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The production of the charmonium states in p �p experiments is considered at the energy rates near the

threshold in next to leading order. Such a consideration allows one to obtain nonzero distributions over the

transverse momentum of the final charmonium and gives a natural explanation to the existence of the �c1

meson in the final state, which is observed experimentally and cannot be produced in leading order

processes. The question of scale dependence of theoretical predictions is discussed.
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I. INTRODUCTION

Precision experimental studies of charmonium produc-
tion in proton-antiproton collisions at low energies is
proposed in a new experiment, labeled PANDA [1]. Such
studies allow one to obtain a deeper understanding of
charmonium physics. The PANDA experiment deals with
proton target and antiproton beam energies up to 15 GeV.
This energy lies near the charmonium production thresh-
old. In the present article we give theoretical predictions of
the inclusive charmonium production in p �p collisions by
accounting for next to leading order diagrams in partonic
cross sections. Such an approach was considered by a
number of authors [2–7] and applied mainly for proton-
proton collisions.

The important part of the PANDA experiment is the
detailed analysis of all possible mechanisms of charmonia
production. Such an analysis is especially important since
at low energies there is significant difference between
charmonium production in p �p and pp. For the pp at low
energies the contributions of gluon-gluon, quark-gluon,
and quark-antiquark subprocesses are comparable, while
for p �p the quark-antiquark annihilation subprocess domi-
nates. For example, if the energy of the proton beam is
equal to 40 GeV, the ratio of c production cross sections in
p �p and pp collisions equals �ðp �pÞ=�ðppÞ � 6.

Another problem is that the direct production of the c
meson is suppressed in comparison with the production of
the intermediate P-wave states �c0;1;2 with the subsequent

decay �c ! J=c�. This fact is well confirmed in the
experiments [8]. The experimentally observed cross sec-
tions of �c2 and �c1 are comparable (the �c0 meson can
hardly be observed due to its small radiative width), while
the well-known Landau-Yang theorem forbids the forma-
tion of the axial meson from two massless gluons. One
more difficulty is that the partonic distributions are inte-
grated over the transverse momentum. As a result, such a
method does not allow one to obtain the distributions of
�c0 and �c2 mesons over pT .

Initially these problems were solved by the introduction
of color-octet components of the quarkonia, which arise
naturally in the nonrelativistic QCD, where the expansion
over the relative velocity of quarks in the meson is per-
formed. In this model it is assumed that the final meson is
formed from a heavy quark pair in a color-octet state that
subsequently transforms into a physically observed color-
less meson. In the framework of nonrelativistic QCD the
probabilities of these transitions are described by the
matrix elements of four-fermion operators that are deter-
mined from the experimental distributions over the trans-
verse momentum of the final charmonium. We would like
to stress, however, that this explanation will not work for
charmonium production at lower energies. The reason is
that the distributions caused by octet components decrease
slowly with the rise of the transverse momentum, but the
probability to find such a component in the meson is small,
compared with the singlet case. As a result, in the large
transverse momentum region the contribution of octet
components can be significant, but for small energies and
transverse momenta it is suppressed.
Recently another way to solve this problem was pro-

posed, where the so called nonintegrated over the trans-
verse momentum distribution functions Gðx; kTÞ are used
(kT factorization) [9–11]. In this case both of the above
mentioned problems are solved simultaneously. The trans-
verse momentum of the produced in gluon fusion �c0;2

mesons is explained by the transverse momenta of the
initial partons. The axial charmonium meson can also be
produced in gluon fusion, since in the framework of kT
factorization gluons have nonzero virtuality of the order
k2T . There are a number of works that explain the experi-
mental distributions at the Tevatron with the help of these
functions (see, for example, [10,12,13]). According to
these works, there is no need to introduce color-octet
components to reproduce the experimental data on
P-wave charmonium pT distributions. Thus, in the
kT-factorization approach color-singlet components give
the main contribution.
Unfortunately, the method, used in the modeling of the

unintegrated distribution functions Gðx; kTÞ, is based on
the summation of large logð1=xÞ, so it is not applicable for
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low energies, where the gluon momentum fractions are in
the range 0:1< xg < 0:5. For this reason we are forced to

use the following approximation in our calculations. We
start from the collinear gluon distributions with well-
known collinear distribution functions. Further we con-
sider the charmonia production at next to leading order
in the strong coupling constant �s. Such a trick enables us
to obtain the distributions over pT for all charmonium
states. For �c0 and �c2 production we observe a collinear
singularity at pT ¼ 0. To avoid this singularity we intro-
duce a regularization procedure. For directly produced c
and �c1 such a singularity is absent and we use the whole
integration region for pT .

The next section is devoted to the consideration of
different modes of charmonia production and collinear
singularity regularization. In the third section we deter-
mine the cross sections of the hadronic processes and pay
attention to the correct scale parameters choice in �sðQ2Þ
and parton distributions fðx;Q2Þ. Numerical results are
also given in Sec. III. The last section is reserved for a
brief discussion.

II. PARTONIC SUBPROCESSES

Feynman diagrams corresponding to the charmonium
production are presented in Fig. 1. At the leading order
[Fig. 1(a)] only processes gg ! �c0;2 are available.

Process gg ! c is forbidden by charge parity, while
process gg ! �c1 is forbidden due to the Landau-Yang
theorem, which forbids the formation of the axial meson
from two massless gluons. Other LO cross sections we give
in the Appendix.

Next to leading order diagrams are presented in
Figs. 1(b) and 1(c). The first two diagrams in Fig. 1(c)
includes the 3-gluon vertex. To avoid delicate problems,
bounded with ghost contributions, we recalculated differ-
ential cross sections for the process gg ! Qg (Q ¼
c ; �c0;1;2) (and also for qg ! �0;1;2q) in the axial gauge:

L gf ¼ � 1

2�
ðn�Aa�Þ2; (1)

where n� is an auxiliary vector with n�n
� ¼ �1. This

gauge does not require additional ghost Lagrangians, but
the gluon propagator and polarization sum becomes more
complicated. Using � ¼ 0 (Landau choice), it can be found
that

X
��ðkÞ��ðkÞ ¼ �	�� þ

k�k�

ðk; nÞ2 �
k�n� þ k�n�

ðk; nÞ ;

Dab
��ðkÞ ¼ 
ab 1

k2
X

��ðkÞ��ðkÞ:
(2)

The auxiliary vector n� will disappear in physical observ-

ables. We found that our results are in excellent agreement
with [4,5] for the gg channel and [2] for qg channel. Exact
formulas for the differential cross sections are rather tedi-
ous and can be found in the cited papers.
The massless t̂-channel gluon in propagators in Fig. 1

leads to the collinear singularities in small t̂ and û ¼ M2 �
ŝ� t̂ regions, where ŝ, t̂, and û are the usual Mandelstam
variables of the partonic subprocess. For this reason the
cross sections of gg ! �c0;2g and qg ! �c0;2q reactions

are divergent:

d�̂

dt̂
� 1

t̂ û
: (3)

In terms of meson transverse momentum pT ¼ ffiffiffiffiffiffiffiffiffiffiffi
t̂ û =ŝ

p
,

these singularities correspond to the pT ! 0 singularity.
To calculate the total cross section

�̂ðŝÞ ¼
Z t̂

M2�ŝ
dt̂

d�̂ðŝ; t̂Þ
dt̂

¼
Z ðŝ�M2Þ=2 ffiffî

s
p

0
dpT

d�̂ðŝ; pTÞ
dpT

;

(4)

some regularization should be performed. The popular
decision is to cut off the small pT region, i.e., restrict the
integration region in the last formula by setting pT >�,
where the cutoff parameter � can be taken from the
experimental setup or for some physical reasons. For ex-
ample, in [2], � was taken equal to 1=Rc �c, where Rc �c is the
geometrical size of the charmonium. Such an approach has
a big drawback, because the total cross section is highly
sensitive to � variation. To avoid these difficulties, we will
use another regularization procedure.
Taking the indefinite integral of the differential cross

section, the following well-known relation can be found:

Z
dt̂

d�̂ðgg ! QgÞ
dt̂

¼ �s

2�
�̂0ðgg ! QÞPg!gg

�
M2

ŝ

�
ln
û

t̂
þ finite: (5)

Similarly, for the qg ! Qq reaction we have

FIG. 1. Feynman diagrams for the charmonium production.
(a) Direct �c0;2 production, (b) through qg ! Qq and �qq !
Qg subprocesses, where Q ¼ �cJ, (c) through gg ! Qg sub-
process, where Q ¼ �cJ for the first two diagrams and Q ¼ c ,
�cJ for the last diagram.
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Z
dt̂

d�̂ðqg ! QqÞ
dt̂

¼ �s

2�
�̂0ðgg ! QÞPq!qg

�
M2

ŝ

�
ln
û

t̂
þ finite: (6)

In these expressions the second parts are finite when t̂ ! 0
and t̂ ! M2 � ŝ, while �̂0ðgg ! QÞ are given in (A1) and
(A2). Pg!ggðxÞ and Pq!qgðxÞ are well-known QCD split-

ting functions:

Pg!ggðxÞ ¼ 6

�
x

1� x
þ 1� x

x
þ xð1� xÞ

�

Pq!qgðxÞ ¼ 4

3

1þ ð1� xÞ2
x

:

The full hadronic cross section can be obtained by inte-
grating partonic cross sections with partonic distribution
functions:

�ðsÞ ¼
Z

dx1dx2fðx1Þfðx2Þ�̂ðŝÞ: (7)

Singular parts of (5) and (6) are included in partonic
distribution functions fðxÞ and generate well-known scal-
ing violations, described by Altarelli-Parisi equations. So
inclusion of singular parts in partonic cross sections leads
to double counting: one time in �̂ and one in fðxÞ. Thus, we
will use the regularization

�̂Regðgg!QgÞ

¼
�Z d�̂ðgg!QgÞ

dt̂
dt̂

��s

2�
�̂0ðgg!QÞPg!gg

�
M2

ŝ

�
ln
û

t̂

���������
t̂¼0

t̂¼M2�ŝ
;

(8)

and similarly

�̂Regðqg ! QqÞ

¼
�Z d�̂ðqg ! QqÞ

dt̂
dt̂

� �s

2�
�̂0ðgg ! QÞPq!qg

�
M2

ŝ

�
ln
û

t̂

���������
t̂¼0

t̂¼M2�ŝ
: (9)

In contrast to �c0;2, differential cross sections for c and

�c1 have no collinear singularities and are finite at t̂ ! 0
and û ! 0. In the case of �1, this is explained by the
Landau-Yang theorem, which forbids the production
from two massless gluons. As a result, the squared matrix
element of this reaction is proportional to the virtuality of
the intermediate t-channel gluon, so this factor compen-
sates for the divergency, caused by the propagator. For c ,
we have similar reasoning based on charge parity, since the
first two diagrams of Fig. 1(c) are absent in this case.

Exact formulas for regularized partonic cross sections
are given in the Appendix.

III. HADRONIC CROSS SECTIONS

Let us now consider the full hadronic process

AðP1ÞBðP2Þ ! QðPÞ þ X; (10)

where A and B are the initial hadrons,Q ¼ c , �cJ, and in
the parentheses corresponding particle momenta are intro-
duced. The cross section of this reaction is expressed
through the cross sections of the above considered partonic
reactions:

�ðsÞ ¼ X
a;b

Z
dx1dx2fa=Aðx1Þfa=Bðx2Þ�̂abðŝÞ; (11)

where summation is performed over partons a and b, x1;2
are the momentum fractions held by these partons, and
fa=Aðx1Þ, fb=Bðx2Þ are the distribution functions of the

partons in the initial hadrons. In the common variables

x ¼ x1 � x2; (12)

ŝ ¼ ðx1P1 þ x2P2Þ2 ¼ x1x2s; (13)

the full hadronic cross section becomes

�ðsÞ ¼ X
a;b

Z s

M2
dŝ�̂abðŝÞ

�
Z xðŝÞ

�xðŝÞ
dx

~x
fa=Aðx1Þfb=Bðx2Þjx1;2¼x1;2ðx;ŝÞ;

~x ¼ x1 þ x2; (14)

where

xðŝÞ ¼ 1� ŝ

s
: (15)

In our numerical estimates we used the distribution func-
tions and �s numeric values presented in the work [14].
Other numerical parameters are equal to

Mc ¼ 3:097 GeV; M�c0
¼ 3:415 GeV; (16)

M�c1
¼ 3:511 GeV; M�c2

¼ 3:556 GeV; (17)

R2
Sð0Þ ¼ 0:81 GeV3; R02

P ð0Þ ¼ 0:075 GeV5: (18)

A. Scale dependence

There are two physical quantities that depend on some
scale choice: parton distributions fa=Aðx;Q2Þ and the

strong coupling constant �sðQ2Þ. The parton distribution
function fa=Aðx;Q2Þ gives the probability of finding a

parton a of the longitudinal fraction x in physical (anti)
proton and transverse momenta pT < Q. It is clear that the
exact value of Q depends on parameters of the partonic
subprocess, i.e.,Q2 ¼ Q2ðŝÞ. It is convenient to set Q2 to a
fixed value Q2�-characteristic momentum transfer of the
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partonic subprocess. Such a choice can be argued by the
mean value theorem, which states

Z b

a
fðxÞgðxÞdx ¼ fðx�Þ

Z b

a
gðxÞdx:

On the other hand, from the structure of Altarelli-Parisi
equations, it is clear, that at least for high energies (Q �
1 GeV) the error in choosingQ� leads to a negligibly small
variation of final results; for example, the parton distribu-
tions change by �1% as Q� is changed by a factor of 10.
We have another situation at low energies (Q � 1 GeV),
when perturbation theory works badly, and the error in
choosing Q� leads to a dramatic variation of partonic
functions. For example, the u-quark distribution depen-
dence on Q� is shown in Fig. 2(a).

Second, the physical quantity, depending on some scale
choice is �sðQ2Þ. Here, the meaning of Q is different from
the meaning in distribution functions. The dependence of

strong coupling �s on scale Q occurs when the full propa-
gators and vertices are inserted in tree level diagrams.
Similar reasoning, based on the mean value theorem, al-
lows setting �sðQ2Þ to a fixed value with some scale Q�.
The perfect justification of this procedure is given in [15].
Only in the simplest situations can the exact value ofQ� be
found; for example, for the 2 ! 2 reaction through the
s-channel particle, it can be found, using the Callan-
Symanzik renorm-group equation, that Q2� ¼ s. In other
cases the exact value of scale can be found only by se-
quential analysis of perturbation series expansion. It is
clear that Q� depends on the process. At high energies
Q � 1 GeV, �sðQ2Þ becomes almost constant. At the
energies’ rates near 1 GeV, �s dependence of Q is shown
in Fig. 2(b).
So, in general, we have three possible ways of setting

scale parameters in a full cross section:

fixed scheme �ðs;Q2�Þ ¼
X
a;b

Z s

M2
dŝ�̂abðŝ; �sðQ2�ÞÞ

Z xðŝÞ

�xðŝÞ
dx

~x
fa=Aðx1; Q2�Þfb=Bðx2; Q2�Þ;

float scheme�ðs;Q2�Þ ¼
X
a;b

Z s

M2
dŝ�̂abðŝ; �sðŝÞÞ

Z xðŝÞ

�xðŝÞ
dx

~x
fa=Aðx1; Q2�Þfb=Bðx2; Q2�Þ;

float2 scheme �ðs;Q2�Þ ¼
X
a;b

Z s

M2
dŝ�̂abðŝ; �sðŝÞÞ

Z xðŝÞ

�xðŝÞ
dx

~x
fa=Aðx1; ŝÞfb=Bðx2; ŝÞ:

The fixed scheme is the most common way used in calcu-
lations. The float scheme takes into account the fact that �s

in the partonic subprocess depends on ŝ. Of course, in
general, this dependence is complicated and has the form
�sðfðŝÞÞ, but from general considerations it is clear that for
a small interval, near process threshold fðŝÞ � ŝ. The float2
scheme, takes into account both �sðQ2Þ and fðx;Q2Þ scal-
ing. It is also clear that the maximum transverse momen-
tum Q in fðx;Q2Þ depends on the ŝ and for small energy
intervals we set Q2 � ŝ. Actually, the cross section in the
float2 scheme does not depend on Q�.

In Fig. 3 we show the dependence of the cross section on
scheme choice for �c0 production in the u �u channel at p �p
collisions. It is seen that all three curves are crossed at one
point at Q2 ¼ M2

�c0
¼ 11:66 GeV2. For other mesons and

other channels the picture is similar—three curves are
crossed at the corresponding squared meson mass. The
only exception is the quark-gluon channel, where the cross
point is greater at 10% than the corresponding squared
meson mass. We make similar calculations for other en-
ergy regions and find that these results remain valid. As
was expected, at high energies (s � 1 GeV2) the differ-
ence between schemes is negligible. So these results prove
that all schemes are equivalent with the correct Q� choice:

Q� ¼ M; (19)

where M is the corresponding meson mass.
In all further calculations we shall use the fixed scheme

with Q� ¼ M.

FIG. 2 (color online). (a) Q dependence of u-quark distribution at x ¼ 0:9 and (b) Q dependence of �s.
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B. Total cross sections

Figure 4 illustrates the dependence of c production
through different processes on total energy. The bold line
shows the summed over all processes cross section:

� ¼ �ggðc Þ þ Brð�c0 ! c�Þ�ð�c0Þ
þ Brð�c1 ! c�Þ�ð�c1Þ þ Brð�c2 ! c�Þ�ð�c2Þ;

(20)

where the branching values are equal to

Brð�c0 ! c�Þ ¼ 0:016;

Brð�c1 ! c�Þ ¼ 0:344;

Brð�c2 ! c�Þ ¼ 0:195:

(21)

From this picture it is seen that direct c production and
production from radiative �c0 decay are highly suppressed.
The contribution of�c0 radiative decay is negligible, due to

very small branching value. As was noted above, the direct
c production is only available in process gg ! c g, but
the gluon-gluon channel in p �p reactions is highly sup-
pressed in comparison with the quark-antiquark channel,
so the cross section of the direct c production is signifi-
cantly smaller than the production of �cJ, where the quark-
antiquark channel is available.
In Figs. 5 and 6 we show the contributions of the differ-

ent subprocesses to the total �c1 and �c2 production cross
sections. For both mesons the most significant contribution
gives the u �u subprocess. For the gluon-gluon subprocess
our numerical results are equal to zero within the error of
numerical calculations. The negligibly small effect of the
other channels can be easily explained by the structure of
the parton distributions. The small energy of the hadronic
reaction corresponds to the large longitudinal fraction x.
For this region the u-quark distribution function absolutely
dominates.

FIG. 4 (color online). Different contributions to the total c
production in a proton-antiproton reaction for different c.m.
energies. (a) Total c production, (b) c production through the
radiative �c2 decay, (c) through the radiative �c1 decay,
(d) through the radiative �c0 decay, (e) direct c .

FIG. 6 (color online). Contribution of the different subpro-
cesses to the total �c2 production. (a) u �u subprocess, (b) direct
�c2, (c) d �d subprocess, (d) the sum over ug and �ug subprocesses,
(e) the sum over dg and �dg subprocesses.

FIG. 5 (color online). Contribution of the different subpro-
cesses to the total �c1 production. (a) u �u subprocess, (b) d �d
subprocess, (c) the sum over ug and �ug subprocesses, (d) the
sum over dg and �dg subprocesses.

FIG. 3 (color online). Scale dependence in different schemes
of the u �u channel cross section in the p �p ! �c0X collision at the
energy

ffiffiffi
s

p ¼ 4:34 GeV.
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C. Production mode at the s ¼ 32 GeV2

It should be stressed that the above presented expres-
sions for charmonia production cross sections can be con-
sidered only as estimates on upper bounds. The reason is
that in some events initial (anti)protons are present also in
the final state. Because of baryonic number conservation in
proton-proton scattering this configuration is realized al-
most always. In proton-antiproton interaction, however,
that presence of baryons in the final state is not necessary.
Numerically this effect can be described in terms of the
inelasticity coefficient, which can be interpreted as the
probability of proton-antiproton annihilation into other
states. According to [16], this coefficient is equal to
K � 0:5 and decreases slightly with the increase of energy.

If initial baryons are present also in the final state, the
effective interaction energy decreases from

ffiffiffi
s

p
to

ffiffiffiffiffiffiffi
seff

p �ffiffiffi
s

p � 2Mp. In the case of high-energy colliders this modi-

fication does not change significantly the cross sections of
the considered processes. For the PANDA environment,
however, the situation is completely different. From Fig. 4
it is clear that the decrease from

ffiffiffi
s

p � 5:5 Gev to
ffiffiffiffiffiffiffi
seff

p �
3:5 GeV leads to a dramatic decrease of charmonia pro-
duction cross sections. So one can expect that the reactions
p �p ! p �pþ J=c þ X give negligible contributions to the
cross sections of charmonia production at PANDA, and
expression (14) should be multiplied by the inelasticity
factor K � 0:5.

At the production mode in the PANDA experiment the
antiproton beam energy is equal to 15 GeV, which corre-
sponds to the s value equal to 32 GeV2. The cross section
of c -meson production is given in (20). Our calculations
give

�ðp �p ! cXÞ ¼ 0:21 nb; (22)

where

�ðp �p ! �c1XÞ ¼ 0:2 nb;

�ðp �p ! �c2XÞ ¼ 0:75 nb;

�ðp �p ! �c0XÞ ¼ 0:35 nb:

The ratio of �c1 and �c2 production cross sections is equal
to

�ð�c1Þ
�ð�c2Þ

¼ 0:26: (23)

The pT distribution of mesons can be obtained by rewriting

differential cross sections in terms of pT ¼ ffiffiffiffiffiffiffiffiffiffiffi
t̂ û =ŝ

p
and

integrating with the partonic distributions:

d�

dpT

¼
Z s

ðpTþ
ffiffiffiffiffiffiffiffiffiffiffiffi
p2
TþM2

p
Þ2
dŝ

s

d�̂ðab ! QcÞ
dpT

�
Z 1�ðŝ=sÞ

�ð1�ðŝ=sÞÞ
dx

~x
fa=Aðx1Þfb=Bðx2Þ; (24)

where

d�̂

dpT

¼ 2ŝpTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŝ�M2Þ2 � 4ŝp2

T

q
�
d�̂

dt̂

��������t̂¼t̂1

þ d�̂

dt̂

��������t̂¼t̂2

�
;

t̂1;2 ¼ 1

2

�
M2 � ŝ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŝ�M2Þ2 � 4ŝp2

T

q �
:

As was shown before, the major processes, giving con-
tribution to the total c production, are the radiative decays
of the�c1;2 mesons, which in turn are formed through theu �u
subprocess. Thus, for the calculation of the pT dependence
we will neglect all other channels of the c production. In
this approximation we do not encounter collinear singular-
ities, which appear in other subprocesses of �c2 formation.
Another problem arises when we consider the total c
distribution. The radiative decays �cJ ! c� can give a
significant contribution to the pT distribution of the final
c , when the transverse momentum is �1 GeV. However,
we will neglect such a contribution. In Fig. 7 we show the
transverse momentum distributions of the c production:

d�ðc Þ
dpT

¼ Brð�c1 ! c�Þd�ð�c1Þ
dpT

þ Brð�c2 ! c�Þd�ð�c2Þ
dpT

;

where

d�ð�c1;2Þ
dpT

¼
Z dŝ

s

d�̂ðu �u ! �c1;2gÞ
dpT

�
Z dx

~x
fu=pðx1Þf �u= �pðx2Þ:

IV. CONCLUSIONS

This paper is devoted to J=c -meson production in
proton-antiproton interaction at low energies. This process
can be used to clarify modes of charmonia production in

FIG. 7 (color online). Transverse momentum distributions of
c production with inelasticity coefficient taken into account.
(a) Total c , (b) c production through �c2 decay, (c) c produc-
tion through �c1 decay.
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hadronic experiments and allows one to measure with
higher accuracy proton spectral functions at x� 0:5.

The physics of charmonia production in hadronic reac-
tions is completely different for different energies. For
high-energy experiments (e.g., Tevatron or LHC) heavy
quarkonia are produced mainly in the gluon-gluon interac-
tion, since small values of Feynman variable x are allowed
kinematically. The contributions of quark-gluon or quark-
antiquark modes are negligible. In the threshold region,
where only values x� 0:5 are allowed, on the contrary,
main contributions come from quark-gluon (in proton-
proton interaction) or quark-antiquark (in the proton-
antiproton interactions). In the near future at the FAIR
proton-antiproton particle accelerator with 3<

ffiffiffi
s

p
<

5:7 GeV the PANDA detector will perform the first mea-
surements, so a reliable prediction for charmonium meson
production for this experiment is required.

In our paper we give predictions for total cross sections
of J=c -meson production in different modes at next to
leading order. The emission of additional gluon leads to
nonzero transverse momentum of the final charmonium
that is obviously absent in leading order partonic reactions
gg ! �c0;2. It is shown that the main contributions to this

process are given by �c1;2-meson production due to quark-

antiquark annihilation with the subsequent radiative decay
�c1;2 ! J=c�.

Special attention is given to regularization of infrared
and collinear singularities in the case of �c2-meson pro-
duction, when the t-channel gluon in gg ! �c2g partonic
reactions leads to divergency in pT distribution and infin-
itive values of the cross section.
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APPENDIX: REGULARIZED PARTONIC
CROSS SECTIONS

In this section we give the total cross sections of partonic
subprocesses following the procedure described in [17,18].
For subprocesses, in which the collinear singularities ap-
pear, we use the regularization procedure, described in the
main text.

1. Leading order

In the leading order only gg ! �c0;2 reactions are pos-

sible. The cross sections of these reactions are

�̂ðgg ! QÞ ¼ �̂0ðgg ! QÞ
ð1�M2=ŝÞ; (A1)

where

�̂ 0ðgg ! �0Þ ¼ 12
�2�2

sR
02
� ð0Þ

M5ŝ
;

�̂0ðgg ! �2Þ ¼ 16
�2�2

sR
02
� ð0Þ

M5ŝ
;

where R0
�ð0Þ is the derivative of the radial part of the

�-meson wave function at the origin,

2. gg ! Qg

As was noted above, the cross sections for processes
gg ! c g and gg ! �c1g have no collinear singularities,
so they do not require regularization. We have

�̂ðgg ! c gÞ

¼ � 10��3
sRc ð0Þ2

9ŝ2ðM2 � ŝÞ2ðM2 þ ŝÞ3
�
M10 þ 4M8ŝ� 2M4ŝ3

�M2ŝ4 � 2M4ŝðM4 þ 2M2ŝþ 5ŝ2Þ logM
2

ŝ
� 2ŝ5

�
;

whereRc ð0Þ is the radial part of the c -wave function at the

origin, and

�̂ðgg ! �1gÞ ¼
4��3

sR
02
�ð0Þ

M7ŝ2ðM2 � ŝÞ4ðM2 þ ŝÞ5
�
12M4ŝðM16 þ 9M14ŝþ 26M12ŝ2 þ 28M10ŝ3 þ 17M8ŝ4

þ 7M6ŝ5 � 40M4ŝ6 � 4M2ŝ7 � 4ŝ8Þ logM
2

ŝ
� ðM2 � ŝÞðM2 þ ŝÞðM18 þ 39M16ŝþ 145M14ŝ2

þ 251M12ŝ3 þ 119M10ŝ4 � 153M8ŝ5 � 17M6ŝ6 � 147M4ŝ7 � 8M2ŝ8 þ 10ŝ9Þ
�
:

The gg production of �c0;2 states has collinear singularities. Performing the regularization procedure (8), we

obtain
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�̂Regðgg ! �0gÞ ¼ � 2��3
sR

02
�ð0Þ

3M7ŝ3ðM2 � ŝÞ4ðM2 þ ŝÞ5
�
99M24 þ 132M22ŝ� 7M20ŝ2 � 80M18ŝ3 þ 210M16ŝ4

� 560M14ŝ5 þ 802M12ŝ6 þ 696M10ŝ7 � 1721M8ŝ8 � 244M6ŝ9 þ 789M4ŝ10 þ 56M2ŝ11

þ 12ŝð�24M22 � 41M20ŝþ 10M18ŝ2 þ 7M16ŝ3 þ 42M14ŝ4 � 176M12ŝ5 � 10M10ŝ6 þ 40M8ŝ7

þ 14M6ŝ8 � 31M4ŝ9 þ 9ŝ11Þ logM
2

ŝ
� 172ŝ12

�
;

�̂Regðgg ! �2gÞ ¼ � 4��3
sR

02
�ð0Þ

3M7ŝ3ðM2 � ŝÞ4ðM2 þ ŝÞ5
�
66M24 þ 201M22ŝ� 31M20ŝ2 � 728M18ŝ3 þ 360M16ŝ4

� 266M14ŝ5 þ 256M12ŝ6 þ 1032M10ŝ7 � 752M8ŝ8 � 271M6ŝ9 þ 207M4ŝ10 þ 32M2ŝ11

� 12ŝð12M22 þ 5M20ŝþ 17M18ŝ2 þ 86M16ŝ3 � 204M14ŝ4 þ 11M12ŝ5 þ 31M10ŝ6

þ 74M8ŝ7 � 8M6ŝ8 þ 22M4ŝ9 � 6ŝ11Þ logM
2

ŝ
� 106ŝ12

�
:

3. qg ! Qq

At the qg channel only the �cJ mesons can be produced. The �1-meson cross section does not require regularization and
is equal to

�̂ðqg ! �1qÞ ¼
16��3

sR
02
�ð0Þ

9M7ŝ3

�
4M6 � 9M2ŝ2 þ 3M4ŝ log

ŝ

M2
þ 5ŝ3

�
: (A2)

Regularized cross sections for �c0;2 are

�̂ Regðqg ! �0qÞ ¼ � 16��3
sR

02
�ð0Þ

27M7ŝ3

�
4M6 � 18M4ŝþ 57M2ŝ2 þ 3ŝð4M4 � 9M2ŝþ 9ŝ2Þ logM

2

ŝ
� 43ŝ3

�
;

�̂Regðqg ! �2qÞ ¼ � 16��3
sR

02
�ð0Þ

27M7ŝ3

�
20M6 � 36M4ŝþ 69M2ŝ2 þ 3ŝð5M4 � 12M2ŝþ 12ŝ2Þ logM

2

ŝ
� 53ŝ3

�
:

4. q �q ! Qg

At the q �q channel, all cross sections are finite. This is
explained by the fact that their differential cross sections
are cross-symmetric (t̂ $ ŝ) to the qg ones,

jMðqg ! QqÞj2 ¼ jMðq �q ! QgÞj2jt̂$ŝ; (A3)

and the total cross sections are

�̂ðq �q!�0gÞ¼� 128��3
sR

02
�ð0Þ

81M3ŝ3ðM2� ŝÞðŝ�3M2Þ2; (A4)

�̂ðq �q!�2gÞ

¼� 256��3
sR

02
�ð0Þ

81M3ŝ3ðM2� ŝÞð6M
4þ3M2ŝþ ŝ2Þ; (A5)

�̂ðq �q ! �1gÞ ¼ � 256��3
sR

02
�ð0Þ

27M3s2ðM2 � sÞ ðM
2 þ sÞ: (A6)
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