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Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany

Jian Zhou

Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany
and Department of Physics, Barton Hall, Temple University, Philadelphia, Pennsylvania 19122, USA

(Received 23 November 2011; published 25 April 2012)

The energy loss parameter q̂ is one of the fundamental transport parameters of hadronic matter. Using

the twist-4 collinear approach, we show that the cos� azimuthal asymmetry in unpolarized semi-inclusive

deeply inelastic scattering off a large nucleus at intermediate transverse momentum is a sensitive

observable for its determination. The effect is due to the suppression of the azimuthal asymmetry by

final-state multiple scattering.
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I. INTRODUCTION

The detailed understanding of the properties of hot and
cold nuclear matter, as described by its transport parame-
ters, is one of the topical problems of QCD, in particular, in
connection with high-energy heavy-ion experiments at
RHIC and LHC. As deeply inelastic scattering (DIS) is
one of the theoretically cleanest processes in QCD, it is
tempting to use this probe to determine some of them. We
argue that this is indeed possible for the transport parame-
ter q̂ if one focuses on transverse–momentum-dependent
observables which are especially sensitive to transverse
momentum broadening while partons travel through had-
ronic matter. The transverse momentum broadening effect
arises from final-state multiple parton interactions, which
are enhanced in nuclear matter. Quite a number of different
theoretical approaches have been formulated to describe
this phenomenon [1–9] and a variety of precise experimen-
tal observations will be needed to decide which of these
formulations are incorrect and which are equivalent. One
common parameter appearing in all of these approaches is
the parton transport parameter q̂ which controls parton
energy loss or transverse momentum broadening squared
per unit of propagation length [1]. Therefore, the calcula-
tion and measurement of this transport parameter is an
important step toward understanding the intrinsic proper-
ties of nuclear matter, both cold and hot.

The multiple parton rescattering in a large nucleus not
only leads to energy loss and transverse momentum broad-
ening but also to other nuclear effects, for example, the
cos� and cos2� azimuthal asymmetries of unpolarized
semi-inclusive DIS cross sections. In Ref. [10], it was
shown that the existence of intrinsic transverse parton
momenta in the unpolarized distribution and fragmentation
functions can generate such modulations at low transverse

momentum. Later, Cahn–effect-based descriptions of azi-
muthal asymmetries were formulated in terms of twist-2
and twist-3 transverse–momentum-dependent parton
distributions (TMDs) [11–14]. At large transverse momen-
tum, such asymmetries result primarily from hard gluon
radiation [15] which can be calculated in the framework of
collinear factorization. Similar processes are also respon-
sible for the azimuthal angle dependence of Drell-Yan
dilepton production [16,17]. In the intermediate transverse
momentum region,�QCD � P? � Q, both, collinear fac-

torization and transverse–momentum-dependent factoriza-
tion are supposed to apply [18]. Indeed, in this special
kinematic region, the match between leading-power
TMD factorization and collinear factorization has been
made explicit for the cos2� asymmetry of the Drell-Yan
lepton pair angular distribution in [19,20]. In contrast
however, it is known already since a while that this equiva-
lence does not extend to subleading power TMD factoriza-
tion which suffers from severe problems [13,21] and yields
results different from that calculated in collinear factoriza-
tion at intermediate transverse momentum [22].
Azimuthal asymmetries in semi-inclusive deeply inelas-

tic scattering (SIDIS) off nuclei are affected by final-state
interactions and thus provide an alternative way to study
properties of the nuclear medium. In fact, the nuclear
dependence of the angular distribution of Drell-Yan lepton
pairs has been calculated both in the small x and inter-
mediate x region, using the collinear twist-4 formalism
[23] and the color glass condensate model [24]. Nuclear-
dependent azimuthal asymmetries in SIDIS have also been
investigated recently based on TMD factorization [25,26].
The central ingredient of the treatment in Ref. [25] is
the relation between the nucleon twist-3 TMDs and the
nuclear ones. In this paper, we extend that earlier work to a
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kinematic region of relatively large transverse momenta
where the process can be treated within perturbative QCD.
To be more specific, we use the collinear twist-4 approach
to calculate the nuclear dependence of the cos� azimuthal
asymmetry in SIDIS at intermediate transverse momentum
�QCD � PJ? � Q, where PJ? is the final-state jet trans-

verse momentum, and Q is the virtual photon momentum.
We restrict ourselves to intermediate transverse momen-
tum and the current fragmentation region because here the
calculation can be significantly simplified with the help of
general power-counting rules valid in light-cone gauge
[27,28] as we will demonstrate in the subsequent section.
As a result of our explicit calculation, we will show that the
nuclear-dependent part of the asymmetry in this specific
kinematic region is directly proportional to the parton
transverse momentum broadening in a nucleus.

II. AZIMUTHAL ASYMMETRY IN SIDIS
OFF NUCLEUS

The parton model cross section for the unpolarized
semi-inclusive DIS process eðlÞ þ p=AðPÞ ! eðl0Þ þ
JðPJÞ þ X takes the general form [13,29],

d�

dxBdzdyd
2PJ?

¼ 4��2
ems

Q4

��
1� yþ y2

2

�
FT þ ð1� yÞFL

þ ð2� yÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
cos�JFcos�J

þ ð1� yÞ cosð2�JÞFcos2�J

�
(1)

where we use the conventions of Ref. [13]. We define q ¼
l� l0 as the virtual photon momentum and its virtuality as
Q2 ¼ �q2, while xB ¼ Q2=2P � q, z ¼ P � PJ=P � q, and
y ¼ P � q=P � l are the common DIS variables. The azimu-
thal angle between the transverse momentum of the out-
going parton PJ? and the leptonic plane is denoted by �J.
Four structure functions F, depending on xB, Q

2, z (the
fraction of the photon energy carried by the jet) and PJ?,
encode the QCD structure of the target and the dynamics of
the partonic subprocess. It is convenient to use light-cone
coordinates for which P� ¼ Pþp�, q� ¼ �xBp

� þ
n�Q2=ð2xBPþÞ with p ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

and n ¼
ð1; 0; 0;�1Þ= ffiffiffi

2
p

. At large PJ?, the four functions F can
be calculated in collinear twist-2 factorization. As stated
above, we restrict ourself to the asymmetry at intermediate
transverse momentum �QCD � PJ? � Q in the current

fragmentation region where power-counting rules can be
applied. In this kinematic region, the power behavior of
FT , FL, Fcos�J

, and Fcos2�J
is 1=P2

J?, 1=Q
2, 1=QPJ?,

1=Q2, respectively. The cos� asymmetry is determined

by the ratio between the functions Fcos�J

UU and FUU;T , which

read [15,22],

FLP
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where f1ðxÞ is the normal leading-power collinear parton
distribution and ‘‘LP’’ denotes the leading-power contri-
bution from f1ðxÞ. The index � runs over flavors of quarks
and antiquarks with fractional charge e�. To extract the
nuclear effect we are interested in, one has to go beyond the
leading twist treatment and take into account twist-4
contributions.
The machinery of collinear higher-twist factorization

was pioneered already in the early 1980s [30], and later
frequently applied in hadron spin physics [31] and nuclear
physics [3,23,32]. The higher-twist collinear approach has
been well established in both the covariant and the light-
cone gauge. In order to better classify the contributions
according to power-counting rules, we carry our calcula-
tion out in the light-cone gauge with retarded boundary
conditions. For retarded boundary conditions, certain col-
linear twist-4 correlators can be directly related to the
moment of corresponding TMD distributions.
Following the standard procedure, the higher-twist con-

tributions can be systematically isolated by expanding the
hard part in the parton intrinsic transverse momentum and
including the diagrams with transverse polarized gluon
exchange between the struck parton and the target remnant.
At twist-4 level, the correlators associated with these two
types of contributions are of the form h �c @?@?c i,
h �c @?A?c i, and h �cA?A?c i. The general power-counting
rule [27,28] states that the diagrams with one additional
transversely polarized gluon exchange are suppressed by
one additional power of �QCD=Q in the current fragmen-

tation region where PJ? � Q, as long as final-state inter-
actions at y� ¼ þ1 have been removed by imposing
retarded boundary conditions [33]. Therefore, the possible
leading powers of the corresponding hard parts convo-
luted with the correlators h �c @?@?c i, h �c @?A?c i, and
h �cA?A?c i are suppressed by the powers of �2

QCD=P
2
J?,

�2
QCD=QPJ?, and �2

QCD=Q
2, respectively. The explicit

calculation shows that the leading-power contribution
from h �c @?@?c i drops out in the azimuthal–angle-
dependent cross section such that its subleading part
�2

QCD=QPJ? generates the nonvanishing cos� asymmetry.

The hard part associated with the correlator h �c @?A?c i
contributes to the cos� asymmetry with the same power
�2

QCD=QPJ?. As a result, we can eventually neglect all

diagrams with two transversely polarized gluon exchanges
and are left with the contributions from the correlators of
the first two types.
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To be more specific, the following three twist-4 collinear correlators enter the calculation,

ff1ðxÞ¼
Z dy�

4�
eixP

þy�hPj �c ð0Þ�þð�i@?�Þð�i@?�Þc ðyÞjPid��;

’?ðxÞ¼
Z dy�

4�
eixP

þy�hPj �c ð0Þ�þð�i@?�ÞD?�ðyÞc ðyÞjPid��;

~’?ðxÞ¼
Z dy�

4�
eixP

þy�hPj �c ð0Þ�5�þð�i@?�ÞD?�ðyÞc ðyÞjPid��

(3)

whereD�¼�i@�þA� and d
��¼�g��þðp�n�þp�n�Þ=

p�n. Since the gauge is completely fixed by choosing
retarded boundary conditions in the light-cone gauge, all
three correlators can be uniquely brought into a gauge-
invariant form. The nuclear dependence has been encoded
in the above twist-4 matrix elements. It will become evi-
dent when we relate them to the relevant moment of the
corresponding nuclear TMDs. The perturbative calculation
of the hard coefficients associated with these twist-4 cor-
relators is straightforward. The functions FT and Fcos�J

can
thus be expressed as convolutions of the hard coefficients
and the twist-4 correlators given above. At small transverse
momentumPJ? � Q, the results take a remarkably simple
form,

Ftwist-4
T ¼ 1
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?ðxBÞþ Im~’�
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Using the QCD equation of motion, one obtains the rela-
tion

� Re’?ðxÞ þ Im~’?ðxÞ ¼ xff?ðxÞ (6)

where

ff?ðxÞ ¼
Z dy�

4�
eixP

þy�hPj �c ð0Þð�i6@?Þc ðyÞjPi: (7)

One should note that the calculations just discussed apply
to SIDIS of both nuclear and nucleon targets. All results
have the same form and differ only in that the collinear
correlators are taken inside of a nucleus or a nucleon. In
this paper, we only focus on the leading nuclear-dependent
effect which is proportional to the length of propagation in
the nuclear medium and assume fA1 ¼ AfN1 . The leading
nuclear dependence of the azimuthal angle asymmetry is
thus generated by the nuclear dependence of the collinear

twist-4 correlators, which can be best seen from the fol-
lowing relations between the twist-4 correlators and the
moments of TMDs with retarded boundary conditions,

ff1ðxÞ ¼
Z

d2k?k2?f1ðx; k?Þ; (8)

ff?ðxÞ ¼
Z

d2k?k2?f?ðx; k?Þ (9)

here, f1ðxÞ and f? are the normal leading-twist TMD
quark distribution and twist-3 TMD distribution, respec-
tively. Note that the above relations are only valid for naive
definition of TMDs. Their matrix element definitions are
given by

f1ðx; k?Þ ¼
Z dy�d2 ~y?

2ð2�Þ3 eixBP
þy�þik?�y?

� hPj �c ð0Þ�þLð0; yÞc ðyÞjPi; (10)

f?ðx; k?Þ ¼
Z dy�d2 ~y?

2ð2�Þ3 eixBP
þy�þik?�y?

� k�?
k2?

hPj �c ð0Þ�?�Lð0; yÞc ðyÞjPi: (11)

For retarded boundary conditions, the transverse gauge
links appearing in the above matrix elements become unity.
The nuclear dependence of the TMD distributions
f1ðx; k?Þ and f?ðx; k?Þ have been worked out and given
by [25,34]

fA1 ðx; k?Þ �
A

��2F

Z
d2‘?e�ð ~k?� ~‘?Þ2=�2FfN1 ðx; ‘?Þ; (12)

fA?ðx;k?Þ�
A

��2F

Z
d2‘?

ð ~k? � ~‘?Þ
~k2?

e�ð ~k?� ~‘?Þ2=�2FfN?ðx;‘?Þ

(13)

where �2F ¼ R
d	�q̂ð	Þ with the quark energy loss trans-

port coefficient q̂, which controls parton energy loss in a
cold nuclear medium and transverse momentum broaden-
ing squared per unit of propagation length. The super-
scripts ‘‘A’’ and ‘‘N’’ denote the nuclear and nucleon
TMDs, respectively. Using the relations between nucleon
TMDs and nuclear TMDs, we find
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Z
k2?f

A
?ðx; k?Þd2k? � A

Z
k2?f

N
?ðx; k?Þd2k? ¼ 0; (14)

Z
k2?f

A
1 ðx;k?Þd2k?�A

Z
k2?f

N
1 ðx;k?Þd2k?¼AfN1 ðxÞ�2F

(15)

where fN1 ðxÞ is the ordinary integrated parton distribution
function of the nucleon. From the above two identities, we
can conclude that the difference of the cos�J azimuthal
asymmetries is proportional to the amount of transverse
momentum broadening. More precisely, when z � 1, one
has

hcos�JieA � hcos�JieA

¼ ð2� yÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
1� yþ y2=2

�Ftwist-4
cos�J

Ftwist-4
T

��������eA
�Ftwist-4

cos�J

Ftwist-4
T

��������eN

�

� ð2� yÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
1� yþ y2=2

2z3

1þ z2
�2F

PJ?Q
: (16)

In the second step, we have assumed fA1 ¼ AfN1 and ne-
glect all terms suppressed by powers of�QCD=PJ?. This is
the main result of this paper, which is valid at intermediate
transverse momentum �QCD � PJ? � Q. Equation (16)
provides a direct handle to extract the crucial parameter q̂
from measurements of the azimuthal asymmetry in nuclei
and nucleons.

Let us stress at this point that azimuthal asymmetries are
not the only quantities which are sensitive to q̂. Basically
all quantities which depend on transverse momentum are
affected by k? broadening in nuclear matter. However, in
practice the relationship between q̂ and observables will be
substantially affected by many corrections: the finite size
of nuclei, inhomogenities in density and other fluctuations,
differences in the string breaking mechanisms in hadroni-
zation between pA and pp collisions, etc. Therefore, one

will need as many different observables as possible to
correct for such effects and to extract q̂ reliably. In this
contribution, we argue that azimuthal asymmetries form an
additional class of such signals. In fact, it might be an
especially interesting one (though probably also one which
is hard to measure) because we expect that cos� asymme-
tries are rather insensitive to the potential differences in
transverse momentum modifications induced by string
breaking in nuclear and hadron systems.

III. SUMMARY

In summary, we calculated the cos� azimuthal asym-
metry in semi-inclusive DIS off a nuclear target within the
collinear twist-4 approach. At intermediate transverse mo-
mentum, the nuclear dependence of the azimuthal asym-
metry is linked to the k2?-moment of the two relevant quark

TMD distributions. The difference between nucleon TMDs
and nuclear TMDs is generated by final-state interactions,
such that the difference in the azimuthal asymmetries is
sensitive to their strength. To be more specific, the differ-
ence between the cos� azimuthal asymmetries in SIDIS
off nucleons and nuclei is proportional to the transverse
momentum broadening in the latter. Therefore, it provides
an alternativeway to pin down the transport parameter q̂ by
measuring the nuclear dependence of the asymmetry at
intermediate transverse momentum.
The approach we developed in this paper can be ex-

tended to study the nuclear dependence of azimuthal asym-
metries in other processes, such as direct photon
production in SIDIS off nuclei and Drell-Yan lepton pair
production in high-energy pA scattering.
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Lett. 83, 4261 (1999); R. J. Fries, A. Schäfer, E. Stein, and
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