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A detailed analysis of the open charm effects on the decays of J=c ðc 0Þ ! VP is presented, where V

stands for light vector meson and P for light pseudoscalar meson. These are the channels that the so-called

‘‘12% rule’’ of perturbative QCD (pQCD) is obviously violated. Nevertheless, they are also the channels

that violate the pQCD helicity selection rule at leading order. In this work, we put constraints on the

electromagnetic contribution, short-distance contribution from the c �c annihilation at the wave function

origin, and long-distance contribution from the open charm threshold effects on these two decays. We

show that interferences among these amplitudes, in particular, the destructive interferences between the

short-distance and long-distance strong amplitudes, play a key role to evade the helicity selection rule and

cause the significant deviations from the pQCD expected 12% rule.
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I. INTRODUCTION

Annihilation decays of heavy quarkonium have served
as an important probe for the study of the perturbative
QCD (pQCD) strong interactions in the literature [1–3].
In the bottomonium energy region, the nonrelativistic ap-
proximation works well so that the annihilation of the b �b
can be regarded as a direct measurement of the properties
of the bottomonium wave functions at the origin at leading
order. For instance, for the S wave states, the annihilation
matrix elements are proportional to the wave function at
the origin, while for the Pwave states to the first derivative
at the origin. These simple relations have been broadly
examined and found in good agreement with the experi-
mental measurements in inclusive processes. They can be
regarded as a direct test of the pQCD properties.
Interestingly, although the mass of the charm quark cannot
be regarded heavy enough, some of the leading pQCD
relations are still well respected in inclusive transitions.
A good example is the branching ratio fraction between c 0
and J=c :

R � BRðc 0 ! hadronsÞ
BRðJ=c ! hadronsÞ ’

BRðc 0 ! eþe�Þ
BRðJ=c ! eþe�Þ ’ 0:13;

(1)

which is the so-called 12% rule and the branching ratio
fractions probe the ratio of the wave functions at their
origins for the ground state J=c and first radial excitation
c 0. Note that in the above equation both branching ratios
BRðJ=c ! hadronsÞ and BRðc 0 ! hadronsÞ are referred
to their light hadron decays. In fact, even for some of those
exclusive decays, the above relation seems to hold approxi-
mately well. Such an observation, in contrast with the
significant deviations in J=c and c 0 ! ��, has initiated
tremendous interests in the study of transition mechanisms
for J=c and c 0 ! ��, which is known as the so-called

‘‘�� puzzle.’’ According to the Particle Data Group 2010
(PDG2010) [4], the ratio for the �� channel is BRðc 0 !
��Þ=BRðJ=c ! ��Þ ’ ð1:1 � 2:8Þ � 10�3, which is
much smaller than the pQCD expected value, i.e. �12%.
An alternative expression for the �� puzzle is related

to the power law suppression due to the pQCD helicity
selection rule (HSR). As demonstrated in Refs. [2,3],
the decay of J=c ðc 0Þ ! VP, where V and P stand for
vector and pseudoscalar meson, respectively, should be
strongly suppressed at leading twist. As a consequence, the
branching ratio fraction is expected to be BRðc 0 ! ��Þ=
BRðJ=c ! ��Þ ’ ðMJ=c =Mc 0 Þ6 � ðBRðc 0 ! hadronsÞ=
BRðJ=c ! hadronsÞÞ � 6:2%, which is still much larger
than the experimental observations. The significant violation
of the pQCD HSR is nontrivial taking into account that quite
many exclusive decay channels have approximately re-
spected the 12% rule.
Such a conflicting phenomenon has attracted a lot of

attention from both experiment and theory in history.
Even right now, the study of the �� puzzle has been
one of the most important physics goals in the program
of BESIII experiment [5]. In theory, this puzzle has also
been broadly studied. Different explanations have been
proposed in the literature, such as the color-octet model
[6], vector meson mixing [7,8], final-state interactions
[9,10], admixtures of a vector glueball near J=c
[11,12], intrinsic charm in light mesons [13], light-quark
mixing effects [14], large survival decay of c 0 via virtual
charmonium state [15], and interferences between the
electromagnetic (EM) and strong interactions [16–19].
In the meantime, it has been realized that the �� puzzle
is not just restricted to the �� decay channel. It has also
connections with the obvious charge asymmetries ob-
served in c 0 ! K� �K þ c:c: Therefore, it was conjectured
that more general dynamic reasons should be investigated
for J=c ðc 0Þ ! VP [18,20–23].
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It should be useful to recall the results of Ref. [18],
where a global fit for J=c ðc 0Þ ! VP is presented. The
EM and strong transition amplitudes are parameterized out
for all the decay channels, while among the strong tran-
sition amplitudes, the singly disconnected OZI (SOZI)
processes and doubly disconnected OZI (DOZI) processes
are further parameterized out. As shown in Ref. [18], there
exists an overall suppression on the strong decay ampli-
tudes of c 0 ! VP, not just in the �� channel. Because of
this suppression, the EM transition amplitudes become
compatible with the strong decay amplitudes with which
the interferences produce further deviations from the HSR-
violating power law suppressions. This fitting result at least
clarifies the following two issues: (i)The same mechanism
that suppresses c 0 ! �� also plays a role in other c 0 !
VP decays; and (ii) such a mechanism does not affect
much in J=c ! VP as suggested by the charge asymme-
tries observed in K� �K þ c:c: These are important guides
for exploring mechanisms that would suppress the strong
decay amplitudes in c 0 ! VP, but have less impact on the
J=c decays.

During the past few years, we have been focussing on
the study of mechanisms evading the HSR in charmonium
decays. For charmonia below the open D �D threshold, the
HSR-violating transitions are naturally correlated with the
OZI-rule violations. As demonstrated in a series of studies
[24–28], we have shown that the intermediate D meson
loops (IMLs) provide a natural mechanism for evading the
OZI rule and hence the HSR in charmonium decays. The
IML is introduced as a nonperturbative source of contri-
butions. As iterated in Refs. [20,21,24,25,29], apart from
the �� puzzle, the IML could be a key for understanding
some of those long-standing questions in charmonium
exclusive decays, e.g. the c ð3770Þ non-D �D decay, large
HSR-violating decay of �c ! VV, M1 transition problems
with J=c ðc 0Þ ! ��cð�0

cÞ, etc.
In this work, we provide a quantitative study of the role

played by the long-distance IML in J=c ðc 0Þ ! VP in
association with the EM and short-distance SOZI transi-
tions. Our purpose is to demonstrate that the IMLs, as
nonperturbative transition mechanisms, are important for
explaining the phenomena observed in J=c ðc 0Þ ! VP,
and hence could be a natural solution for the long-standing
�� puzzle and other puzzles in charmonium exclusive
decays. As follows, the details of dealing with different
transition amplitudes are given in Sec. II. The numerical

results and detailed analysis are presented in Sec. III, and a
summary in the last section.

II. THE MODEL

A unique feature with the VVP coupling is that at
hadronic level the antisymmetric tensor coupling is the
only allowed Lorentz structure. Therefore, it can be under-
stood that whatever the underlying mechanisms could be,
they will contribute to the corrections to the antisymmetric
tensor coupling. Based on this, one can always make a
general parametrization to the transition amplitude,

M tot � MEM þ ei�0ðMshort þ ei�MlongÞ; (2)

where MEM, Mshort, and Mlong are the amplitudes of the

EM, strong short-distance, and strong long-distance tran-
sitions, respectively. A phase angle � is introduced be-
tween the short- and long-distance amplitudes, while the
relative phase between the EM and short-distance ampli-
tudes is �0 ¼ 0� or 180�. It is reasonable to consider the
trivial relative phase angles between the EM and short-
distance amplitude. Meanwhile, the long-distance ampli-
tude may carry a phase angle relative to the short-distance
one due to hadronic wave function effects. Although the
exclusive amplitudes for these three sources are obtained
as real numbers, the relative phase angle � can lead to a
complex coupling in J=c ðc 0Þ ! VP. We note that the EM
amplitudes for each decay modes carry intrinsic signs
deduced in the quark model [16]. Our efforts as follows
are to constrain these amplitudes and present an overall
prescription for J=c ðc 0Þ ! VP.

A. EM transition amplitudes

The EM transition J=c ðc 0Þ ! �� ! VP turns out to be
important in J=c ðc 0Þ ! VP. In particular, it is the domi-
nant contribution to those isospin-violating decay chan-
nels, i.e. J=c ðc 0Þ ! ��, ��0, !�0, and ��0. This
mechanism can be investigated in the vector meson domi-
nance (VMD) model as presented in Refs. [18,19].
In Fig. 1 those three independent electromagnetic tran-

sition processes in the VMD are illustrated. The vertex
couplings can be extracted from the experimental data for
the decay widths of V ! �P (or P ! �V), and P ! ��.
However, since the intermediate photon is off-shell, a form
factor F ðq2Þ ¼ �2

EM=ð�2
EM � q2Þ is adopted for the EM

FIG. 1. The tree level Feynman diagrams of EM transitions in J=c ðc 0Þ ! VP.
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transition amplitudes. The cutoff energy �EM is universal
for both J=c and c 0 decays, and to be determined by
experimental data for those isospin-violating decay chan-
nels. The EM amplitude can thus be expressed as

M EM ¼ Ma þMb þMc

¼
�
e

fV2

gV1�P

MV1

F a þ e

fV1

gV2�P

MV2

F b þ e2

fV1
fV2

� gP��
MP

F c

�
�	
��p

	�ðpÞ
k��ðkÞ�; (3)

where pðkÞ is the four momentum of the initial vector
charmonium (final light vector), and �ðpÞ (�ðkÞ) is its
corresponding polarization vector. In Tables I, II, and III
the EM vertex couplings are extracted with the up-to-date
data from the PDG2010 [4].

B. Short-distance transition amplitudes

The short-distance contribution of strong interaction is
mainly from the c �c annihilation at the wave function origin
associated with hard gluon radiations. This is an SOZI

transition and can be parameterized out in a similar way
as in Ref. [18]. We emphasize the c �c annihilation at the
wave function origin in this process. Thus, the HSR viola-
tion can be regarded as being produced by the non-
negligible light-quark masses in the hadronization process.
The inclusive gluon annihilation part is thus guaranteed to
scale with their lepton pair branching ratio fraction since
the inclusive amplitudes would be controlled by the quark-
onium wave function at the origin [2]. This process dis-
tinguishes from the long-distance transitions via the IML
where the c �c annihilations would occur nonlocally and
probe the charmonium wave function away from the
origin. Such a difference would allow us to treat the short-
and long-distance amplitudes individually and to avoid
double counting between these two mechanisms. A sche-
matic diagram for the short-distance SOZI transitions is
shown in Fig. .
The parametrization of the short-distance amplitudes is

outlined as follows [18]. First, the strength of the non-
strange SOZI process is parameterized as

gJ=c ðc 0Þ ¼ hðq �qÞVðq �qÞPjV0jJ=c ðc 0Þi; (4)

where V0 is the 3g decay potential of the charmonia into
two nonstrange q �q pairs of vectors and pseudoscalars via
SOZI processes. It should be noted that the subscript V and
P here do not mean that the quark-antiquark pairs are
the SU(3) flavor eigenstates of vector and pseudoscalar
mesons. The amplitude gJ=c ðc 0Þ is proportional to the

charmonium wave functions at origin. Thus, it may have
different values for J=c and c 0.
Considering the SU(3) flavor symmetry breaking, which

distinguishes the s quark pair production from the u, d
quarks in the hadronizations, we introduce the SU(3) flavor
symmetry breaking parameter ,

 � hðq�sÞVðs �qÞPjV0jJ=c ðc 0Þi=gJ=c ðc 0Þ
¼ hðs �qÞVðq�sÞPjV0jJ=c ðc 0Þi=gJ=c ðc 0Þ; (5)

where  ¼ 1 is in the SU(3) flavour symmetry limit, while
deviations from unity implies the SU(3) flavor symmetry
breaking. In general, the value of parameter  is around
 ’ f�=fK ¼ 0:838, which provides a guidance for the
SU(3) flavor symmetry breaking effects. For the produc-
tion of two s�s pairs via the SOZI potential, the recognition
of the SU(3) flavor symmetry breaking in the transition is
accordingly

TABLE III. The couplings e=fV � ½3�V!eþe�=ð2�ejpejÞ�1=2
determined by experimental data from PDG2010 [4].

e=fV Values(� 10�2) �totðMeVÞ BRðV ! eþe�Þ
e=f� 6.11 149.1 ð4:72� 0:05Þ � 10�5

e=f! 1.80 8.49 ð7:28� 0:14Þ � 10�5

e=f� 2.25 4.26 ð2:954� 0:03Þ � 10�4

e=fJ=c 2.71 0.0929 ð5:94� 0:06Þ%
e=fc 0 1.62 0.304 ð7:72� 0:17Þ � 10�3

TABLE I. The couplings gV�P � ½12�M2
V�ðV !

�PÞ=jp�j3�1=2 or gV�P � ½4�M2
V�ðP ! �VÞ=jp�j3�1=2 deter-

mined by experimental data from PDG2010 [4].

gV�P Values Branching ratios

g��� 0.381 ð3:00� 0:20Þ � 10�4

g���0 0.295 ð29:3� 0:5Þ%
g�0��0 0.196 ð6:0� 0:8Þ � 10�4

g����� 0.170 ð4:5� 0:5Þ � 10�4

g!�� 0.107 ð4:6� 0:4Þ � 10�4

g!��0 0.101 ð2:75� 0:22Þ%
g!�� 0.545 ð8:28� 0:28Þ%
g��� 0.214 ð1:309� 0:024Þ%
g���0 0.221 ð6:25� 0:21Þ � 10�5

g��� 0.041 ð1:27� 0:06Þ � 10�3

gK���K� 0.226 ð9:9� 0:9Þ � 10�4

gK�0� �K0 0.344 ð2:39� 0:21Þ � 10�3

gJ=c�� 3:31� 10�3 ð1:104� 0:034Þ � 10�3

gJ=c��0 8:04� 10�3 ð5:28� 0:15Þ � 10�3

gJ=c�� 5:64� 10�4 ð3:49þ0:33
�0:30Þ � 10�5

gc 0�� 2:31� 10�4 <2� 10�6

gc 0��0 1:93� 10�3 ð1:21� 0:08Þ � 10�4

gc 0��0 3:534� 10�4 <5:0� 10�6

TABLE II. The couplings gP�� � ð32��ðP ! ��Þ=MPÞ1=2
determined by experimental data from PDG2010 [4].

gP�� Values �totðkeVÞ Branching ratios

g��� 2:40� 10�3 7:86� 10�3 ð98:823� 0:034Þ%
g��� 9:68� 10�3 1.3 ð39:31� 0:20Þ%
g�0�� 2:13� 10�2 194 ð2:22� 0:08Þ%
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2 ¼ hðs�sÞVðs�sÞPjV0jJ=c ðc 0Þi=gJ=c ðc 0Þ: (6)

For the J=c and c 0 decays into isoscalar final states,
such as !�, !�0, �� and ��0, the DOZI transition as
illustrated by Fig. may also contribute. Although it is not
apparent that the DOZI transition can be classified as a
short-distance process, we can parameterized it out as
follows:

r � hðq �qÞVðq �qÞPjV1jJ=c ðc 0Þi=gJ=c ðc 0Þ; (7)

where V1 denotes the DOZI potential and a small value
jrj 	 1 would suggest a short-distance nature of this pro-
cess. We mention that the DOZI process topologically does
not double count the long-distance IML transitions to be
defined in the next subsection.

To take into account the size effects of the initial- and
final-state mesons, a commonly adopted form factor is
included, i.e.

F ðPÞ � jPjl expð�P2=16�2Þ; (8)

where jPj is the three-vector momentum of the final-state
mesons in the J=c ðc 0Þ rest frame, and l is the final-state
relative orbital angular momentum quantum number. We
adopt � ¼ 0:5 GeV, which is the same as Refs. [30–32].
At leading order the decays of J=c ðc 0Þ ! VP are via
P-wave, i.e. l ¼ 1.
The transition amplitudes for J=c ðc 0Þ ! VP via the

short-distance SOZI transitions can then be expressed as

MSð�0�0Þ ¼ MSð�þ��Þ ¼ MSð���þÞ ¼ gJ=c ðc 0ÞF ðPÞ;
MSðK�þK�Þ ¼ MSðK��KþÞ ¼ MSðK�0 �K0Þ ¼ MSð �K�0K0Þ ¼ gJ=c ðc 0ÞF ðPÞ;

MSð!�Þ ¼ X�gJ=c ðc 0Þð1þ 2rÞF ðPÞ þ Y�

ffiffiffi
2

p
rgJ=c ðc 0ÞF ðPÞ;

MSð!�0Þ ¼ X�0gJ=c ðc 0Þð1þ 2rÞF ðPÞ þ Y�0
ffiffiffi
2

p
rgJ=c ðc 0ÞF ðPÞ;

MSð��Þ ¼ X�

ffiffiffi
2

p
rgJ=c ðc 0ÞF ðPÞ þ Y�gJ=c ðc 0Þð1þ rÞ2F ðPÞ;

MSð��0Þ ¼ X�0
ffiffiffi
2

p
rgJ=c ðc 0ÞF ðPÞ þ Y�0gJ=c ðc 0Þð1þ rÞ2F ðPÞ; (9)

where X�ðX�0 Þ and Y�ðY�0 Þ are mixing amplitudes between
ðu �uþ d �dÞ= ffiffiffi

2
p

and s�s components within the � and �0
wave functions

� ¼ X�ju �uþ d �di= ffiffiffi
2

p þ Y�js�si;
�0 ¼ X�0 ju �uþ d �di= ffiffiffi

2
p þ Y�0 js�si: (10)

For the unitary 2� 2 mixing, we have X� ¼ Y�0 ¼ cos�P

and X�0 ¼ �Y� ¼ sin�P with �P � �P þ arctanð ffiffiffi
2

p Þ.
The pseudoscalar mixing angle �P is in a range
of �22� � �13�.

For the decays of J=c ðc 0Þ ! �� and K� �K þ c:c:, the
short-distance amplitudes are rather simple as listed above.
For the decays into isoscalar final states, the situation
would be complicated by the DOZI process and glueball
mixing. There have been a lot of studies of the glueball
mixing in the � and �0 wave function [18,33–35], which
can contribute to the isoscalar decay channels. However, in
this analysis we do not consider the glueball mixing effects
since the glueball components within � and �0 are rather
small and need a delicate consideration. For the purpose of
clarifying the role played by the short-distance and long-
distance transition mechanisms in J=c ðc 0Þ ! VP, we can
leave the study of the glueball mixing effects to be con-
sidered in a differently motivated work [33].

C. Long-distance transition amplitudes via IML

The IML transitions as a nonperturbative process seem
to be a natural mechanism to evade the OZI rule and HSR
in the charmonium decays [24,25,27,28]. The relevant
effective Lagrangians for the charmonium couplings to
the charmed mesons are as the following [36,37]:

L ¼ i
g2
2

Tr½Rc �c
�H2i�

	@
,
	
�H1i� þ H:c:; (11)

where the S-wave J=c and c 0 charmonium states are
expressed as

Rc �c ¼
�
1þ 6v
2

�
ðc 	�	 � �c�5Þ

�
1� 6v
2

�
: (12)

The charmed and anticharmed meson triplet read

H1i ¼
�
1þ 6v
2

�
½D�	

i �	 �Di�5�; (13)

H2i ¼ ½ �D�	
i �	 � �Di�5�

�
1� 6v
2

�
; (14)

where D and D� denote the pseudoscalar and vector

charmed meson fields, respectively, i.e. Dð�Þ ¼
ðD0ð�Þ; Dþð�Þ; Dþð�Þ

s Þ.
Consequently, the Lagrangian for the S-wave J=c and

c 0 is
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Lc ¼ igcD�D� ðg	�g
� � g	�g
� þ g	
g��Þc 	D�
@
,�

D��y

� igcDDc 	D@
,	

Dy � gcD�D"	
��@	c 
ðD�
�@
,
�Dy þD@

,
�D

�y
� Þ; (15)

The Lagrangians relevant to the light vector and pseudoscalar mesons are,

L ¼ �igD�DP ðDi@	P ijD
�jy
	 �D�i

	@
	P ijDjyÞ þ 1

2gD�D�P"	
��D
�	
i @
P ij@

,�
D��y

j � igDDVDy
i @
,
	DjðV	Þij

� 2fD�DV �	
��ð@	V
ÞijðDy
i @
,�

D��j �D��y
i @

,�
DjÞ þ igD�D�VD�
y

i @	D
�j

 ðV	Þij

þ 4ifD�D�VD�y
i	ð@	V 
 � @
V	ÞijD�j


 ; (16)

with the convention "0123 ¼ 1, where P and V	 are 3� 3 matrices for the octet pseudoscalar and nonet vector mesons,
respectively,

P ¼

�0ffiffi
2

p þ �ffiffi
6

p �þ Kþ

�� � �0ffiffi
2

p þ �ffiffi
6

p K0

K� �K0 �
ffiffi
2
3

q
�

0
BBBBB@

1
CCCCCA; V ¼

�0ffiffi
2

p þ !ffiffi
2

p �þ K�þ

�� � �0ffiffi
2

p þ !ffiffi
2

p K�0

K�� �K�0 �

0
BBBB@

1
CCCCA:

Based on the above Lagrangians, the explicit amplitudes in Fig. 3 can be obtained

MD �DD� ¼ �4gcDDgD�DPfD�DV �c 
 ðp2 � p1Þ�	
��p
	
2 �


p�
3 q

�;

MD �D�D� ¼ �gcDD�gD�DP�	
���
	
cp

�
1p

�
2 q

�

�
�g�� þ p3�p3�

m2
D�

�
ðgD�D�Vg
�ðp2 � p3Þ 
 �� 4fD�D�V k��
Þ;

MD� �DD� ¼ �4gcD�DgD�D�PfD�D�V �	����
�����abc��

	
cp

�
1p

�
2p1�p3�p

a
2�

bpc
3;

MD� �DD ¼ �gcD�DgD�DPgDDV �	����
	
cp

�
1p

�
2 q

�ðp2 � p3Þ 
 �;
MD�D�D ¼ �gcD�D�gD�DPfD�DV ��	
��p

	
3 �


p�
2 q

�

�
�g�� þ p2�p2�

m2
D�

�

� ð��c ðp1 � p2Þ� � ðp1 � p2Þ 
 �g�� þ ��c ðp1 � p2Þ�Þ;
MD� �D�D� ¼ gcD�D�gD�D�P�	
���p



1p

�
3 ðgD�D�Vg��ðp2 � p3Þ 
 �þ 4fD�D�V k���Þ

�
�
�g�� þ p2�p2�

m2
D�

�
ð�	c ðp1 � p2Þ� � � 
 ðp1 � p2Þg	� þ �ðp1 � p2Þ	Þ; (17)

where p, k, q are the four-vector momenta of the incoming
charmonium, outgoing light vector, outgoing pseudoscalar,
respectively, and p1, p2, p3 are the four-vector momenta of
the intermediate charmed mesons as denoted in Fig. 3(a).
The subscriptions in the amplitudes denote the intermedi-
ate charmed mesons in the loops, and we have omitted the
denominators, form factors, and integral measurementRðd4p3Þ=ð2�Þ4 to keep the formulas short. The following
couplings are adopted in the numerical calculations
[24,25,27,28]:

gcDD¼2g2
ffiffiffiffiffiffiffiffi
mc

p
mD; gcDD� ¼gcDD

~MD
;

gcD�D� ¼gcDD�

ffiffiffiffiffiffiffiffiffiffi
mD�

mD

s
mD� ; ~MD¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDmD�
p

; (18)

where g2 ¼ ð ffiffiffiffiffiffiffiffi
mc

p Þ=ð2mDfc Þ, and mc and fc ¼
405 MeV are the mass and decay constant of J=c . The

relative coupling strength of c 0 to J=c , i.e.
gc 0D �D=gJ=cD �D ¼ 1, is included as a input. The light
meson couplings to the charmed mesons are [38]

gD�DP ¼ 2g

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDmD�

p
; gD�D�P ¼ gD�DPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDm�
D

q ;

gDDV ¼gD�D�V ¼�0gVffiffiffi
2

p ; fD�DV ¼fD�D�V
mD�

¼�gVffiffiffi
2

p ;

gV ¼m�

f�
; (19)

where g ¼ 0:59, �0 ¼ 0:9, � ¼ 0:56 GeV�1, and f� ¼
132 MeV are adopted.
The explicit amplitudes with different quantum number

exchanges in the loops have been given in Eq. (17). For
each decay mode the amplitude is dependent on the flavor
component of the final-state light mesons. Thus, it is
convenient to express the flavor-dependent amplitudes as
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M�� ¼ X�
1
2ð½D0 �D0D0� � ½DþDþD��Þ þ c:c:;

M��0 ¼ X�01
2ð½D0 �D0D0� � ½DþDþD��Þ þ c:c:;

M!�0 ¼ 1
2ð½D0 �D0D0� � ½DþDþD��Þ þ c:c:;

M��0 ¼ 0;

M�0�0 ¼ 1
2ð½D0 �D0D0� þ ½DþDþD��Þ þ c:c:;

M�þ�� ¼ ½D0 �D0Dþ þD�Dþ �D0�;
M!� ¼ X�

1
2ð½D0 �D0D0� þ ½DþDþD��Þ þ c:c:;

M!�0 ¼ X�01
2ð½D0 �D0D0� þ ½DþDþD��Þ þ c:c:;

M�� ¼ Y�½Dþ
s D�

s Dþ
s � þ c:c:;

M��0 ¼ Y�0 ½Dþ
s D�

s Dþ
s � þ c:c:;

MK�þK� ¼ ½D�
s Dþ

s
�D0� þ ½D0 �D0Dþ

s �;
MK�0 �K0 ¼ ½D�

s Dþ
s D�� þ ½DþD�Dþ

s �;

(20)

where X� (X�0) and Y� (Y�0) have been defined earlier, and

the amplitudes of ���þ, K��Kþ and �K�0K0 have been
implicated by their conjugation channels listed above.
Note that the destructive sign between the charged and
neutral meson loop amplitudes in those isospin-violating
channels, such as ��, ��0, !�0. The IML amplitudes for
the ��0 channel vanish in the SU(3) symmetry limit.

Since the IML integrals are ultraviolet divergent, an
empirical trimonopole form factor is introduced,

F ¼ Y
i

�2
i �m2

i

�2
i � p2

i

; (21)

where mi is the mass of the exchanged particles and pi is
the corresponding four-vector momentum. As usual, �i is
parameterized into �i ¼ mi þ ��QCD with �QCD ¼
0:22 GeV denoting the typical low energy scale of QCD.

III. MODEL RESULTS

A. Analyzing scheme

As mentioned earlier, all the underlying mechanisms in
the VVP transitions would just contribute to the effective
coupling constant. This feature, on the one hand, can
provide advantages for disentangling different mecha-
nisms, but on the other hand, may bring difficulties to the
numerical fittings since the final results would only depend
on the modulus of the summed amplitudes. Fortunately, the
dynamic features of those different transition mechanisms
as described in the previous section are useful for working
out the parameter fitting scheme and disentangling the
underlying mechanisms step by step. In Fig. 4, we illustrate
the relation between the EM and strong transition ampli-
tudes (including the short- and long-distance ones) by the
addition of vectors in the complex plane. Our strategy of
determining the amplitudes of those three transition pro-
cesses is as follows:

FIG. 3. Schematic diagrams for the long-distance IML transitions in J=c ðc 0Þ ! VP. In this case, the c and �c annihilate by
multisoft-gluon radiations and can be described by intermediate charmed meson exchanges. The notations areD ¼ ðD0; Dþ; Dþ

s Þ and
�D ¼ ð �D0; D�; D�

s Þ. The light flavors of the charmed mesons are implicated by the final-state light mesons as shown in Eq. (20).

FIG. 4. Decomposition of the transition amplitudes for
J=c ðc 0Þ ! VP in a complex plane. The EM amplitude is
assigned to point to the real axis while the short-distance
amplitude carries a trivial sign difference to the EM one. The
long-distance IML amplitude carries a phase due to hadronic
effects. The final summed amplitude Mtot is to be compared
with the experimental data.
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(i) We treat the EM amplitude of each decay channel as
a fixed vector in the complex plane pointing to the
real axis as shown by Fig. 4.
The EM amplitudes can be independently fixed by
the data for those isospin-violating channels, i.e.
J=c ðc 0Þ ! ��, ��0, !�0 and ��0. The same pa-
rameter �EM ¼ 0:542 GeV are then adopted for
other decay channels as a reliable estimate of the
EM amplitudes in the VMD model [18].
It should be noted that as discussed in Ref. [18], the
branching ratio fractions between c 0 and J=c de-
cays into these isospin-violating channels are ap-
proximately within the range of 12% rule. This is
an indication that for a single mechanism-dominant
process, the branching ratio fractions still serves as a
probe for the wave function at the origin. In another
words, if other mechanisms play a role, interferences
among those processes would break down the pQCD
relation. Such a scenario would be a natural expla-
nation for the deviations observed in other channels.
For instance, in the �� channel the interferences
between the EM and strong amplitudes would lead
to significant deviations from the 12% rule. Our
focus in this work is to understand why the strong
amplitude becomes compatible with the EM one in
such an HSR-violating channel.

(ii) For the strong amplitudes including the short-
distance and long-distance IML amplitudes, it is
reasonable to impose that the EM and short-distance
amplitude have a trivial relative phase since both
probe the charmonium wave functions at the origin
and both are real numbers. Moreover, for the short-
distance SOZI amplitudes, we impose a constraint
to require that their exclusive contributions should
respect the 12% rule, i.e. the magnitude of the short-
distance amplitudes can be treated as an input.
Equation (2) can be rewritten as

M tot � MEM þ ei�Mstrong; (22)

where Mstrong is the amplitude for the total strong

transitions with a relative phase angle � relative to
the EM one. By an overall fit of the experimental
data [18], the values of Mstrong and � can be fixed

for each channel. Then, with the fixed magnitude
and direction for the EM and short-distance ampli-
tudes, the decomposition of Eq. (22) will allow us to
determine the magnitude and direction of the long-
distance amplitude as shown by Fig. 4.
We note that the overall fit of phase angle � in
Ref. [18] suggests that all the VP channels in J=c
or c 0 decays share the same value of �. A conse-
quence of such an implication is a constraint on the
magnitude and direction for the long-distance am-
plitudes in each VP channel. What we are going to
examine in the following part is the range of the

form factor parameter � in the meson loops,
namely, whether all the VP channels share the
same value of � at all. The confirmation of such a
scenario should be evidence for the important con-
tributions from the IML in J=c and c 0 decays.
Following the above procedure, we first consider
�� and K� �K þ c:c: decay channels. Since the
final-state light mesons in these channels carry non-
zero isospin, the short-distance transitions can only
occur via the SOZI process while the DOZI process
is forbidden. The analysis of these channels will
then be able to expose the interfering feature of
the IML.

B. Parameters and results

The parameters to appear in the analysis include the
following: (i) The universal EM cutoff energy �EM ¼
0:542 GeV determined by the isospin-violating
channels. (ii) The short-distance transition strength gJ=c ¼
1:75� 10�2 in the J=c decay. This is an input for the
short-distance amplitudes. It determines the short-distance
transition strength gc 0 ¼ 1:25� 10�2. Therefore, the ex-

clusive contributions from the short-distance transitions
still respect the 12% rule. (iii) The form factor parameters
�J=c and �c 0 for the IML transitions which determine the

long-distance coupling strengths. (iv) The phase angles
�J=c and �c 0 between the EM and strong amplitudes in

the J=c and c 0 decays, respectively, as defined in Eq. (22).
Other implicated parameters such as the SU(3) flavor

symmetry breaking parameter  ¼ f�=fK ’ 0:838, vertex
coupling constants for the IML in Sec. II C, and flavor
mixing angle �P ¼ �22� for � and �0, in principle, have
been determined by independent processes.
In Table IV, parameters adopted in the calculations are

listed. As described in the above, some of those are treated
as input, while the three parameters, i.e. the IML form
factor parameter �, phase angle �, and SU(3) flavor sym-
metry parameter , are fitted by the experimental data for
J=c and c 0 ! �� and K� �K þ c:c:, respectively. When
the isospin zero decay channels are included, such as J=c
and c 0 ! !�,!�0, etc., the DOZI parameter r can also be
fitted. We also list the �2 for the J=c and c 0 decays,
respectively. Briefly speaking, with the small number of
parameters, we can achieve a reasonable description of the

TABLE IV. Parameters fitted, respectively, by experimental
data for J=c and c 0 ! VP in our analysis scheme.

Parameter J=c c 0

 0:71� 0:017 0:92� 0:053
r �0:201� 0:006 �0:097� 0:024
� 45:0� � 7:0� 174:6� � 2:9�
� 0:09� 0:03 0:35� 0:01
�2 52.2 9.17
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overall experimental data, and the parameter uncertainties
have been well constrained. The relatively large �2 value
for the J=c decays are due to the relatively small experi-
mental errors in this channel. One notices that the value of
�J=c has relatively large uncertainties in comparison with

that of the �c 0 . This is because the IML contributions are

relatively small in the J=c decays, and insensitive to the
form factor parameter.

1. Isospin nonzero channels

In Table V, the effective couplings extracted from differ-
ent transition mechanisms in J=c and c 0 ! �� and
K� �K þ c:c: are listed. Comparing the coupling gshort in
these two channels, one notices that the SU(3) flavor
symmetry breaking is at the scale of  ¼ 0:71� 0:92
which is compatible with  ¼ f�=fK ’ 0:838. It shows
that a small long-distance contribution from the IML will
optimize the description of the data. The fitted form factor
parameter �J=c ’ 0:09 is adopted for all exclusive decay

channels, which suggests a universal role played by the
IML in J=c ! VP. The small contribution from the IML
is understandable since the mass of J=c is much below the
open charm threshold. Therefore, it does not experience
the long-distance IML effects in the transition.

In J=c ! VP, the relatively small EM amplitudes im-
plies insignificant interferences between the EM and strong
transition amplitudes. This feature is indicated by the
relatively small charge asymmetries between J=c !
K�þK� þ c:c: and J=c ! K�0 �K0 þ c:c.

For c 0 ! VP, the short-distance coupling strength is
determined by the 12% rule relation. A proper description
of the data leads to the determination of the long-distance
IML amplitudes as listed in Table V. Since the mass of the
c 0 is much closer to the open charm threshold, the long-
distance IML amplitudes become sizeable and play an
important role in c 0 ! VP. Given that the IML amplitudes
are compatible with the short-distance ones in magnitude,
the destructive interferences between the short and long-
distance strong amplitudes have thus significantly lowered
the strong transition amplitudes to be compatible with the
EM ones. As a consequence, the further interferences with
the EM amplitudes lead to the significant charge asymme-

tries between the branching ratios of c 0 ! K�0 �K0 þ c:c:
and c 0 ! K�þK� þ c:c.

2. Isospin zero channels

For the isospin zero decay channels, such as J=c ðc 0Þ !
!�, !�0, ��, and ��0, the DOZI transitions may con-
tribute and two additional parameters have to be included
[18]. One is the �-�0 mixing angle �P defined in Eq. (10)
and the other is the DOZI coupling strength r defined in
Eq. (7). We adopt the commonly used value �P ¼ 32:7� as
an input, while treat r as a free parameter to be determined
by the isospin zero decay channels. Meanwhile, all the
other parameters determined in J=c ðc 0Þ ! �� and
K� �K þ c:c: are fixed.
Eventually, it cannot be regarded as an overall fitting,

and we do not expect a perfect description of the data for
J=c ðc 0Þ ! !�, !�0, ��, and ��0. This is mainly be-
cause the involvement of the DOZI mechanism and pos-
sible glueball mixing in the isospin zero channels should be
considered in a more delicate way. Therefore, we only
expect that those isospin zero channels to be described to
the correct order of magnitude.
In Table VI, the model calculations of the branching

ratios of J=c and c 0 ! VP are listed in comparison with
the experimental values. The exclusive contributions from
the EM, short-distance and long-distance IML transitions,
and the combined strong contributions are also shown. The
following points can be learned:
(i) For the isospin-violating channels, i.e. J=c ðc 0Þ !

��, ��0, etc., the charged and neutral meson loops
would cancel out exactly in the isospin symmetry
limit. In other words, because of the isospin symme-
try breaking, the mass difference between the u and

d quark leads to mð�Þ�
D � mð�Þ0

D . As a result, the

charged and neutral meson loops cannot completely
cancel out, and the residue part will contribute to the
isospin-violating amplitudes. Interestingly, we find
that contributions from such a mechanism is much
smaller than the EM transitions, which makes the
isospin-violating channels ideal for the test of the
12% rule. In Table VII, the branching ratio fraction R
is listed for all the VP channels. One can see that the

TABLE V. The effective couplings (in unit of GeV�1) extracted from different transition
mechanisms in J=c ðc 0Þ ! �� and K� �K þ c:c.

J=c ! VP gEM gshort glong jgstrongj jgtotj
�0�0 �2:26� 10�4 �2:36� 10�3 �1:60� 10�5 2:37� 10�3 2:60� 10�3

K�þK� �2:17� 10�4 �1:78� 10�3 �1:45� 10�5 1:79� 10�3 2:0� 10�3

K�0 �K0 3:28� 10�4 �1:78� 10�3 �1:45� 10�5 1:79� 10�3 1:46� 10�3

c 0 ! VP
�0�0 �9:58� 10�5 �1:11� 10�3 �1:29� 10�3 2:11� 10�4 1:43� 10�4

K�þK� �9:07� 10�5 �1:07� 10�3 �1:25� 10�3 2:07� 10�4 1:41� 10�4

K�0 �K0 1:37� 10�4 �1:07� 10�3 �1:28� 10�3 2:33� 10�4 3:58� 10�4
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12% rule is reasonably respected in those isospin-
violating channels.

(ii) For the final-state isospin nonzero channels, the
systematic feature is that the long-distance ampli-
tudes in J=c ! �� and K� �K þ c:c:, are negligibly
small and the strong amplitudes are dominated by
the short-distance ones. In contrast, the strong am-
plitudes are suppressed in c 0 ! �� and K� �K þ
c:c: because of the destructive cancellations be-
tween the short and long-distance amplitudes and
become compatible with the EM ones. The observed
branching ratio fractions are then further deviated
from the 12% rule by the interferences between the
EM and suppressed strong transition amplitudes in
the c 0 decays. We have shown that the suppression

of the strong amplitudes is due to the open charm
threshold effects via the IML transitions. The
branching ratio fraction R is also listed in
Table VII to compare with the data. Moreover,
with the exclusive short-distance transition satisfy-
ing the 12% rule in the �� channel as a condition,
other exclusive short-distance contributions also
satisfy it fairly well.

(iii) For the final-state isospin zero channels, i.e.
J=c ðc 0Þ ! !� and !�0, etc., the experimental
data have relatively large uncertainties and can be
accounted for approximately to the same order of
magnitude. Similar to the study of Ref. [18], the
DOZI contributions are found necessary. In this
analysis we do not consider the glueball mixing

TABLE VII. The branching ratio fraction R ¼ BRðc 0 ! VPÞ=BRðJ=c ! VPÞ given by our model (total) and the exclusive short-
distance transitions. For the isospin-violating channels, the ratios are dominated by the EM transitions. The center dots indicated the
transition is either absent or the data are not available. The experimental ratios are listed as a comparison.

VP mode (%) �� ��0 !�0 ��0 �0�0 �� K�þK� þ c:c. K�0 �K0 þ c:c:. !� !�0 �� ��0

Short distance . . . . . . . . . . . . 11.98 12.0 20.92 20.96 18.41 62.87 23.13 89.37

Total 10.72 10.80 12.03 10.27 0.17 0.18 0.29 3.45 1.18 20.89 0.24 64.65

Experiment 7:40

�16:50

5:69

�41:38

3:0

�6:75

. . . . . . 0:11

�0:29

0:19

�0:52

1:89

�3:16

<0:63 5:42

�35:40

2:41

�5:67

3:19

�14:24

TABLE VI. Theoretical results for the branching ratios of J=c ðc 0Þ ! VP calculated in our model. The experimental data are from
PDG2010 [4].

BRðJ=c ! VPÞ EM Short distance Long distance Strong Total Experimental data

�� 1:81� 10�4 0 2:34� 10�12 2:34� 10�12 1:81� 10�4 ð1:93� 0:23Þ � 10�4

��0 1:37� 10�4 0 2:21� 10�12 2:21� 10�12 1:37� 10�4 ð1:05� 0:18Þ � 10�4

!�0 3:1� 10�4 0 2:38� 10�12 2:38� 10�12 3:10� 10�4 ð4:5� 0:5Þ � 10�4

��0 9:52� 10�7 0 0 0 9:52� 10�7 <6:4� 10�6

�0�0 4:44� 10�5 4:85� 10�3 2:24� 10�7 4:89� 10�3 5:87� 10�3 ð5:6� 0:7Þ � 10�3

�� 1:06� 10�4 1:45� 10�2 6:71� 10�7 1:47� 10�2 1:73� 10�2 ð1:69� 0:15Þ � 10�2

K�þK� þ c:c: 6:97� 10�5 4:69� 10�3 3:14� 10�7 4:74� 10�3 5:96� 10�3 ð5:12� 0:3Þ � 10�3

K�0 �K0 þ c:c: 1:59� 10�4 4:68� 10�3 3:11� 10�7 4:73� 10�3 3:16� 10�3 ð4:39� 0:31Þ � 10�3

!� 1:4� 10�5 1:76� 10�3 1:50� 10�7 1:78� 10�3 2:11� 10�3 ð1:74� 0:20Þ � 10�3

!�0 1:4� 10�5 9:91� 10�5 5:42� 10�8 1:02� 10�4 1:92� 10�4 ð1:82� 0:21Þ � 10�4

�� 2:35� 10�5 6:70� 10�4 3:22� 10�8 6:76� 10�4 9:52� 10�4 ð7:5� 0:8Þ � 10�4

��0 2:10� 10�5 2:07� 10�4 6:45� 10�8 2:12� 10�4 9:93� 10�5 ð4:0� 0:7Þ � 10�4

BRðc 0 ! VPÞ
�� 1:42� 10�5 0 4:13� 10�7 4:13� 10�7 1:94� 10�5 ð2:2� 0:6Þ � 10�5

��0 1:04� 10�5 0 3:89� 10�7 3:89� 10�7 1:48� 10�5 ð1:9þ1:7�1:2Þ � 10�5

!�0 2:98� 10�5 0 4:25� 10�7 4:25� 10�7 3:73� 10�5 ð2:1� 0:6Þ � 10�5

��0 9:78� 10�8 0 0 0 9:78� 10�8 <4:0� 10�6

�0�0 4:36� 10�6 5:81� 10�4 7:85� 10�4 2:12� 10�5 9:72� 10�6 ***

�� 1:02� 10�5 1:74� 10�3 2:36� 10�3 6:36� 10�5 3:20� 10�5 ð3:2� 1:2Þ � 10�5

K�þK� þ c:c: 7:03� 10�6 9:81� 10�4 1:33� 10�3 3:64� 10�5 1:70� 10�5 ð1:7þ0:8
�0:7Þ � 10�5

K�0 �K0 þ c:c: 1:61� 10�5 9:81� 10�4 1:39� 10�3 4:61� 10�5 1:09� 10�4 ð1:09� 0:20Þ � 10�4

!� 1:10� 10�6 3:24� 10�4 5:57� 10�4 3:52� 10�5 2:48� 10�5 <1:1� 10�5

!�0 1:12� 10�6 6:23� 10�5 2:31� 10�4 5:43� 10�5 4:01� 10�5 ð3:2þ2:5
�2:1Þ � 10�5

�� 2:26� 10�6 1:55� 10�4 1:73� 10�4 1:92� 10�6 2:25� 10�6 ð2:8þ1:0
�0:8Þ � 10�5

��0 2:22� 10�6 1:85� 10�4 3:99� 10�4 4:33� 10�5 6:42� 10�5 ð3:1� 1:6Þ � 10�5
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effects in the � and �0 wave functions since even
though there might be glueball components within
the � and �0; uncertainties caused by them may not
be as large as other sources such as the DOZI
contributions. In these processes, the EM ampli-
tudes are relatively smaller than the strong ones,
but the interferences among those strong transition
amplitudes turn out to be sensitive. More delicate
treatment for those isospin zero channels are
needed in further studies. One notices that the
branching ratio fraction R can be reasonably ac-
counted for except for the channels involving �0.
This might be an indication that additional mecha-
nisms should be considered.

IV. SUMMARY

By systematically analyzing the transition mechanisms
for J=c and c 0 ! VP, we have shown that the long-
distance IML transitions are crucial for our understanding
of the long-standing �� puzzle. Since the mass of c 0 is
close to the open charm threshold, its decays into VP are
affected significantly via the IML transitions. In particular,
the long-distance IML transitions provide a mechanism to
evade the pQCD HSR and their destructive interferences
with the short-distance amplitudes in the c 0 decays cause
apparent deviations from the 12% rule. The IML transition
turns out to be a rather general nonperturbative mechanism
in the charmonium energy region. Our analysis suggests
that this mechanism should be present in all the decay
modes. The same coincident cancellation between the
short- and long-distance amplitudes also causes large

charge asymmetries between c 0 ! K�þK� þ c:c: and
K�0 �K0 þ c:c.
It should be addressed that the open charm threshold

effects via the IMLs can also contribute to the process of
c ð3770Þ ! VP. As shown in Refs. [24,39], the IML
mechanism can be a natural explanation for the sizeable
c ð3770Þ non-D �D decay branching ratios observed in ex-
periment [40–44].
As a manifestation of the open charm threshold effects,

the IML mechanism may also play an important role in
other decay modes, such as J=c ðc 0Þ ! VS, VT, PP, etc.
As the spin partners of J=c ðc 0Þ, the study of the ratio of
BRð�0

c ! VVÞ=BRð�c ! VVÞ should also be useful for
clarifying the role played by the IML and provide some
insights into the long-standing �� puzzle. Such a process
has been investigated in Ref. [25] and recently updated in
Ref. [26]. We expect that with the help of precise mea-
surements of various decay modes at BESIII, the IML
mechanism can be established as an important nonpertur-
bative dynamics in the charmonium energy region.
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