In practice,
we found that the oscillating term in �1ðt; tRÞ is not appre-
ciable for some tR; we can also adopt the following simple
fitting model [33],

�1ðt; tRÞ ¼ A cosh

�
�E

�
t� T

2

��
; (26)

and the difference between the fitting models of Eq. (25)
and (26) is small. However, to make our extracted ground
energy E for the isospin I ¼ 1=2 channel always reliable,
in this work, we will present the ground energy E calcu-
lated by Eq. (25), and then its corresponding s-wave scat-
tering lengths.

III. LATTICE CALCULATION

A. Simulation parameters

We used the MILC lattices with 2þ 1 dynamical flavors
of the Asqtad-improved staggered dynamical fermions (the
detailed description of the simulation parameters can be
found in Refs. [16,17]). One thing we must stress is that the
MILC configurations are generated using the staggered
formulation of lattice fermions [43–45] with rooted stag-
gered sea quarks [30] which are hypercubic-smeared
[46–49]. As shown in Refs. [50,51], hypercubic-smearing
gauge links significantly improves the chiral symmetry.
We analyzed �K four-point functions on the

0.15 fm MILC lattice ensemble of 450 163 � 48 gauge

FIG. 2. Diagrams contributing to �K ! � and � ! �K three-
point functions. Short bars stand for wall sources. The thicker
lines represent the strange quark lines. (a) Quark contractions of
�K ! �, where open circle is sink for local kappa operator.
(b) Quark contractions of � ! �K, where open circle is sink for
local pion operator.
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configurations with bare quark masses amud ¼ 0:0097 and
ams ¼ 0:0484 and bare gauge coupling 10=g2 ¼ 6:572,
which has a physical volume approximately 2.5 fm. The
inverse lattice spacing a�1 ¼ 1:358þ35

�13 GeV [16,17]. The

mass of the dynamical strange quark is near to its physical
value, and the masses of the u and d quarks are degenerate.
A periodic boundary condition is applied to three spatial
directions and the temporal direction.

B. Sources for isospin I ¼ 1=2 channel

To calculate the �K correlation functions, we use the
standard conjugate gradient method to obtain the required
matrix element of the inverse fermion matrix. The calcu-
lation of the correlation function for the rectangular dia-
grams naturally requires us to compute the propagators on
all the time slices ts ¼ 0; � � � ; T � 1 of both source and
sink, which requires the calculation of 48 separate propa-
gators in our lattice simulations. After averaging the cor-
relator over all 48 possible values, the statistics are greatly
improved since we can put the pion source and kaon source
at all possible time slices; namely, the correlator C11ðtÞ is
calculated through

C11ðtÞ ¼ hð�KÞðtÞð�KÞyð0Þi

¼ 1

T

X
ts

hð�KÞðtþ tsÞð�KÞyðtsÞi: (27)

The best effort to generate the propagators on all time
slices enables us to obtain the correlators with high preci-
sion, which is vital to extract the desired scattering phase
shifts reliably.

For each time slice, six fermion matrix inversions are
required corresponding to the possible 3 color choices for
the pion source and kaon source, respectively, and each
inversion takes about 1000 iterations during the conjugate
gradient calculation. Therefore, all together we carry out
288 inversions on a full QCD configuration. As shown in
the following, this large number of inversions, performed
on 450 configurations, provides the substantial statistics
needed to resolve the real parts of the I ¼ 1=2 and 3=2
amplitudes with reliable accuracy.

In the calculation of the off-diagonal correlator, C21ðtÞ,
the quark line contractions result in a three-point diagram
since in this three-point diagram the pion field and kaon
field are located at the source time slice ts, ts þ 1, respec-
tively. We calculate the off-diagonal correlator C21ðtÞ
through

C21ðtÞ ¼ h�ðtÞð�KÞyð0Þi ¼ 1

T

X
ts

h�ðtþ tsÞð�KÞyðtsÞi;

(28)

where, again, we sum the correlator over all time slices ts
and average it. As for the second off-diagonal correlator
C12ðtÞ, the pion field and kaon field are placed at the sink
time slices ts þ t and tþ ts þ 1, respectively, which makes

the computation of C12ðtÞ difficult. However, using the
relation C12ðtÞ ¼ C


21ðtÞ, we can obtain the matrix element
C12 for free. As studied in Ref. [52], since the sink and
source operators are identical for a large number of con-
figurations, CðtÞ is a Hermitian matrix. The � ! �K com-
ponent agrees with �K ! � within the error, but the
statistical errors of the matrix element C12 should be larger
than that of matrix element C21 for a large t. Therefore, in
the following analyses we substitute matrix element C12

by the complex conjugate of matrix elementC21, which not
only saves about 20% of the computation time, but also
significantly to reduces statistical errors.
For the � correlator, C22ðtÞ, we have measured the point-

to-point correlators with high precision in our previous
work [31]. Therefore, we can exploit the available propa-
gators to construct the � correlator

C22ðtÞ ¼ 1

T

X
ts

h�yðtþ tsÞ�ðtsÞi; (29)

where, also, we sum the correlator over all time slices ts
and average it.
One thing we must stress is that, in the calculation of the

correlator hð�KÞð�KÞyi, we make our best effort to reli-
ably measure the rectangular diagram, since the other two
diagrams are relatively easy to evaluate. We found that the
rectangular diagram plays a major role in this correlator.
Therefore, we get it properly for the �K sector for the
isospin I ¼ 1=2 channel.
In this work, we also measure two-point correlators for

the pion and kaon, namely,

G�ðtÞ ¼ h0j�yðtÞ�ð0Þj0i; GKðtÞ ¼ h0jKyðtÞKð0Þj0i;
(30)

where the G�ðtÞ is correlation function for the pion with
zero momentum, and the GKðtÞ is correlation function for
the kaon with zero momentum.

IV. SIMULATION RESULTS

In our previous work [39], we have measured the pion
and kaon point-to-point correlators. Using these correla-
tors, we can precisely extract the pion mass (m�) and kaon
mass (mK) [39], which are summarized in Table I. Using
the same method discussed in Ref. [53] and the MILC code
for calculating the pion decay constants f�, we precisely
extract the pion decay constants f� [54], which are in
agreement with the previous MILC determinations at this
same lattice ensemble in Ref. [17]. Here we used all the
631 lattice configurations of this ensemble. We also reca-
pitulated these fitted values in Table I.

A. Diagrams D, C, and R

The �K four-point functions are calculated with the
same lattice configurations using six u valence quarks,
namely, amx ¼ 0:0097, 0.010 67, 0.012 61, 0.013 58,
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0.014 55, and 0.0194, wheremx is the light valence u quark
mass. They all have the same strange sea quark mass
ams ¼ 0:0426, which is fixed at its physical value [17].

In Fig. 3 the individual ratios, which are defined in
Eq. (15) corresponding to the diagrams in Fig. 1, RX (X ¼
D, C, and R) are displayed as the functions of t for amx ¼
0:0097. We can note that diagram D makes the biggest
contribution, then diagram C, and diagram R makes the
smallest contribution. The calculation of the amplitudes for
the rectangular diagram stands for our principal work.
Clear signals observed up to t ¼ 20 for the rectangular
amplitude demonstrate that the method of the moving wall
source without gauge fixing used here is practically
applicable.

The values of the direct amplitude RD are quite close to
unity, indicating that the interaction in this channel is very
weak. The crossed amplitude, on the other hand, increases
linearly, which implies a repulsion in the I ¼ 3=2 channel.
After an initial increase up to t� 4, the rectangular am-
plitude exhibits a roughly linear decrease up to t� 20,
which suggests an attractive force between the pion and
kaon in the I ¼ 1=2 channel. Furthermore, the magnitude
of the slope is similar to that of the crossed amplitude but
with opposite sign. These features are what we eagerly
expected from the theoretical predictions [6,24]. We can
observe that the crossed and rectangular amplitudes have
the same value at t ¼ 0, and that there are close values for
small t. Because our analytical expressions in Eq. (7) for
the two amplitudes coincide at t ¼ 0, they should behave
similarly until the asymptotic �K state is reached.
From Fig. 3, we can clearly observe that there exists a

contamination from wraparound effects [40–42] starting at
t ¼ 18 for the present lattice simulations of the two-meson
state at finite temperature. As discussed in Ref. [13], one
pion or one kaon can propagate Nt � t time steps back-
wards which is illustrated in Fig. 6 of Ref. [13], due to the
periodic boundary conditions. When the mass difference
between � and K is small, this acts as a constant contri-
bution and distorts the four-point function in the large time
region [13]; luckily it is suppressed by roughly

exp

�
�m� þmK

2
Nt

�
= exp½�ðm� þmKÞt�

compared to the forward propagation of the �K four-point
function. In practice, we always select the fitting time
ranges satisfying tmax � 16; therefore we can reasonably
neglect this contamination.
In Fig. 4, we display the ratio RIðtÞ projected onto the

isospin I ¼ 1=2 and 3=2 channels for amx ¼ 0:0097,
which are denoted in Eq. (16). A decrease of the ratio of
RI¼3=2ðtÞ indicates a positive energy shift and hence a

repulsive interaction for the I ¼ 3=2 channel, while an
increase of RI¼1=2ðtÞ suggests a negative energy shift and

hence an attraction for the I ¼ 1=2 channel. A dip at t ¼ 3
for the I ¼ 1=2 channel can be clearly observed [19]. The
systematically oscillating behavior for the I ¼ 1=2 channel
in the large time region is also clearly observed, which is a
typical characteristic of the Kogut-Susskind formulation of
lattice fermions and corresponds to the contributions from
the intermediate states of the opposite parity [27,28]; this
also clearly indicates the existence of the contaminations
from other states rather than the pion-kaon scattering state
[13]. Therefore, to isolate the potential contaminations, we
will use the variational method [21] to analyze the lattice
simulation data. As for the I ¼ 3=2 channel, this oscillat-
ing characteristic is not appreciable, and we will use the
traditional method, namely, using Eq. (17) to compute the
energy shift �E and then calculate the corresponding scat-
tering length.

TABLE I. Summary of the pion masses, kaon masses, and the
pion decay constants. The third and fourth columns show pion
masses and kaon masses in lattice units, respectively, and col-
umn five shows the pion decay constants in lattice units. The
second column gives pion masses in GeV, where the errors are
estimated from both the error on the lattice spacing a and the
statistical errors in column three.

amx m� (GeV) am� amK af�

0.009 70 0.334(6) 0.2459(2) 0.3962(2) 0.121 36(29)

0.010 67 0.350(6) 0.2575(2) 0.3996(2) 0.122 64(34)

0.012 61 0.379(7) 0.2789(2) 0.4066(2) 0.124 25(27)

0.013 58 0.392(7) 0.2890(2) 0.4101(2) 0.124 82(32)

0.014 55 0.406(7) 0.2987(2) 0.4134(2) 0.126 00(26)

0.019 40 0.466(8) 0.3430(2) 0.4300(2) 0.129 79(27)

FIG. 3 (color online). Individual amplitude ratios RXðtÞ of the
�K four-point function calculated through the moving wall
source without gauge fixing as the functions of t for amx ¼
0:0097. Direct diagram (magenta diamonds) shifted by 0.8,
crossed diagram (red octagons), and rectangular diagram (blue
squares).
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B. Fitting analyses for I ¼ 3=2 channel

According to our discussions in Sec. II, in this work, we
will make use of Eq. (17) to extract the energy shift �E for
the I ¼ 3=2 channel. Then we will insert these energy
shifts into Eq. (9) to obtain the corresponding s-wave
scattering lengths. Therefore, properly extracting the en-
ergy shifts is a crucial step to our final results in this paper.
A convincing way to analyze our lattice simulation data is
with the ‘‘effective energy shift’’ plots, a variant of the
effective mass plots, where the propagators were fit with
varying minimum fitting distances Dmin, and with the
maximum distance Dmax either at 16 to suppress the con-
tamination from wraparound effects [40–42] or where the
fractional statistical errors exceeded about 20% for two
successive time slices. For each valence quark mx, the
effective energy shift plots as a function of minimum fitting
distance Dmin for the I ¼ 3=2 channel are shown in Fig. 5.
The central value and uncertainty of each parameter were
determined by the jackknife procedure over the ensemble
of gauge configurations.
The energy shifts a�E of the �K system for the I ¼ 3=2

channel are extracted from the ‘‘effective energy shift’’
plots, and the energy shifts were selected by looking for a
combination of a ‘‘plateau’’ in the energy as a function of
the minimum distance Dmin, and a good confidence level
(namely, �2) for the fit. We found that the effective energy

FIG. 4 (color online). RIðtÞ for �K four-point function at zero
momenta calculated by the moving wall source without gauge
fixing as the functions of t for amx ¼ 0:0097. The solid line in
I ¼ 3=2 is the exponential fits for 7 � t � 16.

FIG. 5 (color online). The effective �K energy shift plots, a�E, as the functions of the minimum fitting distance Dmin in the fit for
the I ¼ 3=2 channel. The effective �K energy shift plots for the I ¼ 3=2 channel have only relatively small errors within a broad
minimum distance region 5 � Dmin � 10.
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shifts for the I ¼ 3=2 channel have only relatively
small errors within a broad minimum time distance region
5 � Dmin � 10 and are taken to be quite reliable.

We utilize the exponential physical fitting model in
Eq. (17) to extract the desired energy shifts for the I ¼
3=2 channel. In Fig. 4, we display the ratio RIðtÞ projected
onto the I ¼ 1=2 and 3=2 channels for amx ¼ 0:0097,
where we can watch fitted functional form as compared
with the lattice simulation data for the I ¼ 3=2 channel.
For the other five light u valence quarks, we obtain the
similar results; therefore we do not show these ratio RIðtÞ
plots here. The fitted values of the energy shifts, �EI, in
lattice units and wave function factor ZI for the I ¼ 3=2
channel are summarized in Table II. The wave function Z
factors are pretty close to unity and the �2=dof is quite
small for the I ¼ 3=2 channel, indicating the values of the
extracted scattering lengths are substantially reliable.

Now we insert the energy shifts in Table II into Eq. (9) to
obtain the corresponding s-wave scattering lengths. The
center-of-mass scattering momentum k2 in GeV is calcu-
lated by Eq. (11), from which we can easily estimate its
statistical errors. Once we obtain the values of k2, the
s-wave scattering lengths a0 in lattice units can be obtained
through Eq. (9). All of these values are summarized in
Table III. Here we utilize pion masses and kaon masses
given in Table I. The errors of the center-of-mass scattering
momentum k and the s-wave scattering lengths are

estimated from the statistical errors of the energy shifts
energies �E, pion mass m�, and kaon mass mK.

C. Fitting analyses for I ¼ 1=2 channel

In Fig. 6, we show the real parts of the diagonal compo-
nents (�K ! �K and � ! �) and the real part of the off-
diagonal component �K ! � of the correlation function
CðtÞ denoted in Eq. (18). Since CðtÞ is a Hermitian matrix,
we will substitute the off-diagonal component � ! �K by
�K ! � to reduce statistical errors in the following
analyses.
We calculate two eigenvalues �nðt; tRÞ (n ¼ 1, 2) for the

matrix Mðt; tRÞ in Eq. (24) with the reference time tR ¼ 7.
In this work, we are only interested in the eigenvalue
�1ðt; tRÞ. In Fig. 7, we plot our lattice results for �1ðt; tRÞ
for each valence quark mx in a logarithmic scale as the
functions of t together with a correlated fit to the asymp-
totic form given in Eq. (25) (red lines with diamonds).
From these fits we then extract the energies that will be
used to determine the s-wave scattering lengths.
To extract the energies reliably, we must take two major

sources of the systematic errors into consideration. One
arises from the excited states which affect the correlator in
a low time region. The other one stems from the wrap-
around effects [40–42] which distort the correlator in a
high time region. By denoting a fitting range ½tmin; tmax�
and varying the values of tmin and tmax, we can control these

TABLE II. Summary of the lattice simulation results for the energy shifts in lattice units for
the I ¼ 3=2 channel. The third column shows the energy shifts in the lattice unit, column four
shows the wave function factors Z, column five shows the time range for the chosen fit, and
column six shows the number of degrees of freedom (dof) for the fit. All errors are calculated
from jackknife.

amx a�E Z Range �2=dof

0.009 70 0.006 21(53) 0.9880(59) 7–16 0:0536=8
0.010 67 0.006 15(52) 0.9893(58) 7–16 0:0395=8
0.012 61 0.006 02(50) 0.9914(56) 7–16 0:0226=8
0.013 58 0.005 95(49) 0.9923(55) 7–16 0:0176=8
0.014 55 0.005 89(48) 0.9930(54) 7–16 0:0142=8
0.019 40 0.005 61(45) 0.9958(50) 7–16 0:0067=8

TABLE III. Summary of lattice results of the s-wave scattering lengths for the I ¼ 3=2
channel. The third column shows the center-of-mass scattering momentum k2 in GeV, column
four shows the s-wave scattering lengths in lattice units, and column five shows the pion mass
times scattering lengths.

amx k2 [ GeV2] a0 m�a0

0.009 70 0.003 50(27) �0:558ð55Þ �0:137ð13Þ
0.010 67 0.003 57(28) �0:569ð55Þ �0:146ð14Þ
0.012 61 0.003 66(30) �0:582ð55Þ �0:162ð15Þ
0.013 58 0.003 74(30) �0:593ð56Þ �0:171ð16Þ
0.014 55 0.003 79(34) �0:600ð60Þ �0:179ð18Þ
0.019 40 0.003 96(37) �0:624ð62Þ �0:214ð21Þ
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systematic errors. In our concrete fitting, we take tmin to be
tR þ 1 and increase the reference time slice tR to suppress
the excited state contaminations. Moreover, we select tmax

to be sufficiently far away from the time slice t ¼ T=2. The

fitting parameters tR, tmin, and tmax are tabulated in
Table IV. The corresponding fitting results in the reason-
able values of �2=dof. The �2=dof together with the fit
results for the energies for the ground state aE are also
listed in Table IV.
As we pointed out in Sec. II B 1, there exists a bubble

contribution in the kappa correlator. To understand the
effects of bubble contributions, in this work we also cal-
culate the scattering length with the bubble contribution
removed from the corresponding kappa correlator. From
our discussion in Ref. [32], the time-Fourier transforma-
tion of Eq. (15) in Ref. [32] yields the bubble term B�ðtÞ,
which was parametrized by three low-energy couplings �,
�A, and �V . In our concrete calculation, they were fixed to
the values of our previous determinations [37,39]. The taste
multiplet masses in bubble terms were fixed as listed in
Table VIII of Appendix B. After deducting the bubble
term, the remaining kappa correlator now contains the
clean information for the kappa meson; we then recalculate
the eigenvalue �1ðt; tRÞ for the matrix Mðt; tRÞ in Eq. (24)
with the reference time tR ¼ 7. In Fig. 7, we plot our
lattice results for �1ðt; tRÞ for each valence quark mx in a
logarithmic scale as the functions of t together with corre-
sponding fitted functional forms (blue lines with octagons).
Then we extract the energies which will be used to deter-
mine scattering lengths. The fitting parameters tR, tmin, and
tmax are tabulated in Table V. The corresponding fitting

FIG. 7 (color online). The lattice results for �1ðt; tRÞ for each valence quark mx in a logarithmic scale as the functions of t at the
I ¼ 1=2 channel are shown. The solid lines are correlated fits to Eq. (25), from which the energy eigenvalues are extracted. The red
lines with diamonds represent the results derived from the original kappa correlator, and the blue lines with octagons stand for the
results derived from the kappa correlator with the bubble contributions deducted.

FIG. 6 (color online). Real parts of the diagonal components
(�K ! �K and � ! �) and the real part of the off-diagonal
component �K ! � of the time correlation function CðtÞ.
Occasional points with negative central values for the diagonal
component � ! � and the off-diagonal component �K ! � are
not plotted.
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results in the reasonable values of �2=dof. The �2=dof
together with the fit results for the energies for the ground
state aE are also listed in Table V.

Now we insert these energies in Tables IV and V into
Eq. (9) to obtain corresponding scattering lengths. The
center-of-mass scattering momentum k2 in GeV calculated
by Eq. (11) and then the corresponding scattering lengths
in lattice units obtained through Eq. (9) are summarized in
Table VI. Here we use the pion masses and kaon masses
given in Table I. The errors of the center-of-mass scattering
momentum k and the scattering lengths are calculated from
the statistic errors of the energy shifts energies �E, pion
mass m�, and kaon mass mK.

From Table VI, we can clearly note that, except for
amx ¼ 0:0194, the bubble terms contribute about
1%–5% differences for the final result of the scattering
length. Therefore, the contamination from the bubble con-
tribution of the kappa correlator is not large in the result of
the scattering length. In the follow discussions, we will
use the results including the deduction of the bubble
contribution.

To examine the effects of the contaminations from the
excited states for the I ¼ 1=2 channel, we denote the ratios
of C00ðtÞ and EV½C�1ðtRÞCðtÞ�00, which is the lowest ei-
genvalue of C�1ðtRÞCðtÞ, to the �K correlator [13],

R0ðtÞ � C00ðtÞ
C00ðtRÞ ; D0ðtÞ � EV½C�1ðtRÞCðtÞ�00: (31)

In the upper panel of Fig. 8, we show R0ðtÞ (magenta
diamonds) and D0ðtÞ (blue octagons) at m� ’ 0:33 GeV.
We can note that the difference of the two ratios is small.
This suggests that the contamination from the excited
states is negligible at this light quark mass. However,
from Fig. 8(b), we observe that the contamination from

TABLE IV. Summary of the lattice simulation results for the
fitted values of the energy eigenvalues for the ground state for
the I ¼ 1=2 channel. The third column shows the energy for the
ground state in lattice units. In the table we list the reference time
tR, the lower and upper bound of the fitting range, tmin and tmax,
and the number of degrees of freedom (dof) for the fit quality
�2=dof. All errors are calculated from jackknife.

amx aE tR tmin tmax �2=dof

0.009 70 0.6260(6) 7 8 14 2:37=3
0.010 67 0.6412(7) 7 8 14 2:83=3
0.012 61 0.6694(10) 7 8 14 3:63=3
0.013 58 0.6828(10) 7 8 14 4:55=3
0.014 55 0.6952(11) 7 8 14 5:57=3
0.019 40 0.7561(12) 7 8 14 13:1=3

TABLE V. Summary of the lattice simulation results for the
fitted values of the energy eigenvalues for the ground state for the
I ¼ 1=2 channel, where we subtract the bubble contribution
from the kappa correlator.

amx aE tR tmin tmax �2=dof

0.009 70 0.6264(4) 7 8 14 2:30=3
0.010 67 0.6414(4) 7 8 14 2:63=3
0.012 61 0.6695(7) 7 8 14 4:32=3
0.013 58 0.6828(6) 7 8 14 5:67=3
0.014 55 0.6953(5) 7 8 14 7:30=3
0.019 40 0.7547(5) 7 8 14 19:3=3

FIG. 8 (color online). R0ðtÞ (magenta diamonds) and D0ðtÞ
(blue octagons) at (a) amx ¼ 0:0097 or m� ’ 0:33 GeV and
(b) amx ¼ 0:0194 or m� ’ 0:466 GeV for the I ¼ 1=2 channel.

TABLE VI. Summary of the lattice simulation results of the
s-wave scattering lengths for the I ¼ 1=2 channel. The second
column shows the center-of-mass scattering momentum k2 in
GeV, and column three shows the pion mass times scattering
lengths. The fourth column shows the center-of-mass scattering
momentum k2 in GeV, where the bubble term is subtracted from
the kappa correlators, and column five shows the corresponding
pion mass times scattering lengths.

amx k2 [ GeV2] m�a0 k2sub [ GeV2] m�a
sub
0

0.009 70 �0:008 84ð27Þ 0.543(34) �0:008 60ð22Þ 0.522(25)

0.010 67 �0:009 04ð29Þ 0.588(38) �0:008 98ð29Þ 0.582(40)

0.012 61 �0:009 56ð42Þ 0.690(65) �0:009 50ð32Þ 0.685(48)

0.013 58 �0:010 10ð47Þ 0.778(78) �0:010 07ð29Þ 0.775(46)

0.014 55 �0:010 75ð52Þ 0.887(94) �0:010 60ð31Þ 0.868(50)

0.019 40 �0:013 43ð68Þ 1.498(181) �0:012 71ð35Þ 1.355(80)

ZIWEN FU PHYSICAL REVIEW D 85, 074501 (2012)

074501-12



the excited states is not negligible atm� ’ 0:466 GeV, and
the diagonalization obviously changes the characteristics
of the ratio, since the �K interpolative operator for the I ¼
1=2 channel has a large overlap with the excited states [13].
Therefore, we further confirmed that the separation of the
contamination from the excited states is absolutely neces-
sary for the heavy quark masses [13] when we study the
�K scattering for the I ¼ 1=2 channel.

Using the fitting models discussed in Ref. [29], we
extract the pion and kaon masses [39]. And using the fitting
model in Eq. (22), we calculate the kappa mass [32]. In
Fig. 9, we display the m�, mK, m�, and �K threshold
m� þmK in lattice units as the functions of the pion
mass m�. We observe that, as the valence quark mass
increases, the �K threshold grows faster than the � mass
and, as a consequence, for the heavy quark masses, the �K
threshold is close to the � mass. In Fig. 9, we can clearly
note that the �K threshold is very close to the � mass for
light quark mass amx ¼ 0:0194. This can in part explain
why the separation of the contamination from the excited
states is indispensable for the large quark masses [13].

D. Chiral extrapolations and scattering length

In the present study, we employ reasonable small pion
masses ofm�, namely,m� ¼ 0:330–0:466 GeV, which are
still considerably larger than its physical ones; therefore,
we need to extrapolate the s-wave �K scattering lengths

toward the physical point. For this purpose, we employ the
formula predicted by SU(3) chiral perturbation theory to
next-to-leading order (NLO) [6,8,11,13,55]. In SU(3) chi-
ral perturbation theory at NLO, we provide the continuum

SU(3) �PT forms of aI¼ð3=2Þ
0 and aI¼ð1=2Þ

0 , which can be

directly constructed from Refs. [8,11,13],

aI¼ð3=2Þ
0 ¼ ��K

4�f2�

�
�1þ 32m�mK

f2�
L�Kð��Þ � 16m2

�

f2�
L5ð��Þ þ 1

16�2f2�
�I¼ð3=2Þ
�K ð��;m�;mKÞ

�
;

aI¼ð1=2Þ
0 ¼ ��K

4�f2�

�
2þ 32m�mK

f2�
L�Kð��Þ þ 32m2

�

f2�
L5ð��Þ þ 1

16�2f2�
�I¼ð1=2Þ
�K ð��;m�;mKÞ

�
;

(32)

where we plugged in the pion massm�, the kaon massmK, and the pion decay constant f�, which are summarized Table I.
L5ð��Þ and L�Kð��Þ � 2L1 þ 2L2 þ L3 � 2L4 � L5=2þ 2L6 þ L8 are low-energy constants defined in Ref. [56] at the
chiral symmetry breaking scale��. We should bear in mind that the expressions in Eq. (32) are written in terms of full f�,
and not its chiral limit value. The �I¼ð3=2Þ

�K ð��;m�;mKÞ and �I¼ð1=2Þ
�K ð��;m�;mKÞ are the known functions at NLO which

clearly depend upon the chiral scale �� with chiral logarithm terms, namely,

�I¼ð3=2Þ
�K ð��;m�;mKÞ ¼ �� ln

m2
�

�2
�

þ �K ln
m2

K

�2
�

þ �	 ln
m2

	

�2
�

þ 86

9
mKm� þ �tan arctan

�
2ðmK �m�Þ
mK þ 2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK þm�

2mK �m�

s �
;

�I¼ð1=2Þ
�K ð��;m�;mKÞ ¼ �0

� ln
m2

�

�2
�

þ �0
K ln

m2
K

�2
�

þ �0
	 ln

m2
	

�2
�

þ 86

9
mKm� þ 3

2
�tan arctan

�
2ðmK �m�Þ
mK þ 2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK þm�

2mK �m�

s �

þ �0
tan arctan

�
2ðmK þm�Þ
mK � 2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK �m�

2mK þm�

s �
; (33)

with

FIG. 9 (color online). Characteristics of m�, mK, m�, and
m� þmK in lattice units as the functions of the pion mass.
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�� ¼ 11mKm
3
� þ 8m2

�m
2
K � 5m4

�

2ðm2
K �m2

�Þ
; �K ¼ � 67m3

Km� � 8m3
�mK þ 23m2

Km
2
�

9ðm2
K �m2

�Þ
;

�	 ¼ 24m�m
3
K � 5mKm

3
� þ 28m2

Km
2
� � 9m4

�

18ðm2
K �m2

�Þ
; �tan ¼ � 16mKm�

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K þmKm� �m2
�

q
mK �m�

;

�0
� ¼ 11mKm

3
� � 16m2

Km
2
� þ 10m4

�

2ðm2
K �m2

�Þ
; �0

K ¼ � 67m3
Km� � 8m3

�mK � 46m2
Km

2
�

9ðm2
K �m2

�Þ
;

�0
	 ¼ 24m�m

3
K � 5mKm

3
� � 56m2

Km
2
� þ 18m4

�

18ðm2
K �m2

�Þ
; �0

tan ¼ 8mKm�

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K �mKm� �m2
�

q
mK þm�

:

(34)

In this work, we did not measure the 	 mass (m	);

instead, we utilize the Gell-Mann–Okubo mass relation
to determine 	 mass. To improve the �PT fit, in principle,
we can include all the lattice simulation data of the �K
scattering lengths for both the I ¼ 1=2 and 3=2 channels to
perform the simultaneous fitting. However, the fit with the
data of the scattering lengths for the I ¼ 1=2 channel in
m� � 0:392 GeV significantly increases �2=dof, so we
only use the scattering lengths for the I ¼ 1=2 channel in
m� < 0:392 GeV. The fitting results of �K scattering

lengths, m�a
I¼3=2
0 and m�a

I¼1=2
0 , are plotted by the dotted

lines as the functions of m2
� in Fig. 10. The dotted lines are

the chiral extrapolation of the scattering lengths for both
isospin eigenstates. The fit parameters L�K, L5, and the
scattering lengths m�a0 at the physical points (namely,
m� ¼ 0:140 GeV, mK ¼ 0:494 GeV) [57], are also sum-
marized in Table VII, where the chiral scale �� is taken as

the physical 	 mass, namely, �� ¼ 0:548 GeV [57], as is

done in Ref. [53]. The lightest (cyan) diamond points in
Fig. 10 show the values of the physical scattering lengths.

From Fig. 10, we note that our lattice simulation results for
I ¼ 3=2 scattering length agree well with the one-loop
formula, while scattering lengths for the I ¼ 1=2 channel
have a large error, and that these lattice simulation results
are in reasonable agreement with the SU(3) �PT at NLO.
The fitted value of the L5 is reasonably consistent with

the value evaluated by the PACS-CS Collaboration [58],
and is smaller than the corresponding result evaluated
by the MILC Collaboration [53] and the NPLQCD
Collaboration [11]. The fitted value of L�K is also smaller
than the result evaluated by the NPLQCD Collaboration
[11]. The s-wave �K scattering lengths for both the I ¼
1=2 and 3=2 channels are in agreement with the other
lattice studies [10–13].

V. SUMMARYAND OUTLOOK

In the present study, we carried out a direct lattice QCD
calculation of the s-wave �K scattering lengths for both
the isospin I ¼ 1=2 and 3=2 channels, where the rectan-
gular diagram plays a crucial role, for the MILC
‘‘medium’’ coarse (a ¼ 0:15 fm) lattice ensemble in the
presence of 2þ 1 flavors of the Asqtad-improved stag-
gered dynamical sea quarks, generated by the MILC
Collaboration. We employed the same technique in
Refs. [18,19] with the moving wall sources without gauge
fixing to obtain reliable precision. We calculated all the
three diagrams categorized in Ref. [12], and observed a
clear signal of the attraction for the I ¼ 1=2 channel and
that of repulsion for the I ¼ 3=2 channel, respectively.
Moreover, for the I ¼ 1=2 channel, we employed the varia-
tional method to isolate the contamination from the excited
states. We further confirmed that the separation of the
contamination is absolutely necessary for the heavy quark
masses [13] when we study �K scattering in the I ¼ 1=2

FIG. 10 (color online). m2
� dependence of the �K scattering

lengths m�a0 for both the I ¼ 1=2 and 3=2 channels. The dotted
lines give the SU(3) �PT predictions at NLO. The lightest (cyan)
diamond points indicate its physical values.

TABLE VII. The fitted s-wave scattering lengths m�a0 at the
physical point (m� ¼ 0:140 GeV,mK ¼ 0:494 GeV). The chiral
scale �� is taken as the physical 	 mass.

�2=dof 103 � L�K 103 � L5 m�a
I¼ð3=2Þ
0 m�a

I¼ð1=2Þ
0

0:747=7 1.40(5) 1.01(12) �0:0512ð18Þ 0.1819(35)
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channel. Simultaneously extrapolating our lattice
simulation data of the s-wave scattering lengths for both
isospin eigenstates to the physical point gives the scattering
lengths m�a3=2 ¼ �0:0512ð18Þ and m�a1=2 ¼ 0:1819ð35Þ
for the I ¼ 3=2 and 1=2 channels, respectively, which are
in accordance with the current theoretical predictions to
one-loop levels and the present experimental reports, and
can be comparable with the other lattice studies [10–13].

A clear signal can be seen for a long time separation
range in the rectangular diagram of the �K scattering.
Reducing the noise by performing the calculation on a
larger volume or smaller pion mass could further improve
the signal to noise ratio for the rectangular diagram, and
therefore obtain better results for the scattering length in
the I ¼ 1=2 channel [13]. Moreover, the behavior near the
chiral limit is strongly affected by the chiral logarithm
term; thus an evaluation without long chiral extrapolation
is highly desirable to ensure the convergence of the chiral
expansion [13]. Furthermore, tan�0ðkÞ=k in the low-
momentum limit must be evaluated by the systematic
studies with the different volumes and boundary conditions
[13]. For these purposes, we are planning a series of lattice
simulations on MILC coarse, fine, and superfine lattice
ensembles with concentration on the lightest accessible
quark masses, namely, in m� < 300 MeV. We anticipate
that these future tasks should make the calculation of the
rectangular diagram more reliable.

It is well-known that �K scattering at the I ¼ 1=2
channel is a more challenging and interesting channel
phenomenologically due to the existence of kappa reso-
nance. The study of the s-wave �K scattering at zero
momentum is just the first step in the study of the hadron
interactions including s quarks. However, it is particularly
encouraging that �K scattering for the I ¼ 1=2 channel
can be reliably calculated by the moving wall sources
without gauge fixing introduced by Kuramashi et al.
[18,19] in spite of the essential difficulties of the calcula-
tion of the four-point functions, especially the rectangular
diagram. It raises the prospect that this technique can be
successfully employed to investigate the � resonance, and
so on.

In our previous work [31], we have precisely evaluated
the � mass, and found that the decay � ! �K is only
allowed kinematically for small enough u quark mass.
This work and our preliminary lattice simulation reported

here for �K scattering lengths will encourage researchers
to study the � resonance. We are beginning a series of
lattice investigations on the � resonance parameters with
isospin representation of ðI; IzÞ ¼ ð1=2; 1=2Þ, and the pre-
liminary results are already reported in Refs. [33,59].
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APPENDIX A: THE CALCULATION METHOD OF
ZETA FUNCTION

In this appendix we briefly discuss one method for
numerical evaluation of zeta function Z00ðs; q2Þ in the
center-of-mass system for any value of q2. Here we follow
the original derivations and notations in Ref. [26].
The definition of zeta function Z00ðs; q2Þ in Eq. (13) is

ffiffiffiffiffiffiffi
4�

p �Z00ðs;q2Þ ¼
X
n2Z3

1

ðn2 � q2Þs : (A1)

The zeta function Z00ðs;q2Þ takes a finite value for
Re s > 3=2, and Z00ð1; q2Þ is defined by the analytic con-
tinuation from the region Re s > 3=2.
First we consider the case of q2 > 0, and we separate the

summation in Z00ðs;q2Þ into two parts as

X
n2Z3

1

ðn2 � q2Þs ¼
X

n2<q2

1

ðn2 � q2Þs þ
X

n2>q2

1

ðn2 � q2Þs :

(A2)

The second term can be written in an integral form,

X
n2>q2

1

ðn2 � q2Þs ¼
1

�ðsÞ
X

n2>q2

�Z 1

0
dtts�1e�tðn2�q2Þ þ

Z 1

1
dtts�1e�tðn2�q2Þ

�

¼ 1

�ðsÞ
Z 1

0
dtts�1eq

2t
X
n2Z3

e�n2t � X
n2<q2

1

ðr2 � q2Þs þ
X
n2Z3

e�ðn2�q2Þ

ðn2 � q2Þs : (A3)

The second term neatly cancels out the first term in Eq. (A2). Next we rewrite the first term in Eq. (A3) with Poisson’s
resummation formula as
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1

�ðsÞ
Z 1

0
dtts�1etq

2
X
n2Z3

e�n2t ¼ 1

�ðsÞ
Z 1

0
dtts�1etq

2

�
�

t

�
3=2 X

n2Z3

e��2n2=t: (A4)

The divergence at s ¼ 1 comes from the n ¼ 0 part of the
integrand on the right-hand side; therefore we divide the
integrand into a divergent part (n ¼ 0) and a finite part
(n � 0). The divergent part can be evaluated for
Re s > 3=2 as

Z 1

0
dtts�1eq

2t

�
�

t

�
3=2 ¼ X1

l¼0

�3=2

sþ l� 3=2

q2l

l!
: (A5)

The right-hand side of this equation takes a finite value at
s ¼ 1.

After gathering all terms we obtain the representation of
the zeta function in the center-of-mass system at s ¼ 1:

ffiffiffiffiffiffiffi
4�

p �Z00ðs;q2Þ¼
X
n2Z3

e�ðn2�q2Þ

n2�q2
þX1

l¼0

�3=2

l�1=2

q2l

l!

þ
Z 1

0
dteq

2t

�
�

t

�
3=2 X0

n2Z3

e��2n2=t; (A6)

where
P0

n2Z3

stands for a summation without n ¼ 0.

For the case of q2 � 0, it is not necessary for us to
separate the summation in Z00ðs; q2Þ, and it can also be
written in an integral form,X

n2Z3

1

ðn2 � q2Þs ¼
1

�ðsÞ
Z 1

0
dtts�1eq

2t
X
n2Z3

e�n2t

þ X
n2Z3

e�ðn2�q2Þ

ðn2 � q2Þs : (A7)

Following the same procedures, we arrive at the same
expression in Eq. (A6). Hence, Eq. (A6) can be applied
for both cases.

We also note that, for negative q2, an exponentially
convergent expression of the zeta function Z00ðs; q2Þ has
been derived in Ref. [60]. We numerically compared this
representation of the zeta functions with that of the above
described representation, and found agreement. Therefore,
we use Eq. (A6) in this work.

APPENDIX B: PSEUDOSCALAR MESON
TASTE MULTIPLETS

The tree-level masses of the pseudoscalar mesons are
[34,36]

M2
x;y;b ¼ �ðmx þmyÞ þ a2�b; (B1)

where x, y are two quark flavor contents which make up the
meson, b ¼ 1; . . . ; 16 are the taste, � ¼ m2

�=2mq is the

low-energy chiral coupling constant of the point scalar
current to the pseudoscalar field, and the term of a2�b

comes from the taste symmetry breaking. The mx and my

are the two valence quark masses in the pseudoscalar
meson, and mx is the light valence u=d quark mass by
convention.
We treat the u quark as a valence approximation quark,

while valence strange quark mass is fixed to its physical
value, so it will be convenient to introduce the notations

M2
Ub � M�b

¼ 2�mx þ a2�b;

M2
Sb � Mss;b ¼ 2�ms þ a2�b;

M2
Kb � MKb

¼ �ðmx þmsÞ þ a2�b;

(B2)

where MU is Goldstone pion mass, MK is Goldstone kaon
mass with one valence quark equal to the light valence
quark and one at its physical mass, and MS is a fictitious

TABLE VIII. The mass spectrum of the pseudoscalar meson
for the MILC medium-coarse (a ¼ 0:15 fm) lattice ensemble
with 
 ¼ 6:572, am0

ud ¼ 0:0097, am0
s ¼ 0:0484.

amx TasteðBÞ a�B aKB a	B a	0
B

0.0097 P 0.2459 0.3962 0.2459 0.5018

A 0.3724 0.4850 0.3204 0.5621

T 0.4281 0.5289 0.4281 0.6120

V 0.4636 0.5580 0.4484 0.6324

I 0.4983 0.5872 0.6131 � � �
0.010 67 P 0.2575 0.3996 0.2575 0.5018

A 0.3802 0.4878 0.3293 0.5622

T 0.4348 0.5315 0.4348 0.6120

V 0.4698 0.5604 0.4549 0.6325

I 0.5042 0.5895 0.6147 � � �
0.012 61 P 0.2789 0.4066 0.2789 0.5018

A 0.3950 0.4935 0.3460 0.5623

T 0.4478 0.5367 0.4478 0.6120

V 0.4819 0.5655 0.4673 0.6325

I 0.5154 0.5943 0.6178 � � �
0.013 58 P 0.2890 0.4101 0.2890 0.5018

A 0.4022 0.4964 0.3541 0.5624

T 0.4542 0.5394 0.4542 0.6120

V 0.4878 0.5680 0.4734 0.6325

I 0.5210 0.5967 0.6193 � � �
0.014 55 P 0.2987 0.4134 0.2987 0.5018

A 0.4092 0.4991 0.3619 0.5625

T 0.4604 0.5419 0.4604 0.6120

V 0.4936 0.5704 0.4793 0.6325

I 0.5264 0.5990 0.6209 � � �
0.0194 P 0.3430 0.4300 0.3430 0.5018

A 0.4426 0.5130 0.3986 0.5630

T 0.4903 0.5547 0.4903 0.6120

V 0.5216 0.5825 0.5080 0.6326

I 0.5527 0.6105 0.6285 � � �

ZIWEN FU PHYSICAL REVIEW D 85, 074501 (2012)

074501-16



meson s�s mass in a flavor nonsinglet state [29] with two
valence quarks at physical mass.

When anomaly parameter m0 is large, we have [31,32]

M2
	;I ¼ 1

3M
2
UI þ 2

3M
2
SI; M	0;I ¼ Oðm2

0Þ: (B3)

In the taste-axial-vector sector we have

M2
	A ¼ 1

2

�
M2

UA þM2
SA þ 3

4
�A � ZA

�
;

M2
	0A ¼ 1

2

�
M2

UA þM2
SA þ 3

4
�A þ ZA

�
;

Z2
A ¼ ðM2

SA �M2
UAÞ2 �

�A

2
ðM2

SA �M2
UAÞ þ

9

16
�2
A;

(B4)

and likewise for V ! A, where �V is the hairpin coupling
of a pair of taste-vector mesons, and �A is the hairpin
coupling of a pair of taste-axial mesons [53].

In the taste-pseudoscalar and taste-tensor sectors, the
masses of the 	b and 	0

b by definition are [31,32]

M2
	;b ¼ M2

Ub; M2
	0;b ¼ M2

Sb: (B5)

In Table VIII, we list the masses of the resulting taste
multiplets in lattice units with the taste-breaking parame-
ters �A and �V , and the mass-squared splittings a2�b

determined in our previous work [39]. For the Goldstone
multiplets (taste P), we measured their corresponding cor-
relators and fitted them with a single exponential [53].
Then, using the taste splittings in Refs. [29,53], we calcu-
lated the masses of other non-Goldstone taste multiplets.
We do not need the 	0

I masses in this work; hence, we do
not list these values in Table VIII.
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