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Multijet cross sections at the LHC and Tevatron are sensitive to several distinct kinematic energy scales.

When measuring the dijet invariant mass mjj between two signal jets produced in association with other

jets or weak bosons, mjj will typically be much smaller than the total partonic center-of-mass energy Q,

but larger than the individual jet masses m, such that there can be a hierarchy of scales m � mjj � Q.

This situation arises in many new-physics analyses at the LHC, where the invariant mass between jets is

used to gain access to the masses of new-physics particles in a decay chain. At present, the logarithms

arising from such a hierarchy of kinematic scales can only be summed at the leading-logarithmic level

provided by parton-shower programs. We construct an effective field theory, SCETþ, which is an

extension of soft-collinear effective theory that applies to this situation of hierarchical jets. It allows

for a rigorous separation of different scales in a multiscale soft function and for a systematic resummation

of logarithms of both mjj=Q and m=Q. As an explicit example, we consider the invariant mass spectrum

of the two closest jets in eþe� ! 3 jets. We also give the generalization to pp ! N jets plus leptons

relevant for the LHC.
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I. INTRODUCTION

A detailed understanding of events with several hadronic
jets in the final state is of central importance at the LHC
and the Tevatron. This is because the standard model and
most of its extensions produce energetic partons in the
underlying short-distance processes, which appear as col-
limated jets of energetic hadrons in the detectors.

Multijet processes are inherently multiscale problems.
For generic high-pT jets, there are at least three relevant
energy scales present: the pT or total energy of a jet, which
is of order the partonic center-of-mass energy Q of the
collision, the invariant mass m of a jet, which is typically
much smaller than Q, and �QCD, the scale of nonperturba-

tive physics in the strong interaction. To separately treat
the physics at these different energy scales one has to
rely on factorization theorems. With a factorization theo-
rem in hand, the long-distance physics sensitive to �QCD

can be determined from experimental data, while short-
distance contributions can be obtained through perturba-
tive calculations.

For most multijet events, the jets will not be equally
separated and they will not have equal energy. Instead there
will be some hierarchy in the invariant masses between jets
or the jet energies due to the soft and collinear enhance-
ment of emissions in QCD. Depending on the measure-
ment, the cuts imposed to enhance the sensitivity to physics
beyond the standard model introduce sensitivity to these
additional kinematic scales. For example, requiring a large
pT for the leading signal jet(s) and a smaller pT for addi-
tional jets introduces sensitivity to a new kinematic scale,
namely, the pT of the subleading jet. Another example is
the measurement of the dijet invariant mass of jets, which

is used to identify new particles decaying to jets, a special
case being the identification of boosted heavy particles by
measuring the invariant mass of two subjets within a larger
jet. As a final example, consider the CDF measurement of
W þ 2 jets [1], which shows an excess in the invariant
mass of the two jets around mjj � 150 GeV. The excess is

dominated by back-to-back jets, where the subleading jet is
rather soft with pT � 40 GeV, whereas the total invariant
mass of the Wjj system is of order Q� 300 GeV. The
challenges in this type of measurement are clear: the recent
D0 measurement [2] finds no evidence for an excess. A
precise theoretical understanding of multijet processes
with multiple scales is clearly valuable.
Such configurations with multiple different kinematic

scales present are not necessarily well described in fixed-
order perturbation theory. The sensitivity to different scales
can give rise to Sudakov double logarithms of the ratio of
those scales, such as ln2ðmjj=QÞ or ln2ðpT=mjjÞ, at each
order in perturbation theory. If the scales are widely
separated, the logarithmic terms become the dominant
contribution and the convergence of fixed-order perturba-
tion theory deteriorates. A well-behaved perturbative ex-
pansion that allows for reliable predictions is obtained by
performing a resummation of the logarithmic terms to all
orders in perturbation theory. At present, the resummation
of such kinematic Sudakov logarithms in exclusive
multijet processes can only be carried out at the leading-
logarithmic level using parton-shower Monte Carlos.
In this paper, we consider exclusive jet production in

the kinematical situation where all jets have comparable
energy �Q and two of the jets become close, as illus-
trated in Fig. 1(b) for the case of three jets. We are
interested in the dijet invariant mass mjj between the
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two close jets, which is much smaller than the other dijet
invariant masses of order Q, but much larger than the
invariant mass m of the individual jets, i.e., there is a
hierarchy of scales m � mjj � Q. In this case, the cross

section contains two types of logarithms, those related to
the mass of the jets, ln2ðm=QÞ, as well as kinematic
logarithms ln2ðmjj=QÞ. For mjj �Q, all jets are well

separated, as in Fig. 1(a), and the jet-mass logarithms
ln2ðm=QÞ in the exclusive jet cross section can be re-
summed [3–7] using the SCET [8–11].

In this paper, we construct a new effective theory,
SCETþ, which is valid in the limit m � mjj � Q. The

added complication in this case arises from the fact that
one needs to separate the soft radiation within a given jet
from the radiation between the two close jets, giving rise to
two different scales. In regular SCET, both of these pro-
cesses are described by the same soft function, which
therefore contains multiple scales. Soft functions with
multiple scales have been observed in SCET before, and
it has been suggested that this requires one to ‘‘refactorize’’
the soft function into more fundamental pieces depending
on only a single scale. This was first pointed out in Ref. [5].
Here we explicitly construct for the first time an effective
theory that accomplishes a refactorization of the soft sector
and separates different scales in a soft function. Using
SCETþ, we derive the factorization of multijet processes
in the limit m � mjj � Q, where each function in the

factorization theorem depends only on a single scale. The
renormalization group evolution in SCETþ then allows us
to sum all large logarithms arising from this scale hier-
archy, including those in the soft sector.

It is worthwhile to note that the multijet events we
consider in this paper are part of a broader class of kine-
matic configurations that give rise to multiple disparate
scales. The case we address here of small dijet invariant
masses belongs to the class of configurations for which the
kinematics of the final-state jets introduces additional kine-
matic scales. In our case this gives rise to large logarithms
of ratios of dijet masses lnðmjj=QÞ. Other configurations

which give rise to large kinematic logarithms, such as those
with a hierarchy of jet pTs, may require a different
effective-theory treatment, which we leave to future
work. These kinematic logarithms are in contrast to so-
called ‘‘nonglobal’’ observables [12], which introduce ad-
ditional scales by imposing parametrically different cuts in
different phase space regions. This corresponds, for ex-
ample, to a hierarchy between individual jet masses mi �
mj, giving rise to logarithms of the form lnðmi=mjÞ. The
structure of such logarithms has been recently explored
using the SCET in Refs. [13,14].
In the next section, we explain the physical picture of the

effective-theory setup. In Sec. III, we discuss the construc-
tion of SCETþ, which requires a new mode with collinear-
soft scaling to properly describe the soft radiation between
the two close jets. As an explicit example of the application
of SCETþ, we consider the simplest case of eþe� ! 3
jets, for which in Sec. IV we derive the factorized cross
section in the limitm � mjj � Q, and in Sec. V we obtain

all ingredients at next-to-leading order (NLO). In Sec. V,
we also discuss the consistency of the factorized result
in SCETþ, and show how the usual 3-jet hard and soft
functions in SCET are separately factorized into two
pieces each. Readers not interested in the technical
details of this example can skip over Secs. IV and V. In
Sec. VI, we generalize our results to the case of pp ! N
jets plus leptons. In Sec. VII, we present numerical results
for the dijet invariant mass spectrum for eþe� ! 3 jets
with all logarithms of m=Q and mjj=Q resummed at

next-to-leading logarithmic (NLL) order. We conclude in
Sec. VIII.

II. OVERVIEW OF THE EFFECTIVE
FIELD THEORY SETUP

Effective field theories provide a natural way to system-
atically resum large logarithms of ratios of scales appear-
ing in perturbation theory. This is achieved by integrating
out the relevant degrees of freedom at each scale.
The renormalization group evolution within the effective

FIG. 1 (color online). Different kinematic situations and relevant scales for the case of three jets with invariant mass m. On the left,
the invariant masses between any two jets are comparable, sij ¼ 2qi � qj �Q2, and the only relevant scales are Q, m, and m2=Q. On

the right, the dijet invariant mass between jets 1 and 2, t ¼ 2q1 � q2, is parametrically smaller than that between any other pair of jets,
so there are two more relevant scales,

ffiffi
t

p
and m2=

ffiffi
t

p
.
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theory is then used to sum the logarithms between the
different scales. SCET provides the appropriate effective-
theory framework to resum the logarithms arising from
collinear and soft radiation in QCD.

For later convenience, for each jet we define a massless
reference momentum

q
�
i ¼ Eið1; ~niÞ ¼ j ~qiTjðcosh�i; ~ni?; sinh�iÞ; (2.1)

where Ei and ~ni are the energy and direction of the ith jet,
and ~qiT , �i, and ~ni? ¼ ~qiT=j ~qiTj are its transverse momen-
tum, pseudorapidity, and transverse direction. The four-
vector ð1; ~niÞ is called ni.

Given two light-cone vectors ni and nj with n2i ¼
n2j ¼ 0, we decompose any four vector into light-cone

components

p� ¼ nj � p n
�
i

ni � nj þ ni � p
n�j

ni � nj þ p�
?ij

: (2.2)

The subscripts on ?ij specify with respect to which

light-cone directions the perpendicular components are
defined. To simplify the notation we will mostly drop
them, unless there are potential ambiguities. To discuss
the scaling of a four vector with respect to the ni
direction, we use

p� ¼ ðni � p; �ni � p; p?i
Þ � ðpþ; p�; p?Þ; (2.3)

where �ni stands for any other light-cone vector in a
direction that is considered parametrically different from
ni, i.e., parametrically ni � �ni � 1. In terms of these
light-cone coordinates we have p2 ¼ pþp� þ p2

?.

A. Equally separated jets

We first review the situation for equally separated jets, as
depicted for three jets in Fig. 1(a), where we show the
relevant energy scales. Formally, this case is defined by
considering the pairwise invariant masses between any two
jets to be parametrically of the same typical size Q. In
addition, the invariant masses of all jets are parametrically
of the same typical size m. Hence, we have the scaling

sij ¼ 2qi � qj �Q2; m2
i ¼ P2

i �m2; (2.4)

where Pi denotes the total four momentum of the jets. For
m much smaller than Q, we have the hierarchy of scales

�S ’ m2

Q
� �J ’ m � �H ’ Q: (2.5)

The cross section contains logarithms scaling like
lnðm2=Q2Þ. To resum these in the effective theory, one first
matches QCD onto SCETat the hard scaleQ; see Fig. 1(a).
In this step, one integrates out all degrees of freedom with
virtualities * Q2. The relevant modes in SCET (techni-
cally SCETI) below that scale are collinear and ultrasoft
(usoft) modes. They have momentum scaling

pc�Qð�2;1;�Þ; pus�Qð�2;�2;�2Þ; �¼m

Q
: (2.6)

(The scaling for the collinear momentum pc here is under-
stood to be defined with respect to its corresponding jet
direction.) To see this, first note that to describe the col-
linear emissions within each jet we must have one set of
collinear modes in each jet direction. Since the typical
invariant mass of the jets is m2, the collinear modes must
have virtuality �Q2�2 ¼ m2. Direct interactions between
two collinear modes in different directions are not allowed,
since they would produce modes with virtuality �Q2,
which have already been integrated out, i.e.,

Qð�2; 1; �Þ þQð1; �2; �Þ �Qð1; 1; �Þ: (2.7)

Hence, interactions between collinear modes can only
happen via usoft modes, which can couple to any collinear
mode without changing its virtuality:

Qð�2; 1; �Þ þQð�2; �2; �2Þ �Qð�2; 1; �Þ: (2.8)

In the next step, one integrates out the collinear modes at
the scale m, leaving only the soft theory with usoft modes
of virtuality �Q2�4 ¼ m4=Q2.
In each step one performs a power expansion in the ratio

of the lower scale divided by the higher scale. In the first
step m=Q ¼ �, and in the second step ðm2=QÞ=m ¼ �, so
the expansion parameter is the same in both cases. By
Lorentz invariance, in the end the expansion is actually
in the ratio of the virtualities, i.e., in �2. There will be no
power corrections of Oð�Þ.
Using this effective theory, one can derive a factoriza-

tion theorem for the cross section for pp ! N jets, which
has the schematic form [3,5,6,15,16]

�N ¼ ~CNð�Þ ~Cy
Nð�Þ �

�
Bað�ÞBbð�ÞYN

i¼1

Jið�Þ
�
� ŜNð�Þ:

(2.9)

The hard matching coefficient ~CN describes the short-
distance partonic 2 ! N process. It arises from integrating
out the hard modes at the scaleQwhen matching full QCD
to SCET. The beam functions Ba;b and jet functions Ji
describe the collinear initial-state and final-state radiation,
respectively, forming the jets around the ingoing and out-
going primary hard partons. They arise from integrating
out the collinear modes at the intermediate jet scalem. The
remaining matrix element in the soft theory yields the soft

function ŜN . In general, ~CN is a vector in color space and

ŜN is a matrix, while the beam and jet functions are
diagonal in color.
Each function in Eq. (2.9) explicitly depends on the

renormalization scale �. This dependence cancels in the
product and convolutions of all functions on the right-hand
side, since the cross section is � independent. Since the
different functions each only contain physics at a single
energy scale, they can only contain logarithms of �
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divided by that physical scale. In general, the logarithms
appearing in the hard, jet, and soft function are of the
form

~CN: ln
�2

sij
; Ba;b; Ji: ln

�2

m2
i

; ŜN: ln
�2sij

m4
i

: (2.10)

(For the N-jet soft function this can be seen explicitly from
the results in Ref. [7].) Hence, since all sij �Q2 and all

mi �m as in Eq. (2.4), there are no large logarithms when
evaluating each function at its own natural scale,

�H ¼ Q; �J ¼ �B ¼ m; �S ¼ m2

Q
: (2.11)

Using the renormalization group evolution in the effective
theory, each function can then be evolved from its own
natural scale to the common arbitrary scale �, which sums
the logarithms in Eq. (2.10). Combining all functions
evolved to � as in Eq. (2.9) then sums all logarithms of
the form lnðm2=Q2Þ in the cross section.

B. Two jets close to each other

In the situation depicted in Fig. 1(b), the invariant mass
of two of the jets becomes parametrically smaller than all
the other pairwise invariant masses between jets. In the
following, we take the two jets that are close to each other
to be jets 1 and 2 and use t � s12 to denote their invariant
mass, and sij to denote all other dijet invariant masses. We

then have

m2 � t ¼ s12 � sij �Q2: (2.12)

In principle, the factorization theorem in Eq. (2.9) can
still be applied in this case, since the invariant masses of all
jets are still much smaller than any of the dijet invariant
masses. However, the hard matching coefficient CN now
depends on two parametrically different hard scales,

ffiffi
t

p
and Q, and from Eq. (2.10) it contains corresponding
logarithms lnð�2=Q2Þ and lnð�2=tÞ. This means there is
no single hard scale �H that we can choose that would
minimize all logarithms in the hard matching. In particular,
choosing �H ¼ Q as before, there are now unresummed
large logarithms lnðt=Q2Þ in the hard matching coefficient.

Similarly, the soft function now depends on two para-
metrically different soft scales, m2=

ffiffi
t

p
and m2=Q, contain-

ing logarithms lnð�2t=m4Þ as well as lnð�2Q2=m4
i Þ.

Hence, there is not a single soft scale �S we can choose
to minimize all logarithms in the soft function. Choosing
�S ¼ m2=Q as before, there are still unresummed large
logarithms lnðt=Q2Þ in the soft function. In the soft
function these naturally arise as lnni � nj.

To be able to resum the logarithms of lnðt=Q2Þ we have
to perform additional matching steps at each of the new
intermediate scales

ffiffi
t

p
and m2=

ffiffi
t

p
, as shown in Fig. 1(b).

At the scale Q we match QCD onto SCET as before,
integrating out hard modes of virtuality * Q2. This

effective theory has collinear modes with virtuality t and
corresponding soft modes,

pc�Qð�2
t ;1;�tÞ; pus�Qð�2

t ;�
2
t ;�

2
t Þ; �t¼

ffiffi
t

p
Q
: (2.13)

There is one set of collinear modes for each of the jets,
except for the two close jets 1 and 2. The latter are described
at the hard scale Q by a single set of collinear modes with
virtuality t in a common direction nt. Since the total invari-
ant mass between the two jets is t, such nt-collinear modes
can freely exchange momentum between the two close
jets without changing their virtuality. This matching corre-
sponds to performing an expansion in �t.
In the next step, at the scale

ffiffi
t

p
, we match SCET onto a

new effective theory SCETþ, integrating out all modes of
virtuality t. Below this scale we now have separate
collinear modes with virtuality m2 for each jet, including
jets 1 and 2,

pc ¼ Qð�2; 1; �Þ; � ¼ m

Q
: (2.14)

Note that for the well-separated jets, this matching at
ffiffi
t

p
will have no effect, sincewe do not perform a measurement
in those directions that is sensitive to this scale. This means
the virtuality of their collinear modes is simply lowered
from t tom2. On the other hand, for jets 1 and 2 we match a
single nt collinear sector in SCETonto two independent n1
collinear and n2 collinear sectors in SCETþ.
As before, the collinear modes cannot directly interact

with each other. Interactions between the jets are possible
via ultrasoft modes

pus ¼ Qð�2; �2; �2Þ; (2.15)

which have virtualityQ2�4 ¼ ðm2=QÞ2. In addition we can
still have collinear modes in the nt direction which are soft
enough to interact between jets 1 and 2 without changing
the virtuality of the n1 and n2 collinear modes. These
collinear-soft (csoft) modes have momentum scaling in
the nt direction as

pcs �Qð�2; �2; ��Þ; � ¼ �

�t

¼ mffiffi
t

p : (2.16)

We will see explicitly in Sec. VD that these csoft modes
are required to correctly reproduce the IR structure of QCD
in this limit. Note also that the csoft modes are not allowed
to couple to other collinear modes, since they would give
them a virtuality �Q2�2 ¼ m2=�2

t � m2.
To derive the csoft scaling in Eq. (2.16), first note that in

order for a soft gluon to separately interact with jet 1 or jet
2 it must be able to resolve the difference between the two
directions n1 and n2. Hence, its angle with respect to the
directions n1 or n2 has to be of order of the separation
between these two directions, so it must have the scaling

pcs �Qcsð�2
t ; 1; �tÞ: (2.17)
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At the same time, for the contribution of pcs to the invari-
ant mass of either jet 1 or jet 2 (or equivalently the
virtuality of a n1 or n2 collinear mode) to be �m2, its
plus component must have the same size as a collinear plus
component, i.e.,

Qcs�
2
t �Q�2 ) Qcs �Q�2; (2.18)

which implies the scaling in Eq. (2.16). Hence, the nt csoft
modes can be thought of as the soft remnant of the original
nt collinear modes in the SCET above the scale

ffiffi
t

p
. Note

that the csoft degrees of freedom can resolve the two
directions n1 and n2 dynamically, such that only a single
csoft mode is required that couples to both of these col-
linear directions. We will continue to use the direction nt to
label this mode in the rest of the paper.

The virtuality of the csoft modes is

p2
cs �Q2�2�2 ¼ m4

t
; (2.19)

which is the intermediate soft scale we already encoun-
tered. Hence, the main feature of SCETþ is that its soft
sector contains two separate degrees of freedom, a csoft
mode with virtualitym4=t, and a usoft mode with virtuality
m4=Q2. In the next step, we integrate out the collinear
modes with virtuality m2 at the scale m, leaving only the
soft sector of SCETþ [denoted by softþ in Fig. 1(b)]
consisting of csoft and usoft modes. Finally, at the csoft
scalem2=

ffiffi
t

p
we integrate out the csoft modes, which leaves

only the usoft modes.
In SCETþ, the cross section for pp ! N jets takes the

schematic form

�N ¼ jCþð�Þj2 ~CN�1ð�Þ ~Cy
N�1ð�Þ

�
Bað�ÞBbð�ÞYN

i¼1

Jið�Þ
�

� Sþð�Þ � ŜN�1ð�Þ: (2.20)

Here, each piece arises as the matching coefficient from
one of the matching steps described above, and only de-
pends on a single scale, allowing us to resum all large
logarithms. In effect, the additional matching at

ffiffi
t

p
factor-

izes the original hard matching coefficient ~CN in Eq. (2.9)

into two pieces, ~CN�1 and Cþ, each only depending on a
single scale Q and

ffiffi
t

p
, which enables us to resum the

logarithms lnðt=Q2Þ present in the original hard matching.
Similarly, the additional matching step at the scale m2=

ffiffi
t

p
effectively factorizes the original multiscale soft function

ŜN in Eq. (2.9) into two separate pieces, Sþ and ŜN�1, each
only depending on a single soft scale, m2=

ffiffi
t

p
and m2=Q,

respectively. This then enables us to sum all logarithms
lnðt=Q2Þ that were present in the original soft function.

Note that for the hard matching coefficient, the kine-
matic situation of t � sij has been addressed before

[17–19] using a two-step matching procedure similar to
our matching step at the scale

ffiffi
t

p
. It was shown through an

explicit one-loop calculation that this matching separates

the two scales Q2 and t in the hard-function from one
another. In Appendix A we show that this holds to all
orders in perturbation theory using reparametrization in-
variance (RPI) [20] of the effective theory. In these pre-
vious analyses, however, the soft sector of the theory belowffiffi
t

p
was not fully considered (or assumed to be that of

standard SCET). In this paper we give a complete descrip-
tion of the effective theory below the scale

ffiffi
t

p
including the

appropriate soft sector, allowing us to accomplish a similar
scale separation and resummation of the logarithms of
t=Q2 in the soft sector of the theory. We stress that the

unresummed logarithms in the original ~CN and ŜN are
equally large, so it is essential to be able to resum the
logarithms in the soft sector.

III. CONSTRUCTION OF SCETþ
In this section we construct SCETþ, an effective theory

containing the usual collinear and usoft modes as well as
the new intermediate csoft mode. The modes and their
scaling are summarized in Table I. We will show that the
interactions between the three different types of modes can
all be decoupled at the level of the Lagrangian by appro-
priate field redefinitions, similar to the BPS field redefini-
tion to decouple collinear and usoft modes in regular
SCET.

A. Review of standard SCET

In SCET, the momentum of collinear particles in the n
direction are separated into a large label momentum ~p and
a small residual momentum k,

p� ¼ ~p� þ k�; ~p� ¼ �n � ~pn�

2
þ ~p�

?: (3.1)

The momentum components scale as �n � ~p�Q, ~p? �Q�,
and k�Q�2. The corresponding quark and gluon fields,
�n;~pðxÞ and An;~pðxÞ, are multipole expanded with expansion

parameter �. They have fixed label momentum, and parti-
cles with different label momenta are described by differ-
ent fields. Derivatives acting on the fields pick out the
residual momentum dependence, i@� � k�, while the large
label momentum is obtained using the label momentum
operator [10]

P �
n �n;~p ¼ ~p��n;~p: (3.2)

When acting on several collinear fields, P�
n returns the

sum of the label momenta of all n-collinear fields.

TABLE I. Modes in SCETþ.

Mode Scaling ðþ;�;?Þ Virtuality p2

Collinear Qð�2; 1; �Þ ð�QÞ2 ¼ m2

csoft Qð�2; �2; ��Þ ð��QÞ2 ¼ m4=t
usoft Qð�2; �2; �2Þ ð�2QÞ2 ¼ m4=Q2
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The interactions between collinear fields can only
change the label momentum but not the collinear direction
n, so it is convenient to define fields with only the direction
n fixed,

�nðxÞ ¼
X
~p�0

�n;~pðxÞ; AnðxÞ ¼
X
~p�0

An;~pðxÞ: (3.3)

The sum over ~p here excludes the zero-bin ~p ¼ 0. This
avoids double counting the usoft modes, which are de-
scribed by separate usoft quark and gluon fields. When
calculating matrix elements, we implement this by sum-
ming over all ~p and then subtracting the zero-bin contri-
bution, which is obtained by taking the limit ~p ! 0 [21].

The Lagrangian for a collinear quark in the n direction in
SCET at leading order in � is well known and given by [9]

L n ¼ ��n

�
in �Dn þ gn � Aus

þ i 6Dn;?Wn

1

�n � P n

Wy
n i 6Dn;?

� 6 �n
2
�n; (3.4)

where the collinear covariant derivatives are

in �Dn¼ in �@þgn �An; iD
�
n?¼P�

n?þgA
�
n?: (3.5)

The Wilson line Wn in Eq. (3.4) is constructed out of
n-collinear gluons. In momentum space, one has

WnðxÞ ¼
� X
perms

exp

� �g

�n � P n

�n � AnðxÞ
��

; (3.6)

where the label operator only acts inside the square brack-
ets. Wn sums up arbitrary emissions of n-collinear gluons
from an n-collinear quark or gluon, which are Oð1Þ in the
power counting.

The Lagrangian for usoft quarks and gluons is identical
to the full QCD Lagrangian written in terms of usoft quark
and gluon fields. It cannot contain any interactions with
collinear modes, since the usoft fields do not have suffi-
cient momentum to pair-produce collinear modes.

Because of the multipole expansion, at leading order in
� the only coupling to usoft gluons in the collinear
Lagrangian, Eq. (3.4), is through n � Aus. This coupling is
removed by the BPS field redefinition [11],

�ð0Þ
n ðxÞ ¼ Yy

n ðxÞ�nðxÞ; Að0Þ
n ðxÞ ¼ Yy

n ðxÞAnðxÞYnðxÞ;
(3.7)

where Yn is a usoft Wilson line in the direction n,

Yy
n ðxÞ ¼ P exp

�
ig

Z 1

0
dsn � Ausðxþ snÞ

�
; (3.8)

and P denotes path ordering along the integration path.
Since WnðxÞ is localized with respect to the residual posi-
tion x, we have

Wð0Þ
n ðxÞ ¼ Yy

n ðxÞWnðxÞYnðxÞ

¼
� X
perms

exp

� �g

�n � P n

�n � Að0Þ
n ðxÞ

��
: (3.9)

Therefore, using Eq. (3.7) in Eq. (3.4) together with

Yy
n ðxÞ½in � @þ gn � AusðxÞ	YnðxÞ ¼ in � @; (3.10)

eliminates the dependence of Ln on n � Aus,

Lð0Þ
n ¼ ��ð0Þ

n

�
in �Dð0Þ

n þ i 6Dð0Þ
n?W

ð0Þ
n

1

�n �P n

Wð0Þy
n i 6Dð0Þ

n?

� 6 �n
2
�ð0Þ
n ;

(3.11)

where now

in �Dð0Þ
n ¼ in � @þ gn � Að0Þ

n ;

iDð0Þ�
n? ¼ P�

n? þ gAð0Þ�
n? : (3.12)

Hence, after the field redefinition there are no more inter-
actions between usoft and collinear fields at leading order
in the power counting, and the redefined fields no longer
transform under usoft gauge transformations.
With more than one collinear sector, there are separate

collinear Lagrangians for each sector, which decouple
from each other and the usoft Lagrangian, Lus. The total
Lagrangian is then given by the sum

L SCET ¼ X
i

Lð0Þ
ni þLus þ . . . ; (3.13)

where the ellipses denote the terms that are of higher order
in the power counting.

B. SCETþ
To construct SCETþ, we follow the same logic as in

Sec. II B. To be concrete, we start from SCET with two
collinear sectors along n3 and nt that have been decoupled
from the usoft sector,

L SCET ¼ Lð0Þ
n3 þLð0Þ

nt þLus þ . . . ; (3.14)

and where the scaling of the momenta is set by �t ¼
ffiffi
t

p
=Q.

(Additional collinear sectors for other well-separated jets
are treated identically to n3.) Since the three sectors are all
decoupled in SCET, we can discuss them independently.
When matching onto SCETþ, nothing happens for the
n3-collinear and usoft modes, whose momentum scaling
is simply lowered from �t to � ¼ m=Q.
On the other hand, as explained in Sec. II B, when we

lower the scaling from �t to �, the nt-collinear modes are
separated into n1-collinear and n2-collinear modes, which
cannot interact with each other any longer, plus a csoft
mode in the nt direction,

�c
nt !�c

n1 þ�c
n2 þ�cs

nt ; Ac
nt !Ac

n1 þAc
n2 þAcs

nt : (3.15)
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In SCETþ the labels nt, n1, n2 uniquely specify whether
we are dealing with csoft or collinear modes, so we will
mostly drop the explicit labels ‘‘cs’’ and ‘‘c’’.

1. Collinear-soft sector

Since the csoft modes are just a softer version of the nt
collinear modes. Hence, they still have a label direction nt
and are multipole expanded, i.e., their momentum is writ-
ten in terms of a csoft label momentum and residual
momentum,

p�
cs ¼ ~p�

cs þ k�; ~p�
cs ¼ �nt � ~pcs

n
�
t

2
þ ~p�

cs?; (3.16)

with momentum scaling

�nt � ~pcs �Q�2; ~pcs? � ðQ�2Þ�t ¼ Q��;

k� � ðQ�2Þ�2
t ¼ Q�2; (3.17)

and an associated csoft label momentum operator,

P �
nt�nt;~p ¼ ~p�

cs�nt;~p: (3.18)

The Lagrangians for csoft quarks and gluons are simply
scaled down versions of the original nt collinear quark and

gluon Lagrangians, Lð0Þ
nt . For example, for the csoft quarks

Lcsð0Þ
nt ¼ ��ð0Þ

nt

�
int �Dð0Þ

nt þ i 6Dð0Þ
nt?V

ð0Þ
nt

1

�nt � P nt

Vð0Þy
nt i 6Dð0Þ

nt?

�

� 6 �nt
2
�ð0Þ
nt ; (3.19)

where the csoft covariant derivatives are defined exactly as
in Eq. (3.12) but in terms of csoft gluons. Note that the csoft
modes are decoupled from the usoft modes, as indicated by
the superscript (0), since they are obtained from the de-

coupled nt-collinear modes of regular SCET. The Vð0Þ
nt

Wilson lines are the csoft version of the Wð0Þ
n in Eq. (3.9),

Vð0Þ
nt ðxÞ ¼

� X
perms

exp

� �g

�n � P nt

�nt � Að0Þ
nt ðxÞ

��
: (3.20)

Just like theWn in SCET, they sumup arbitrary emissions of
nt-csoft gluons from an nt-csoft quark or gluon, which are
Oð1Þ in the power counting, and are required to ensure csoft
gauge invariance.

Similarly, the csoft gluon Lagrangian follows directly
from the collinear gluon Lagrangian in SCET, and we just
state the result here for completeness,

Lð0Þ
cs ¼ 1

2g2
Trf½iDð0Þ�

nt þ gA
ð0Þ�
nt ; iDð0Þ�

nt þ gAð0Þ�
nt 	g2

þ 2Trf �cð0Þnt ½iDð0Þ
nt�; ½iDð0Þ�

nt þ gAð0Þ�
nt ; cð0Þnt 		g

þ 1

�
Trf½iDð0Þ

nt�; A
ð0Þ�
nt 	g2: (3.21)

where Dð0Þ�
nt ¼ �nt � P ntn

�
t =2þ P�

? þ int � @�, cnt are

ghost fields and � is a gauge fixing parameter.
As we will see below, csoft gluons can still couple to n1

and n2 collinear modes but only through their n1 � Ant and

n2 � Ant components, respectively. From that point of view,

they appear more like usoft gluons, hence the name csoft.
However, their n1 component is given by

n1 � Ant ¼
n1 � nt

2
�nt � Ant þ

n1 � �nt
2

nt � Ant þ ðn1Þ?t
� Ant?

� �2
t �Q�2 þ 1�Q�2 þ �t �Q��

� Q�2 þ Q�2 þ Q�2;

(3.22)

and similarly for n2. The essential feature of the csoft
scaling is that all three terms here contribute equally and
must be kept. This is precisely the reason why despite
being collinear modes the csoft modes are still able to
couple to both n1 and n2 collinear modes. However, since
the csoft modes are already multipole expanded with re-
spect to the nt direction, n1 � Ant is not an independent

component with its own power counting, but is just a short-
hand notation for the combination in Eq. (3.22). The same
applies to n2 � Ant .

It is important to properly implement the usoft zero-bin
subtraction for the csoft modes, which is necessary to avoid
double counting the usoft region. The zero-bin limit of the
csoft modes is defined by taking each light-cone compo-
nent with respect to nt to have usoft scaling�Q�2. Hence,
in the zero-bin limit, only the second term in Eq. (3.22)
contributes,

n1 � Ant !zero-bin
nt � Ant ; (3.23)

while the other terms are suppressed by �t.
Note that csoft fields only couple to collinear fields

whose direction are in the same csoft equivalence class
as nt, as discussed above. For all other collinear fields, the
interaction with a csoft field would increase the virtuality
of the field such that these interactions are integrated out of
the theory.

2. Collinear sectors

We now turn to the n1 and n2 collinear modes. To be
specific we will use n1; the discussion is identical for n2.
In the SCET above the scale

ffiffi
t

p
, n1 and nt belong to the

same equivalence class.1 This means the leading-order
Lagrangian for n1 collinear quarks directly follows from
expanding Eq. (3.11) in �,

1This can be understood formally using RPI [20], which is a
symmetry of the effective theory that restores Lorentz invariance
of the full theory that was broken by choosing a fixed direction
n
�
i for each collinear degree of freedom. One can show that n1,

n2 and nt can all be obtained from one another by an RPI
transformation, see Ref. [22] for a detailed discussion.
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Lð0Þ
n1 ¼ ��ð0Þ

n1

�
in1 �Dð0Þ

n1 þ gn1 � Að0Þ
nt

þ i 6Dð0Þ
n1?W

ð0Þ
n1

1

�n1 � P n1

Wð0Þy
n1 i 6Dð0Þ

n1?

� 6 �n1
2
�ð0Þ
n1 ; (3.24)

where the collinear covariant derivatives, Dð0Þ
n1 , and Wilson

line, Wð0Þ
n1 , are as defined in Eqs. (3.12) and (3.9) with

n ¼ n1. As anticipated, the csoft modes couple to the n1
collinear modes via n1 � Að0Þ

nt �Q�2. As in Eq. (3.22), all
components of Ant contribute equally to this coupling.

However, below the scale
ffiffi
t

p
, the n1 collinear modes

know nothing about the nt direction, so from their point
of view the csoft modes behave just like ordinary soft
modes with eikonal coupling in the n1 direction. In par-
ticular, just as in standard SCET, we can remove the
coupling between csoft and collinear modes from the
Lagrangian by performing a field redefinition,

�ð0;0Þ
n1 ðxÞ ¼ Xð0Þy

n1 ðxÞ�ð0Þ
n1 ðxÞ;

Að0;0Þ
n1 ðxÞ ¼ Xð0Þy

n1 ðxÞAð0Þ
n1 ðxÞXð0Þ

n1 ðxÞ; (3.25)

where the superscript (0, 0) indicates that the collinear
fields are decoupled from both usoft and csoft interactions.

Here, Xð0Þ
n1 is now a Wilson line in the n1 direction built out

of (usoft-decoupled) csoft gluons,

Xð0Þy
n1 ðxÞ ¼ P exp

�
ig
Z 1

0
dsn1 � Að0Þ

nt ðxþ sn1Þ
�
: (3.26)

After the csoft field redefinition for n1 and n2, there are
no more interactions between any of the sectors. The above
discussion is not affected by additional collinear sectors
like n3. The Lagrangian of SCETþ thus completely fac-
torizes into independent collinear, csoft, and usoft sectors,

LSCETþ ¼
X
i¼1;2

Lð0;0Þ
ni þLð0Þ

nt þ
X
i
3

Lð0Þ
ni þLusþ . . . : (3.27)

C. Operators in SCET and SCETþ
In this section we discuss how operators in SCETþ are

constructed from gauge-invariant building blocks. As an
explicit example, we use eþe� ! 3 jets with jets 1 and 2
getting close as in Fig. 1(b) since we will use it in Sec. IV.
For simplicity, we assume here that jets 1, 2, and 3 are
created by an outgoing quark, gluon, and antiquark, re-
spectively, such that n1 � nq, n2 � ng, n3 � n �q. The op-

erators with the quark and antiquark interchanged simply
follow from Hermitian conjugation. Note that the case
where the quark and antiquark jets get close to each other
is power suppressed, so there is no corresponding operator
in SCETþ at leading order in the power counting.

The allowed operators one can construct in SCET are
constrained by local gauge invariance. It is well known that
using the collinear Wilson line WnðxÞ one can construct
gauge-invariant collinear quark and gluon fields

�nðxÞ ¼ Wy
n ðxÞ�nðxÞ;

B�
n?ðxÞ ¼

1

g
½Wy

n ðxÞiD�
n?WnðxÞ	; (3.28)

which are local with respect to soft interactions. Hence, we
can use them to construct local collinear gauge-invariant
operators in SCET.
For example, for widely separated jets as in Fig. 1(a), we

match the matrix element for eþe� ! 3 jets in full QCD
onto the operator

O3 ¼ ��n1
Bn2�n3 ; (3.29)

where for simplicity we neglect the Dirac structure. When
matching QCD onto SCET in the situation with two close
jets as in Fig. 1(b), we first match onto the SCET operator
for eþe� ! 2 jets,

O2 ¼ ��nt
�n3 ; (3.30)

describing a quark and antiquark jet in the nt and n3
directions. Under local usoft gauge transformations, the
fields in different collinear sectors all transform in the same
way, soO2 andO3 are also explicitly gauge invariant under
usoft gauge transformations.
After the field redefinition in Eq. (3.7), we obtain corre-

sponding redefined fields �ð0Þ
n ðxÞ and Bð0Þ�

n? ðxÞ which are

gauge invariant under both collinear and usoft gauge trans-
formations. All usoft interactions are now described by
usoftWilson lines explicitly appearing in the operators, e.g.,

O3 ¼ ��ð0Þ
n1 Y

y
n1Yn2B

ð0Þ
n2?Y

y
n2Yn3�

ð0Þ
n3 ;

O2 ¼ ��ð0Þ
nt Y

y
ntYn3�

ð0Þ
n3 (3.31)

In SCETþ we can use the same definitions as in
Eq. (3.28) to define collinear fields that are gauge invariant
under collinear gauge transformations. The n1;2 collinear

fields in addition transform under csoft gauge transforma-
tions, UntðxÞ,

�n1ðxÞ ! UntðxÞ�n1ðxÞ;
Bn2?ðxÞ ! UntðxÞBn2?ðxÞUy

ntðxÞ;
VntðxÞ ! UntðxÞVntðxÞ: (3.32)

As discussed in Sec. III B, only the n1 and n2 collinear
fields couple to csoft gluons, thus the n3-collinear fields do
not transform under csoft gauge transformations.
Therefore, to form gauge-invariant operators in SCETþ
we have to include factors of the csoft Vnt Wilson lines.

For example, after the usoft field redefinition in SCET, an
nt collinear quark field in SCET is matched onto SCETþ as

�ð0Þ
nt ðxÞ ! Vð0Þy

nt ðxÞBð0Þ
n2?ðxÞ�

ð0Þ
n1 ðxÞ: (3.33)

Since Vð0Þy
nt does not transform under n1;2 collinear gauge

transformations, the right-hand side is invariant under both
n1;2 collinear and nnt csoft gauge transformations. We can
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think of Vð0Þy
nt here effectively as arising from the csoft limit

of the Wð0Þy
nt Wilson line inside �ð0Þ

nt .
Hence, when matching SCET onto SCETþ for the situ-

ation in Fig. 1(b), the SCET operator O2 in Eq. (3.31) is
matched onto the SCETþ operator

Oþ
3 ¼ ½ ��ð0Þ

n1 B
ð0Þ
n2?V

ð0Þ
nt 	½Yy

ntYn3	½�ð0Þ
n3 	; (3.34)

where the different factors in square brackets do not inter-
act with each other. Finally, we perform the csoft field
redefinition in Eq. (3.25) to decouple the csoft fields from
the n1;2 collinear fields, which yields

Oþ
3 ¼ ½ ��ð0;0Þ

n1 	i½Bð0;0ÞA
n2? 	½Xyð0Þ

n1 Xð0Þ
n2 T

AXð0Þy
n2 Vð0Þ

nt 	ij
� ½Yy

ntYn3	jk½�ð0Þ
n3 	k: (3.35)

Here, each factor in square brackets now belongs to a
different sector in SCETþ, and we have shown how the
adjoint and fundamental color indices are contracted. Since
the different sectors are now completely factorized, wewill
drop the superscripts (0) and (0, 0) in the following
sections.

D. Alternative construction of SCETþ
When constructing SCETþ in Sec. III B we started from

the usoft-decoupled version of SCET, for which the csoft
modes arise from the usoft-decoupled nt collinear sector in
SCET. By simply lowering the scaling in the usoft sector
from �t to �, we have implicitly used the fact that to be
consistent and maintain the usoft decoupling one has to
simultaneously lower the scaling of the usoft subtractions
for the nt collinear sector. This is the reason why the csoft
modes arise as the csoft limit of the nt collinear modes. The
advantage of this approach is that thematching ontoSCETþ
really only happens within one collinear sector of SCET.

Alternatively, we can also be completely agnostic about
the theory above the scale

ffiffi
t

p
, and simply write down the

Lagrangians for all the modes in SCETþ and use appro-
priate field redefinitions to decouple them. In the end, the
matching calculation will ensure that SCETþ reproduces
the correct UV physics, while having the right degrees of
freedom ensures that the IR physics of the theory above is
reproduced. The latter can be checked explicitly by testing
whether the IR divergences in the theory above are repro-
duced in SCETþ.

This procedure should of course give the same final
result. Since it is instructive to see how it does, we will
briefly go through it here. The discussion for the
n2-collinear sector is again identical to that for n1, so we
will ignore it. We start by writing down the Lagrangians for
the collinear and csoft modes,

Ln1 ¼ ��c
n1½in1 �Dc

n1 þ gn1 � Acs
nt þ gn1 � Aus þ . . .	�c

n1 ;

Ln3 ¼ ��c
n3½in3 �Dc

n3 þ gn3 � Aus þ . . .	�c
n3 ;

Lnt ¼ ��cs
nt ½int �Dcs

nt þ gnt � Aus þ . . .	�cs
nt ; (3.36)

where the power counting in the multipole expansion re-
stricts the possible interactions. Note that we have added
collinear, c, and csoft, cs, labels here for clarity. For
simplicity, we only write down the quark Lagrangians
and drop the perpendicular pieces, indicated by the ellip-
ses, which are not relevant for this discussion. Note that the
csoft gluons, Acs

nt , only couple to the n1 (and n2) collinear

modes, while the usoft gluons, Aus, couple to all collinear
sectors as well as the csoft sector.
We first perform the usual usoft field redefinition in

Eq. (3.7) on all three sectors,

�ð0Þ
ni ðxÞ ¼ Yy

niðxÞ�niðxÞ; Að0Þ
ni ðxÞ ¼ Yy

niðxÞAniðxÞYniðxÞ:
(3.37)

As far as the coupling to usoft gluons is concerned, the
csoft sector is just another collinear sector, so we get

Lð0Þ
n1 ¼ ��cð0Þ

n1 ½in1 �Dcð0Þ
n1 þYy

n1Yntgn1 �Acsð0Þ
nt Yy

ntYn1 þ . . .	�cð0Þ
n1 ;

Lð0Þ
n3 ¼ ��cð0Þ

n3 ½in3 �Dcð0Þ
n3 þ . . .	�cð0Þ

n3 ;

Lð0Þ
nt ¼ ��csð0Þ

nt ½int �Dcsð0Þ
nt þ . . .	�csð0Þ

nt ; (3.38)

where both the csoft and the n3 collinear sectors are now
decoupled from the usoft.
To decouple the n1 collinear sectors, we have to

eliminate the products of usoft Wilson lines in Lð0Þ
n1 . Using

n1 � Aus ¼ n1 � nt
2

�nt � Aus þ n1 � �nt
2

nt � Aus

þ ðn1Þ?t
� Aus ¼ nt � Aus½1þOð�tÞ	; (3.39)

it follows that

Yn1ðxÞ ¼ P exp

�
ig

Z 0

�1
dsnt � Ausðxþ sntÞ

�

þOð�tÞ ¼ YntðxÞ þOð�tÞ; (3.40)

and therefore

Yy
ntYn1 ¼ 1þOð�tÞ: (3.41)

Using Eq. (3.41) in Eq. (3.38), the n1 collinear sector also
decouples from the csoft one. We have now arrived at the
same point as in Eq. (3.24). The remaining coupling of the
(usoft-decoupled) csoft gluons to the n1 collinear sector via

n1 � Að0Þ
nt is eliminated using the additional csoft field re-

definition in Eq. (3.25).
It is essential to perform the field redefinitions in this

order. If we first perform a csoft field redefinition on n1, we
would get a term

Xy
n1gn1 � AusXn1 (3.42)
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in Ln1 , which cannot be eliminated anymore by a usoft

field redefinition. The fact that we have to perform the
usoft field redefinition first and that it requires us to expand
in �t, shows that this step is really linked to the SCET
above the scale

ffiffi
t

p
, which has �t as its expansion

parameter.

IV. FACTORIZATION FOR eþe� ! 3 JETS

In the previous section, we constructed a new effective
theory, SCETþ, which extends SCET with an additional
mode that has csoft scaling. As a concrete example, in this
section we apply SCETþ to 3-jet production in eþe�
collisions. We are interested in the kinematic configuration
shown in Fig. 2. We use N-jettiness [6] with N ¼ 3 to
define the exclusive 3-jet final state, where the individual
3-jettiness contributionsT i of each jet determine the mass
of the jets. We show how the factorization in SCETþ works
and how the logarithms of the scales Q, t, and T i are
simultaneously resummed.

We note that the applicability of SCETþ is not limited to
the class of N-jettiness observables. However, N-jettiness
provides a convenient observable well suited for factoriza-
tion because it is linear in momentum, does not depend on
additional parameters (such as a jet radius R), and covers
all of phase space (i.e., there is no out-of-jet region).

A. Definition of observable and power counting

1. Observables

In terms of the lightlike jet reference momenta q�i in
Eq. (2.1), N-jettiness is defined as [6]

T N ¼ X
k

min
i
f2q̂i � pkg; q̂

�
i ¼ q�i

Qi

; (4.1)

where for convenience we defined the dimensionless ref-
erence vectors q̂i.T N divides the phase space intoN jet (or
beam) regions, where a particle with momentum pk is in jet
region i if q̂i � pk < q̂j � pk for every j � i, i.e., the particle

is closest to q̂i. The boundaries between the jet regions are
illustrated by the dashed lines in Fig. 2. The Qi in Eq. (4.1)
are hard scales, such as the jet energies, pT , or the total
invariant mass. Different choices of Qi give different ref-
erence vectors q̂i, which lead to different choices of the
distance measure used in dividing up the phase space into
jet regions. The distance between two different jets is
measured by the dimensionless quantity

ŝ ij ¼ 2q̂i � q̂j ¼
sij

QiQj

: (4.2)

For Qi ¼ Ei, we have a geometric measure with q̂i � ni,
and ŝij ¼ 2ni � nj measures the angle between jets i and j.

For Qi ¼ Q, we have an invariant-mass measure and ŝij ¼
sij=Q

2 is equivalent to the invariant mass between jets

i and j. By using q̂i and ŝij we will keep our notation

measure independent. (We will specify specific conditions
on the used measure when necessary below.)
We can write T N as

T N ¼ X
i

T i; (4.3)

whereT i is the contribution to T N from the ith jet region,
which is given by

T i ¼ 2q̂i �
X
k

pk�iðpkÞ: (4.4)

Here, the function

�iðpÞ ¼
Y
j�i

	ðq̂j � p� q̂i � pÞ (4.5)

imposes the phase space constraints for a particle with
momentum p to lie in jet region i. Note that this constraint
only depends on the jet reference momenta (in addition to
p itself).
In the following, we will consider the cross section

differential in each of theT i, as well as the minimum dijet
invariant mass, t, and the jet energy fraction, z, defined as

z ¼ E1

E1 þ E2

; (4.6)

where the observed jets are numbered such that t � s12 and
E1 < E2. Since experimentally we cannot determine the
type of hard parton initiating a jet, we will sum over all
relevant partonic channels in the end. For simplicity, we
also integrate over the three angles which together with t
and z describe the full 3-body phase space of the three jets.
(Two angles determine the overall orientation of the final
state with respect to the beam axis. The third angle can be
taken as the azimuthal angle of the two close jets.)

2. Power counting in SCET

We consider the regime where all jets have similar
energies, such that Qi �Q and z� 1� z, and take the
distance between jets 1 and 2 to be parametrically smaller
than each of their distance to jet 3, such that

FIG. 2 (color online). The kinematic configuration of eþe� !
3 jets we consider. The boundaries of the jet regions determined
by 3-jettiness are illustrated by the dashed lines. Note that the
location of the boundaries depends only on the jet reference
momenta qi.
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ŝt � ŝ12 � ŝ13 � ŝ23 � 1;

t � s12 � s13 � s23 �Q2; (4.7)

corresponding to Eq. (2.12).
To define the power expansion in our two-step matching

procedure we now have to specify some power-counting
properties of the distance measure. In the following, we
assume that we have chosen a measure such that the large
components in q̂1 and q̂2 are equal up to power corrections,
such that ŝ13 ¼ ŝ23 þOð�tÞ. This is always the case for a
geometric measure, where ŝij are effectively angles. For

the invariant-mass measure, this is satisfied if the energies
of jets 1 and 2 are equal up to power corrections. For
measures where ŝ13 and ŝ23 differ by an amount of Oð1Þ,
the factorization still goes through but will have a some-
what different structure from what we will find below, and
we leave the discussion of this case to future work.

The power expansion of the SCET above the scale
ffiffi
t

p
in

terms of �t is defined by choosing a common reference
vector q̂t for jets 1 and 2 in the direction of nt, such that

q̂t ¼ q̂1½1þOð�tÞ	 ¼ q̂2½1þOð�tÞ	;
ŝQ � 2q̂t � q̂3 ¼ ŝ13½1þOð�tÞ	 ¼ ŝ23½1þOð�tÞ	;
ŝ1t � 2q̂t � q̂1 ¼ ŝt½1þOð�tÞ	;
ŝ2t � 2q̂t � q̂2 ¼ ŝt½1þOð�tÞ	: (4.8)

The choice of q̂t is constrained by label momentum
conservation in SCET,

ðQ; ~0Þ ¼ ðQ1 þQ2Þq̂�t þQ3q̂
�
3 ; (4.9)

which upon squaring yields

ŝ Q ¼ Q2

ðQ1 þQ2ÞQ3

: (4.10)

The dijet invariant masses s13 and s23 in the SCET aboveffiffi
t

p
are thus given by

s13 ¼ Q1Q3ŝQ; s23 ¼ Q2Q3ŝQ; (4.11)

which we can also write as

s13¼xQ2; s23¼ð1�xÞQ2; x¼ Q1

Q1þQ2

: (4.12)

In particular, for the geometric measure with Qi ¼ Ei, we
have x ¼ z. Note that by counting all Qi �Q we, in
particular, count Q1;2=Q3 � 1, which is necessary to have

a consistent power expansion, such that

ŝt
ŝQ

� s12
s13

� s12
s23

� �2
t (4.13)

are all counted in the same way.

3. Power counting in SCETþ
To setup the power expansion in SCETþ in � (or equiv-

alently �), we first note that the invariant mass of the ith jet
is given by [7]

m2
i ¼ P2

i ¼ QiT i½1þOðT i=QiÞ	; (4.14)

where Pi ¼ P
kpk�iðpkÞ and so the invariant mass is

determined by T i. Hence, the condition m2 � sij in

Eq. (2.12), which requires the jet size to be small compared
to the jet separation, corresponds to T iQi � sij. The

power-counting parameters �2 ¼ m2=Q2 and �2 ¼ m2=t
are then determined by

T i

ŝQ
�Q�2;

T i

ŝt
�Q�2;

T iffiffiffiffi
ŝt

p �Q��: (4.15)

Note that to keep the power expansion in �t � �=� con-
sistent, we still have to use the same vector q̂t (or nt) as
in SCET to define the csoft modes in SCETþ. This
also applies when expanding the usoft measurement in �t

[see Eq. (4.21) below].
All quantities related to the hard jet kinematics that enter

in the final factorized cross section are uniquely deter-
mined in terms of the observables t and z by the label
momentum conservation of the collinear fields in SCETþ,

ðQ; ~0Þ ¼ Q1q̂
�
1 þQ2q̂

�
2 þQ3q̂

�
3 : (4.16)

Recall that the large components of the collinear fields in
SCETþ are determined up to Oð�Þ, which means we have
to keep terms of Oð�tÞ in Eq. (4.16). For example, for the
geometric measure where we choose Qi ¼ Ei so q̂i ¼ ni,
Eq. (4.16) leads to

Q1 ¼ z
Q

2

�
1þ t

Q2

�
; Q2 ¼ ð1� zÞQ

2

�
1þ t

Q2

�
;

Q3 ¼ Q

2

�
1� t

Q2

�
: (4.17)

B. Factorization

The SCET factorization theorem for the cross section
fully differential in the T i for equally separated jets was
derived in Refs. [6,7]. The derivation in SCETþ follows the
same logic, but we now have to take into account the
presence of the new csoft modes.
We first separateT i for each i into its contributions from

the collinear, csoft, and usoft sectors,

T i ¼ T c
i þT cs

i þT us
i ; (4.18)

where the individual contribution from different sectors are
defined by restricting the sum over particles k in Eq. (4.4)
to a given sector. We will now determine the resulting
measurement and phase space constraints for each sector.
They are most easily obtained by expanding the full-theory
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measurement in Eq. (4.4) using the appropriate momentum
scaling of each mode.

For a collinear mode in sector j with momentum pc
j , the

distance to jet i, q̂i � pc
j , is by definition minimized for

i ¼ j, so

�c
i ðpc

jÞ ¼ 
ij; (4.19)

and therefore

T c
i ¼ 2q̂i �

X
k2i-coll

pk ¼ 2q̂i � Pc
i ¼

si
Qi

; (4.20)

where Pc
i is the total momentum in the i-collinear sector,

and (up to power corrections) si is the total invariant mass
in the i-collinear sector. Note that there are no phase space
constraints from the jet boundaries in the collinear sectors,
which leads to inclusive jet functions, JðsiÞ, in the factori-
zation theorem.

The division of the full measurement for the soft degrees
of freedom between the csoft and usoft sectors is more
complicated and is illustrated in Fig. 3 in the 	–� plane. In
Fig. 3(a) we show the full measurement as determined by
q̂1;2;3 and �1;2;3. The three figures on the right show the

various soft contributions which we will discuss next.
To determine T us

1 , we write the N-jettiness measure for
jet 1 for a usoft mode with momentum pus in terms of the
reference vectors q̂3 and q̂t,

q̂1 � pus ¼ ŝ13
ŝQ

q̂t � pus þ ŝ1t
ŝQ

q̂3 � pus þ ðq̂1Þ?3t
� pus

¼ q̂t � pus½1þOð�tÞ	; (4.21)

where we used the power counting in Eq. (4.8) and the fact
that all components of pus have a common scaling. The
same is true for T 2 and q̂2, which means we can replace
q̂1;2 by q̂t in the usoft contributions T us

i .

To determine the boundary between the jet regions 1 and
2 we have to compare q̂1 � pus with q̂2 � pus. For this
comparison the subleading terms in Eq. (4.21) become
relevant, so we have to be more careful. At the leading
nontrivial order in the power counting this comparison
only depends on the relative orientation of q̂1 and q̂2 in

the transverse direction. To have a simple way of writing
the constraint, we can choose q̂t such that q̂1 and q̂2 are
back-to-back in the ?t transverse plane and define the
angle �tðpusÞ as the angle between q̂1 and pus in that
plane. Then, pus is in region 1 for cos�tðpusÞ> 0 and in
region 2 for cos�tðpusÞ< 0. To summarize, we have

T us
1 ¼ 2q̂t �

X
k2usoft

pk�
us
1 ðpkÞ;

T us
2 ¼ 2q̂t �

X
k2usoft

pk�
us
2 ðpkÞ;

T us
3 ¼ 2q̂3 �

X
k2usoft

pk�
us
3 ðpkÞ; (4.22)

where the boundaries are given by

�us
1 ðpÞ ¼ 	ðq̂3 � p� q̂t � pÞ	½cos�tðpÞ	;

�us
2 ðpÞ ¼ 	ðq̂3 � p� q̂t � pÞ	½� cos�tðpÞ	;

�us
3 ðpÞ ¼ 	ðq̂t � p� q̂3 � pÞ: (4.23)

These are illustrated in Fig. 3(b). The hatching in regions 1
and 2 denotes the fact that T us

1;2 are defined in terms of the

common q̂t rather than their own q̂1 or q̂2.
Note that the standard 2-jet soft function depends on

only two variables, whereas ours depends on three.
However, the only information about q̂1;2 that is retained

in the usoft measurement is their collective direction, given
by q̂t, and their relative orientation, given by �t. In par-
ticular, the usoft measurement contains no information
about the angle between q̂1 and q̂2, or equivalently ŝt, at
leading order in the power counting. This is in direct
correspondence with the fact that the usoft modes only
couple to the n1 and n2 collinear sectors through a common
Wilson line in the nt direction. Physically, the usoft modes
are not energetic enough to resolve the difference between
the n1 and n2 directions. As a result, the usoft function will

only be sensitive to the scale T i=
ffiffiffiffiffiffi
ŝQ

p �Q�2 but not

T i=
ffiffiffiffi
ŝt

p �Q��, which is consistent with our expectations
from the physical picture as discussed in Sec. II B.
The nt csoft modes are by definition collinear with jets 1

and 2, so as with collinear modes their scaling implies that

FIG. 3 (color online). Graphical representation of the different measurement functions in the soft sectors in the 	–� plane for the
geometric measure. The regions with different colors represent the phase space regions identified by the �iðpÞ, while the stars
represent the directions of the dimensionless reference vectors q̂i used to calculate the observable. The full 3-jettiness measurement is
shown on the left. The hatching on the right indicates a region where a different reference vector than on the left is used to compute the
3-jettiness observable. The contributions from the different hatched regions cancel on the right.
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they are always closest to either q̂1 or q̂2. Hence, only the
boundary between jets 1 and 2 remains, so the csoft phase
space constraints are

�cs
1 ðpÞ ¼ 	ðq̂2 � p� q̂1 � pÞ;

�cs
2 ðpÞ ¼ 	ðq̂1 � p� q̂2 � pÞ; �cs

3 ðpÞ ¼ 0; (4.24)

and the csoft contributions to T i are given by

T cs
1 ¼ 2q̂1 �

X
k2csoft

pk�
cs
1 ðpkÞ;

T cs
2 ¼ 2q̂2 �

X
k2csoft

pk�
cs
2 ðpkÞ; T cs

3 ¼ 0: (4.25)

The csoft measurement is illustrated in Fig. 3(c). We now
have only two different measurements, T 1 and T 2. In
regions 1 and 2 they are computed with their proper
reference vectors q̂1 and q̂2, reproducing the correct mea-
surement in Fig. 3(a) for jets 1 and 2. At the same time, a
different measurement is made in region 3, as indicated by
the hatching. However, in region 3 the csoft modes are far
away from nt, and so can only have usoft scaling there.
Hence, the zero-bin subtraction of the csoft modes, which
removes the double counting with the usoft modes, will
remove this region of phase space.

Taking the usoft limit of Eq. (4.25) using Eqs. (4.21) and
(4.23), we obtain the csoft zero-bin contribution

T cs0
1 ¼2q̂t �

X
k2csoft!usoft

pk�
cs0
1 ðpkÞ;

T cs0
2 ¼2q̂t �

X
k2csoft!usoft

pk�
cs0
2 ðpkÞ; T cs0

3 ¼0; (4.26)

where the sum runs over all momenta in the csoft sector
that actually have usoft scaling, and

�cs0
1 ðpÞ ¼ 	½cos�tðpÞ	; �cs0

2 ðpÞ ¼ 	½� cos�tðpÞ	:
(4.27)

The pictorial representation of this measurement is shown
in Fig. 3(d). As for the naive csoft, there are only two
different measurements, but as indicated by the hatching in
all regions the measurement is now performed with a
different reference vector than the one used in the full
3-jettiness measurement. The complete csoft contribution
is given by subtracting the zero-bin contributions in
Eq. (4.26) from Eq. (4.25).

From Fig. 3 one can see how the total soft measurement
in the full theory is reproduced by the combination of the
usoft and csoft measurements. The zero-bin csoft measure-
ment cancels both the csoft measurement in region 3 made
with a different reference vector than q̂3 and the usoft
measurements in regions 1 and 2 made with different
reference vectors than q̂1 and q̂2. The remaining csoft
contribution in regions 1 and 2 and usoft contribution in
region 3 make up the correct measurement. To see this,
consider the contribution of a generic soft gluon with

momentum p to T 1. Summing up all its contributions,
we find

ðT cs
1 �T cs0

1 þT us
1 ÞðpÞ

¼ 2q̂1 � p	ðq̂2 � p� q̂1 � pÞ � 2q̂t � p	½cos�tðpÞ	
þ 2q̂t � p	ðq̂3 � p� q̂t � pÞ	½cos�tðpÞ	

¼ 2q̂1 � p½�1ðpÞ þ 	ðq̂2 � p� q̂1 � pÞ	ðq̂1 � p� q̂3 � pÞ	
� 2q̂t � p	½cos�tðpÞ		ðq̂t � p� q̂3 � pÞ

¼ T 1ðpÞ½1þOð�tÞ	; (4.28)

where �1ðpÞ is given in Eq. (4.5). A similar equation is
obtained for T 2. For T 3 we find

ðT cs
3 �T cs0

3 þT us
3 ÞðpÞ

¼ 2q̂3 � p�3ðpÞ þ 2q̂3 � p½	ðq̂t � p� q̂3 � pÞ ��3ðpÞ	
¼ T 3ðpÞ½1þOð�tÞ	: (4.29)

We will see this cancellation again explicitly in our one-
loop calculation below.
To formulate the measurement of T i at the operator

level, we define momentum operators which pick out the
total momentum of all particles in each region according to
Eqs. (4.4), (4.20), (4.22), and (4.25):

P̂i �
X
k

pk�iðpkÞ; P̂c
i �

X
k

pk�
c
i ðpkÞ;

P̂cs
i � X

k

pk�
cs
i ðpkÞ; P̂us

i � X
k

pk�
us
i ðpkÞ: (4.30)

The differential cross section in T 1, T 2, T 3 in SCETþ
is obtained from the forward scattering matrix element of
the operator Oþ

3 in Eq. (3.35),

h0jOþy
3 M3ðT 1;T 2;T 3ÞOþ

3 j0i; (4.31)

with the 3-jettiness measurement function

M 3ðT 1;T 2;T 3Þ ¼
Y
i


ðT i � 2q̂i � P̂iÞ: (4.32)

Using T i ¼ T c
i þT cs

i þT us
i from Eq. (4.18) together

with Eqs. (4.20), (4.22), and (4.25), and the momentum
operators in Eq. (4.30), we can factorize the measurement
function,

M3ðT 1;T 2;T 3Þ

¼
�Y3
i¼1

Z dsi
Qi

McðsiÞ
�Z

dT cs
1 dT

cs
2 M

csðT cs
1 ;T

cs
2 Þ

�
Z
dT us

1 dT us
2 dT us

3 Mus
3 ðT us

1 ;T us
2 ;T us

3 Þ

� Y
i¼1;2




�
T i� si

Qi

�T cs
i �T us

i

�



�
T 3� s3

Q3

�T us
3

�
;

(4.33)
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where the collinear, csoft, and usoft measurement
functions are

McðsiÞ¼
ðsi�Qi2q̂i �Pc
i Þ;

McsðT cs
1 ;T

cs
2 Þ¼

Y
i¼1;2


ðT cs
i �2q̂i � P̂cs

i Þ;

Mus
3 ðT us

1 ;T us
2 ;T us

3 Þ¼
ðT us
3 �2q̂3 � P̂us

3 Þ
� Y

i¼1;2


ðT us
i �2q̂t � P̂us

i Þ: (4.34)

This factorization of the measurement function together
with the factorization of the operator Oþ

3 discussed in

Sec. III C allows us to factorize Eq. (4.31) into separate
collinear, csoft, and usoft matrix elements. This is the
cornerstone in obtaining the factorization theorem for the
differential cross section. The derivation of the final facto-
rization formula now only requires one to properly deal
with the phase space sums over label and residual momen-
tum and to provide an operator definition of all components
in the factorization theorem. The required steps in SCETþ
are straightforward and the same as in SCET, see
Refs. [3,15,16,23,24]. The final factorized cross section,
differential in the T i, t, and z is given by

d�

dT 1dT 2dT 3dtdz

¼ �0

Q2

X
�

H2ðQ2; �ÞH�þðt; z; �ÞY
i

Z
dsiJ�i

ðsi; �Þ

�
Z

dk1dk2S
�þðk1; k2; �Þ

� S2

�
T 1 � s1

Q1

� k1;T 2 � s2
Q2

� k2;T 3 � s3
Q3

; �

�
:

(4.35)

Here, �0 ¼ ð4�2
em=3Q

2ÞNC

P
qQ

2
q is the tree-level cross

section for eþe� ! hadrons.
Since jets initiated by different types of partons are not

distinguished experimentally, we sum over the relevant
partonic channels to produce the observed jets, which are
labeled such that the minimum dijet invariant mass t is s12
and E1 <E2. The sum over partonic channels is denoted
by the sum over � � f�1; �2; �3g, which runs over the four
partonic channels � ¼ fq; g; �qg, fg; q; �qg, f �q; g; qg and
fg; �q; qg. For the first two channels, jets 1 and 2 effectively
arise from a q ! qg splitting, and for the last two from a
�q ! �qg splitting. For each splitting there are two channels,
depending on whether the gluon or (anti)quark has the
larger energy fraction. (The contribution where the quark
and antiquark form the two jets with the smallest invariant
mass does not enter in the sum because it is power
suppressed.)

The hard function H2 is the squared Wilson coefficient
of O2 from matching QCD onto SCET, and in our case is
independent of �. The hard function H�þ is the squared

Wilson coefficient of Oþ
3 from matching SCET onto

SCETþ. The J�i
ðs;�Þ are the standard inclusive jet func-

tions in SCET and the soft functions S2 and S�þ denote the
matrix elements of the usoft and csoft fields, respectively,

S2ðT us
1 ;T us

2 ;T us
3 ; �Þ

¼ 1

NC

h0j �T½Yy
n3Ynt	jiMus

3 ðT us
1 ;T us

2 ;T us
3 ÞT½Yy

ntYn3	ijj0i;

Sfq;g; �qgþ ðT cs
1 ;T

cs
2 ; �Þ

¼ 1

NCCF

h0j �T½Vy
ntXngT

AXy
ngXnq	jiMcsðT cs

1 ;T
cs
2 Þ

� T½Xy
nqXngT

AXy
ngVnt	ijj0i: (4.36)

The soft functions implicitly depend on the reference
vectors q̂i through the combinations ŝQ and ŝt, respec-
tively, which is suppressed in our notation. The definition
for S2 is given for nt and n3 corresponding to a quark and
antiquark, respectively, but S2 itself is independent of �,
i.e., it is the same for q $ �q, which only switches Y $ Yy.
The definition of Sþ is given for � ¼ fq; g; �qg for which
n1 ¼ nq, n2 ¼ g and nt corresponds to a quark. The defi-

nitions for the other channels follow from the obvious
interchanges of the appropriate Wilson lines.
In the next section we discuss all the ingredients in

Eq. (4.35) in detail, and obtain their explicit one-loop
expressions. We also discuss the relation of the hard and
soft functions in Eq. (4.35) to the 3-jet hard and soft
functions in SCET, and derive the structure of the anoma-
lous dimensions of Hþ and Sþ to all orders in perturbation
theory. Readers not interested in these details can skip to
Sec. VI where we give the generalization of Eq. (4.35) to
pp ! N jets or to Sec. VII where we present explicit
numerical results for the dijet invariant-mass spectrum
resulting from Eq. (4.35) at NLL0.

V. PERTURBATIVE RESULTS FOR eþe� ! 3 JETS

To exhibit the color structure and be able to easily
generalize our results in Sec. VI, we will use the standard
color-charge notation, where TA

i denotes the color change
of the ith external parton when coupling to a gluon with
color A. In general Ti � Tj �

P
AT

A
i T

A
j are matrices in the

color space of the external partons. In particular

T2
i ¼ 1Ci where Cq ¼ C �q ¼ CF; Cg ¼ CA: (5.1)

In the following, we will have three external partons, q �qg,
for which the color space is still one dimensional and the
color matrices reduce to numbers,

1 ¼ 1; T2
q ¼ T2

�q ¼ CF; T2
g ¼ CA;

Tq � T �q ¼ CA

2
� CF; Tq; �q � Tg ¼ �CA

2
: (5.2)
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A. Hard functions

As discussed in Secs. II B and III Cfor the jet configu-
ration in Fig. 2 we are interested in, the matching onto the
operator Oþ

3 proceeds in two steps. This allows the depen-

dence on the two parametrically different scales, t ¼
s12 � s13 � s23 �Q2 to be separated.

In the first step we match at the hard scale Q from QCD
onto SCET as shown in Fig. 1(b). In our case we match the
QCD current, �c��c , onto the SCET two-jet operator,
O2 ¼ ��nt

��
?�n �q

, by computing and comparing the q �q

matrix elements in both theories,

M QCDð0 ! q �qÞ ¼ C2ðQ2; �Þhq �qjO2ð�Þj0i: (5.3)

Here, O2ð�Þ denotes the MS renormalized operator. This
matching is well known (see, e.g., Ref. [3] for a detailed
discussion) and was first performed at one loop in
Refs. [25,26]. The resulting matching coefficient is

C2ðQ2; �Þ ¼ 1þ �sð�ÞCF

4

�
�ln2

��Q2 � i0

�2

�

þ 3 ln

��Q2 � i0

�2

�
� 8þ 2

6

�
; (5.4)

and satisfies the renormalization group evolution (RGE)
equation

�
d

d�
C2ðQ2; �Þ ¼ �C2

ðQ2; �ÞC2ðQ2; �Þ: (5.5)

The one-loop anomalous dimension is given by

�C2
ðQ2; �Þ ¼ �sð�ÞCF

4

�
4 ln

�Q2 � i0

�2
� 6

�
: (5.6)

The hard function H2ðQ2; �Þ in Eq. (4.35) and its anoma-
lous dimension are given by

H2ðQ2; �Þ ¼ jC2ðQ2; �Þj2;
�H2

ðQ2; �Þ ¼ 2Re½�C2
ðQ2; �Þ	: (5.7)

We then run down to the scale
ffiffi
t

p
, and match from O2 in

SCET to theOþ
3 operator in SCETþ, as shown in Fig. 1(b).

In principle, this matching is computed in an analogous
way by calculating the relevant 3-parton matrix elements in
both theories (suppressing any spin indices),

hq �qgjO2ð�Þj0i ¼ C�þðt; x; �Þhq �qgjOþ
3 ð�Þj0i: (5.8)

The full one-loop calculation for the matrix element of O2

is quite involved. However, we can extract the one-loop
result for the hard function H�þ, given by

H�þðt; x; �Þ ¼ jC�þðt; x; �Þj2; (5.9)

using the known one-loop result for eþe� ! 3 jets from
Ref. [27]. Since the operator matching Eq. (5.3) is inde-
pendent of the final state, it follows that2

jMQCDð0 ! q �qgÞ2js12�s13�s23

¼ H2ðQ2; �Þjhq �qgjO2ð�Þj0ij2
¼ H2ðQ2; �ÞH�þðt; x; �Þjhq �qgjOþ

3 ð�Þj0ij2: (5.10)

In pure dimensional regularization, the virtual one-loop
corrections to the bare Oþ

3 matrix element are scaleless

and vanish. Hence, the renormalized matrix element of
Oþ

3 ð�Þ on the right-hand side is given by the tree-level

result plus the counter-term contribution, which effectively
supplies the proper 1=� divergences to cancel the IR
divergences in the left-hand side matrix element. The
remaining finite terms then determine the one-loop correc-
tions to H�þð�Þ.
For � ¼ fq; g; �qg, we take t ¼ sqg, s13 ¼ sq �q, s23 ¼ s �qg.

Expanding the one-loop virtual corrections for
jMQCDð0 ! q �qgÞj2 from Ref. [27] in the limit t � Q2

with sq �q ¼ xQ2 and s �qg ¼ ð1� xÞQ2 [see Eq. (4.12)], and

combining them with the one-loop corrections to
H2ðQ2; �Þ, we find

Hfq;g; �qg
þ ðt;x;�Þ

¼Q2�sð�ÞCF

2

1

t

1þx2

1�x

�
1þ�sð�Þ

2

��
CA

2
�CF

�

�
�
2ln

t

�2
lnxþ ln2xþ2Li2ð1�xÞ

�

�CA

2

�
ln2

t

�2
�72

6
þ2ln

t

�2
lnð1�xÞ

þ ln2ð1�xÞþ2Li2ðxÞ
�
þðCA�CFÞ 1�x

1þx2

��
: (5.11)

The overall factor of Q2 here is included to make Hþ
dimensionless. Note that at tree level Hþ takes the form
of the common q ! qg splitting function. As discussed
below Eq. (6.18), beyond tree level it is related to universal
splitting amplitudes (which are not the same as splitting
functions). The results for the other partonic channels are
given by

Hf �q;g;qg
þ ðt; x; �Þ ¼ Hfq;g; �qg

þ ðt; x; �Þ;
Hfg;q; �qg

þ ðt; x; �Þ ¼ Hfg; �q;qg
þ ðt; x; �Þ ¼ Hfq;g; �qg

þ ðt; 1� x;�Þ:
(5.12)

2Since we are only interested in the cross section integrated
over angles, we can consider the spin-averaged matrix element,
which removes the dependence on the azimuthal angle in the
q ! qg splitting. Including this dependence requires to explic-
itly take into account the spin structure of Oþ

3 .
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They follow from the fact that jMQCDð0 ! q �qgÞj2 is

symmetric under the interchange q $ �q. The hard function
Hþ satisfies the RGE

�
d

d�
H�þðt; x; �Þ ¼ ��

Hþðt; x; �ÞH�þðt; x; �Þ: (5.13)

At one loop we find for � ¼ fq; g; �qg using Eq. (5.11)

�fq;g; �qg
Hþ ðt; x; �Þ ¼ �sð�Þ

2

�
2CA ln

t

�2
þ 4

�
CF � CA

2

�
lnx

þ 2CA lnð1� xÞ � �0

�
; (5.14)

where �0 ¼ ð11CA � 4TFnfÞ=3. For general �, the

anomalous dimension can be written as

��
Hþðt; x; �Þ ¼ ��sð�Þ

2

�
4T1 � T2 ln

t

�2
þ 4T1 � T3 lnx

þ 4T2 � T3 lnð1� xÞ þ �0

�
: (5.15)

Its all-order structure is derived from consistency in
Sec. VD.

B. Jet functions

The jet functions are given by the matrix elements of
collinear fields, and are the standard inclusive jet functions
as in many other SCET applications. We give the one-loop

renormalized jet function in MS for completeness [28–31]

Jqðs;�Þ¼
ðsÞþ�sð�ÞCF

4

�
4

�2
L1

�
s

�2

�
� 3

�2
L0

�
s

�2

�

þð7�2Þ
ðsÞ
�
;

Jgðs;�Þ¼
ðsÞþ�sð�Þ
4

�
CA

4

�2
L1

�
s

�2

�
��0

1

�2
L0

�
s

�2

�

þ
��

4

3
�2

�
CAþ5

3
�0

�

ðsÞ

�
; (5.16)

where �0 ¼ ð11CA � 4TFnfÞ=3 and LnðxÞ denotes the

standard plus distribution,

L nðxÞ ¼
�
	ðxÞlnnx

x

�
þ
: (5.17)

The jet functions satisfy the RGE

�
d

d�
Jiðs;�Þ ¼

Z
ds0�i

Jðs� s0; �ÞJiðs0; �Þ; (5.18)

with the anomalous dimensions

�i
Jðs; �Þ ¼ �2Ci�cusp½�sð�Þ	 1

�2
L0

�
s

�2

�

þ �i
J½�sð�Þ	
ðsÞ; (5.19)

where �cusp½�s	 is the universal cusp anomalous dimension

[32] given in Eq. (C8), and the noncusp terms are given in
Eq. (C13).

C. Soft functions

The usoft and csoft functions describe the contributions
to the observable from particles softer than the jet energies.
Unlike collinear modes which contribute to only a single
jet, the soft modes can contribute to all jets. This means
that these modes are sensitive to the invariant masses sij
between jets. The csoft modes, while having smaller en-
ergy than the collinear modes, have collinear scaling and
are needed to describe the soft interactions between the
nearby pair of jets, because the usoft modes have too small
energy to resolve these two jets. The results for the soft
functions can be written for general �, i.e., without having
to specify a particular channel, since the dependence on the
parton species solely arises through the SU(3) color repre-
sentations of the Wilson lines.

1. The ultra-soft function S2

The operator definition of the usoft function S2 is given
in Eq. (4.36), with the measurement function given in
Eq. (4.34). At one loop, the relevant integral we have to
compute is

� 2ðT1 þ T2Þ � T3

�
e�E�2

4

�
�
g2

Z ddp

ð2Þd 2
ðp
2Þ	ðp0Þ

� n3 � nt
ðn3 � pÞðnt � pÞM

us
3 ðk1; k2; k3Þ: (5.20)

For the color factor we have used that with respect to the
external 3-parton color space, the total color charge carried
by the nt Wilson line is T1 þ T2, i.e., the combined color
of partons 1 and 2.
The usoft region for jets 1 and 2 is determined by

Eq. (4.23), where the boundary between jet 3 and jets 1
and 2 depends only on q̂t and q̂3. The division of the
combined nt region between jets 1 and 2 is given by the
additional 	½� cos�tðpÞ	, whose only effect is to divide
the azimuthal integral in half. In d ¼ 4� 2� dimensions
one gets

Z =2

0
d�tsin

�2��t

¼
Z 

=2
d�tsin

�2��t ¼ 1
2

Z 

0
d�tsin

�2��t: (5.21)

Hence, the nt hemisphere contribution is split in half
between jets 1 and 2.
The final result for the renormalized usoft function at

NLO is
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S2ðk1; k2; k3; �Þ ¼ 
ðk1Þ
ðk2Þ
ðk3Þ þ �sð�Þ
4

ðT1 þ T2Þ � T3

�
8ffiffiffiffiffiffi
ŝQ

p
�

�
1

2
L1

�
k1ffiffiffiffiffiffi
ŝQ

p
�

�

ðk2Þ
ðk3Þ

þ 1

2
L1

�
k2ffiffiffiffiffiffi
ŝQ

p
�

�

ðk1Þ
ðk3Þ þL1

�
k3ffiffiffiffiffiffi
ŝQ

p
�

�

ðk1Þ
ðk2Þ

�
� 2

3

ðk1Þ
ðk2Þ
ðk3Þ

�
; (5.22)

which is simply the sum of two hemisphere contributions.
We can see explicitly that S2 depends only on the scale
ki=

ffiffiffiffiffiffi
ŝQ

p
. It satisfies the RGE

�
d

d�
S2ðk1; k2; k3; �Þ

¼
Z

dk01dk
0
2dk

0
3�S2ðk1 � k01; k2 � k02; k3 � k03; �Þ

� S2ðk01; k02; k03; �Þ; (5.23)

where the anomalous dimension at one loop is given by

�S2ðk1; k2; k3; �Þ

¼ ��sð�Þ
4

ðT1 þ T2Þ � T3

4ffiffiffiffiffiffi
ŝQ

p
�

�
L0

�
k1ffiffiffiffiffiffi
ŝQ

p
�

�

ðk2Þ
ðk3Þ

þL0

�
k2ffiffiffiffiffiffi
ŝQ

p
�

�

ðk1Þ
ðk3Þ þ 2L0

�
k3ffiffiffiffiffiffi
ŝQ

p
�

�

ðk1Þ
ðk2Þ

�
:

(5.24)

2. The collinear-soft function Sþ
The definition of the csoft function Sþ in terms of a

matrix element of Wilson lines is given in Eq. (4.36), with
the measurement function given in Eq. (4.34). The calcu-
lation for Sþ is more nontrivial due to additional csoft
Wilson lines Vnt , and we therefore provide some more

details.
There are two basic types of diagrams at one loop, shown

in Fig. 4. In the diagrams shown in Figs. 4(a) and 4(b), a
gluon is exchanged between theXWilson lines in then1 and
n2 directions,which corresponds to a csoft gluon exchanged
between the nearby jets. These diagrams are the same as in a
usual soft-function calculation. The analogous virtual dia-

grams vanish in pure dimensional regularization, and the
diagrams with the gluon attaching to the same Wilson line
vanish due to n2 ¼ 0. The diagrams do not require a
zero-bin subtraction, and their contribution to the one-
loop renormalized csoft function is the usual hemisphere
contribution

S�ð1Þþ;12ðk1;k2;�Þ¼�sð�Þ
4

T1 �T2

�
8ffiffiffiffi
ŝt

p
�
L1

�
k1ffiffiffiffi
ŝt

p
�

�

ðk2Þ

þ 8ffiffiffiffi
ŝt

p
�
L1

�
k2ffiffiffiffi
ŝt

p
�

�

ðk1Þ�2

3

ðk1Þ
ðk2Þ

�
:

(5.25)

Similarly, the contribution to the anomalous dimension
from this diagram is the hemisphere contribution,

��
Sþ;12ðk1; k2; �Þ

¼ ��sð�Þ
4

T1 � T2

8ffiffiffiffi
ŝt

p
�

�
L0

�
k1ffiffiffiffi
ŝt

p
�

�

ðk2Þ

þL0

�
k2ffiffiffiffi
ŝt

p
�

�

ðk1Þ

�
: (5.26)

The second type of diagram comes from exchange of a
gluon between the V and X Wilson lines, as shown in
Figs. 4(c) and 4(d). These diagrams have a nontrivial usoft
limit, which means we must perform a zero-bin subtraction
to remove double counting. As discussed in Sec. III, the
zero-bin limit is obtained by expanding n1 in terms of nt,
with the zero-bin measurement obtained from Eq. (4.26).
We focus on gluon exchange between Vnt and Xn1 ; the

results for changing n1 ! n2 are analogous. Subtracting
the zero-bin contribution from the naive part of the
diagram yields

FIG. 4 (color online). One-loop diagrams for Sþ. The vertical line denotes the final-state cut. There are also diagrams analogous to
(c) and (d) with the gluon coupling to the n2 Wilson lines. Virtual diagrams and diagrams with the gluon coupling to the same Wilson
line are not shown.
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� 2T1 � T3

�
e�E�2

4

�
�
g2

Z ddp

ð2Þd 2
ðp
2Þ	ðp0Þ

�
�

�nt � n1
ð �nt � pÞðn1 � pÞM

csðk1; k2Þ

� �nt � nt
ð �nt � pÞðnt � pÞM

cs0ðk1; k2Þ
�
: (5.27)

Here, T1 is the color charge carried by Xn1 . Since Sþ is

diagonal in color, the color charge carried by Vnt is�T1 �
T2 ¼ T3. The result for Eq. (5.27) can be extracted using
the results of Ref. [7] in the limit ŝt � ŝQ. We split up the

phase space for the naive and zero-bin csoft contribution
into regions q̂3 � p > q̂1 � p and q̂3 � p < q̂1 � p, where in
the latter region the naive and zero-bin contributions
cancel. In the region q̂3 � p > q̂1 � p the naive csoft con-
tribution is given by the sum of the hemisphere and non-

hemisphere contributions Sð1Þ13;hemi þ Sð1Þ13;2 of Ref. [7]

expanded in the limit ŝt � ŝQ. It is straightforward to

calculate the zero-bin contribution in Eq. (5.27) for q̂3 �
p > q̂1 � p. Taking the difference between these terms
gives the total contribution to the renormalized one-loop
Sþ function from Vnt and Xn1 exchange

S�ð1Þþ;13ðk1; k2; �Þ ¼ �sð�Þ
4

T1 � T3

�
4ffiffiffiffi
ŝt

p
�
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�
k1ffiffiffiffi
ŝt
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� 4ffiffiffiffi
ŝt

p
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�
k2ffiffiffiffi
ŝt

p
�
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� 22

3

ðk1Þ
ðk2Þ

�
: (5.28)

The corresponding contribution to the anomalous
dimension is

��
Sþ;13ðk1; k2; �Þ ¼ ��sð�Þ

4
T1 � T3

4

�

�
L0

�
k1
�

�

ðk2Þ

�L0

�
k2
�

�

ðk1Þ

�
; (5.29)

where � is a dimension-one dummy variable which is only
needed to make the argument of L0 dimensionless, but
cancels between the two terms. The analogous contribution
with a gluon exchanged between Vnt and the n2 Wilson line

is the same with the replacement 1 $ 2.
Combining everything, the final result for the one-loop

renormalized Sþ function becomes
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k1ffiffiffiffi
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ðk2Þ

��
: (5.30)

We can see explicitly that Sþ depends only on the scales ki=
ffiffiffiffi
ŝt

p
. The RGE for Sþ has the form

�
d

d�
S�þðk1; k2; �Þ ¼

Z
dk01dk

0
2�

�
Sþðk1 � k01; k2 � k02; �ÞS�þðk01; k02; �Þ; (5.31)

where the one-loop anomalous dimension is given by

��
Sþðk1; k2; �Þ ¼ ��sð�Þ
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k1ffiffiffiffi
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k2ffiffiffiffi
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�
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ðk1Þ

��
: (5.32)

3. Soft functions with single argument

For our numerical analysis in Sec. VII we project the soft functions onto the sum of their arguments,

S2ðk;�Þ ¼
Z

dk1dk2dk3S2ðk1; k2; k3; �Þ
ðk� k1 � k2 � k3Þ;

Sþðk;�Þ ¼
Z

dk1dk2S
�þðk1; k2; �Þ
ðk� k1 � k2Þ: (5.33)

From Eqs. (5.22) and (5.30), we obtain their NLO expressions,

S2ðk;�Þ ¼ 
ðkÞ þ �sð�ÞCF

4

�
� 16ffiffiffiffiffiffi
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8ffiffiffiffi
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�
: (5.34)
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Note that this projection removes the dependence on
ðT1 � T2Þ � T3, which makes Sþðk;�Þ independent of �.
The single-argument soft functions satisfy the RGE

�
d

d�
Sðk;�Þ ¼

Z
dk0�Sðk� k0; �ÞSðk0; �Þ; (5.35)

where the anomalous dimensions after projecting onto k
simplify to

�S2ðk;�Þ ¼ �sð�ÞCF

4

16ffiffiffiffiffiffi
ŝQ

p
�
L0

�
kffiffiffiffiffiffi
ŝQ

p
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�
;

�Sþðk;�Þ ¼ �sð�ÞCA

4

8ffiffiffiffi
ŝt

p
�
L0

�
kffiffiffiffi
ŝt

p
�

�
: (5.36)

D. All-order anomalous dimensions

In this section we discuss the consistency constraints on
our factorized cross section in Eq. (4.35). This allows us to
derive the general form of the anomalous dimensions for
the SCETþ matching coefficient, Cþ, and csoft function,
Sþ, which are the new ingredients in the factorization from
SCETþ. In particular, we demonstrate that the convolution
of the csoft and usoft functions at one loop reproduces the
known result for the 3-jettiness soft function in regular
SCET in the limit s12 � s13 � s23. This demonstrates
that the csoft modes are necessary for SCETþ to reproduce
the correct IR structure of QCD in this limit. We then show
that the factorized cross section obeys exact renormaliza-
tion group consistency.

1. Hard-function consistency and derivation of �Cþ

The factorized 3-jettiness cross section in SCET is given
by [7]

d�

dT 1dT 2dT 3dtdz

¼ �0

Q2

X
�

H�
3 ðs12; s13; s23; �ÞY

i

Z
dsiJ�i

ðsi; �Þ

� S�3

�
T 1 � s1

Q1

;T 2 � s2
Q2

;T 3 � s3
Q3

; �

�
: (5.37)

Here, all dijet invariant masses are counted as sij �Q2.

This means that the hard function, H�
3 , is evaluated at their

exact values given in terms of t and z,

s12 ¼ t; s13 ¼ zQ2 � ð1� zÞt;
s23 ¼ ð1� zÞQ2 � zt; (5.38)

which follow from momentum conservation for eþe� ! 3
massless jets. At tree level,

Hfq;g; �qg
3 ðs12; s13; s23; �Þ

¼ �sð�ÞCF

2

ðs13 þ s23Þ2 þ ðs12 þ s13Þ2
s12s23

: (5.39)

In SCET, all loop diagrams contributing to the bare
matrix element of hqg �qjO3j0i vanish in pure dimensional
regularization, and consequently the 3-jet hard-function in
SCET, H3ðfsijg; �Þ, is directly given by the IR-finite

terms of the full QCD amplitude jMQCDð0 ! q �qgÞj2.
Comparing with Eq. (5.10), it follows that the hard func-
tions in SCET and SCETþ to all orders in perturbation
theory have to satisfy

H�
3 ðfsijg; �Þjs12�s13�s23 ¼ H2ðQ2; �ÞH�þðt; x; �Þ: (5.40)

At tree level, this can be seen immediately: to expand
Eq. (5.39) in the limit s12 � s13 � s23, we set s13 ¼ xQ2,
s23 ¼ ð1� xÞQ2 [see Eq. (4.12)], and t ¼ s12 and drop any
terms subleading in t=Q2, which gives the tree-level result

for Hfq;g; �qg
þ ðt; x; �Þ in Eq. (5.11).

The above argument also applies directly to the Wilson
coefficients before squaring them, so

C�
3 ðfsijg; �Þjs12�s13�s23 ¼ C2ðQ2; �ÞC�þðt; x; �Þ: (5.41)

Taking the derivative with respect to �, it follows that

��
C3
ðfsijg;�Þjs12�s13�s23 ¼�C2

ðQ2;�Þþ��
Cþðt;z;�Þ: (5.42)

The general all-order forms of the anomalous dimensions
�C2

and ��
C3

are [25,33,34]

�C2
ðQ2; �Þ ¼ ��cusp½�sð�Þ	ðT1 þ T2Þ � T3 ln

�Q2 � i0

�2

þ �q
C½�sð�Þ	 þ � �q

C½�sð�Þ	;

��
C3
ðfsijg; �Þ ¼ ��cusp½�sð�Þ	X

i<j

Ti � Tj ln
�sij � i0

�2

þ �q
C½�sð�Þ	 þ � �q

C½�sð�Þ	 þ �g
C½�sð�Þ	;

(5.43)

where the individual quark and gluon contributions in the
noncusp terms are given in Eq. (C14). Compared to
Eq. (5.6) we have identified the color structure in �C2

as

T t � T3jq �q ¼ ðT1 þ T2Þ � T3jq �qg ¼ �CF: (5.44)

Here Tt denotes the combined color charge of the quark or
antiquark that splits into partons 1 and 2, and Tt � T3 is
evaluated in the corresponding 2-parton q �q color space,
i.e., Tq � T �qjq �q ¼ �CF. In the second step, we wrote the

same total color charge using the individual color charges
of the daughter partons 1 and 2, which are now evaluated
with respect to the 3-parton q �qg color space. Explicitly,
using Eq. (5.2) we have ðTq þ TgÞ � T �qjq �qg ¼ ðCA=2�
CFÞ � CA=2 ¼ �CF, and with the same result for q $ �q.
Using Eqs. (5.42) and (5.43) and expanding ��

C3
, we

obtain the general form of ��
Cþ , valid to all orders in

perturbation theory,
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��
Cþðt; x; �Þ ¼ ��cusp½�sð�Þ	T1 � T2 ln

�t� i0

�2

þ ��
Cþ½�sð�Þ; x	;

��
Cþ½�s; x	 ¼ ��cusp½�s	½T1 � T3 lnxþ T2 � T3 lnð1� xÞ	

þ �g
C½�s	: (5.45)

Note that this provides a nontrivial example of a hard
anomalous dimension, where the nonlogarithmic term,
�Cþ½�s; x	, depends on a kinematic variable, whose overall

coefficient however is still determined by �cusp. At one

loop, Eq. (5.45) reproduces Eq. (5.15) exactly using that
��
Hþðt; x; �Þ ¼ 2Re½��

Cþðt; x; �Þ	.

2. Soft-function consistency and derivation of �Sþ

In Secs. II and III we have seen that SCETþ arises from
expanding SCET in the limit t � Q. It follows that the
SCETþ 3-jet cross section in Eq. (4.35) has to reproduce
the 3-jet cross section Eq. (5.37) computed in SCET when
the latter is expanded in the limit s12 � s13 � s23,

d�SCETjs12�s13�s23 ¼ d�SCETþ : (5.46)

(This is exactly analogous to the statement that the SCET
cross section must reproduce the QCD cross section ex-
panded in the limit m � Q.) As we have seen above, the
product of hard functions in SCETþ reproduces the full
SCET hard function, and the jet functions are the same in
both cases. Hence, for the cross sections to satisfy
Eq. (5.46), the soft functions have to satisfy

S�3 ðk1;k2;k3;�Þjŝt�ŝ13¼ŝ23

¼
Z
dk01dk02S2ðk1�k01;k2�k02;k3;�ÞS�þðk01;k02;�Þ: (5.47)

For the soft functions the limit s12 � s13 � s23 is taken
using Eq. (4.8) by setting ŝt ¼ ŝ12, ŝ13 ¼ ŝ23 ¼ ŝQ and

expanding in ŝt � ŝQ.
The fact that the hard and soft functions separately

factorize in the limit t � Q as in Eqs. (5.41) and (5.47)
is a direct consequence of factorization in SCET and
SCETþ. Since the soft sectors in both theories are de-
coupled from the collinear sectors, the soft sector of
SCETþ has to reproduce the soft sector of SCET expanded
in t � Q. Since the factorization applies also in the kine-
matic region where the soft functions become nonpertur-
bative, the relation in Eq. (5.47) between the soft functions
in the two theories holds both at the perturbative and also
the nonperturbative level.
We can check explicitly that Eq. (5.47) is satisfied by our

one-loop results. Since SCET correctly reproduces the IR
structure of QCD, this also provides an explicit demon-
stration at the one-loop level that the csoft modes are
necessary to reproduce the IR structure of QCD in the limit
m � t � Q, and thus that SCETþ is the appropriate ef-
fective theory of QCD in this limit.
The full N-jettiness soft function at NLO has been

calculated explicitly in Ref. [7], where the final result is
given in terms of a single integral, which can be
evaluated numerically. In Ref. [35] a general algorithm
was developed to calculate a wide class of soft func-
tions with an arbitrary number of collinear directions
numerically. In the limit ŝt � ŝQ, the required integrals

for S�3 in Ref. [7] can be obtained analytically, and we

find

S�3 ðk1;k2;3 ;�Þjŝt�ŝ13¼ŝ23 ¼
ðk1Þ
ðk2Þ
ðk3Þþ�sð�Þ
4
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8ffiffiffiffi
ŝt
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(5.48)

Here, the first three terms proportional to Ti � Tj are the hemisphere contributions, which contain the explicit �
dependence. The last two terms come from the nonhemisphere contributions, where the dummy variable � again cancels
between the two terms and is only needed to make the argument ofL0 dimensionless. As a cross check, we have compared
this result with the numerical result obtained using Ref. [35], and the two agree in the limit ŝt � ŝ13 ¼ ŝ23 ¼ ŝQ. As
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expected, this soft function depends on both ŝt and ŝQ, and there is no choice of renormalization scale for which the
logarithms of ŝt=ŝQ are absent.

Since the soft functions at tree level are all just 
 functions, Eq. (5.47) simplifies at one loop to

S�ð1Þ3 ðk1; k2; k3; �Þjŝt�ŝ13¼ŝ23 ¼ Sð1Þ2 ðk1; k2; k3; �Þ þ S�ð1Þþ ðk1; k2; �Þ
ðk3Þ: (5.49)

Subtracting the �s corrections in Eqs. (5.30) and (5.22) from those in Eq. (5.48), the terms proportional to T1 � T2 and those
involving L1ðk3Þ or only 
 functions immediately cancel. For the remaining terms, we obtain

�sð�Þ
4
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ŝQ
ŝt
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ŝt

p
�

�

ðk2Þ �L1

�
k2ffiffiffiffi
ŝt
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��
¼ 0; (5.50)

where we used the rescaling identity

�L1ð�xÞ ¼ L1ðxÞ þ ln�L0ðxÞ þ 1

2
ln2�
ðxÞ: (5.51)

Thus, Eq. (5.47) is satisfied by our one-loop results.
We can also use Eq. (5.47) to derive the all-order structure of the anomalous dimension of Sþ. Taking the derivative of

Eq. (5.47) with respect to �, we get

��
S3
ðk1; k2; k3; �Þjŝt�ŝ13¼ŝ23 ¼ �S2ðk1; k2; k3; �Þ þ ��

Sþðk1; k2; �Þ
ðk3Þ: (5.52)

The all-order structure of the anomalous dimension of the N-jettiness soft function was derived in Ref. [7]. For ��
S3
in this

limit we have
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ŝQ

p
�

�

ðk2Þ

�

ðk1Þ

�
þ��

S3
½�sð�Þ	
ðk1Þ
ðk2Þ
ðk3Þ:

(5.53)

To deduce the all-order structure for �S2 , we first note that upon projecting S2ðk1; k2; k3Þ onto kt ¼ k1 þ k2,

S2ðkt; k3; �Þ ¼
Z

dk1dk2S2ðk1; k2; k3; �Þ
ðkt � k1 � k2Þ; (5.54)

it reduces to the normal 2-jettiness soft function. Therefore, we know that to all orders

Z
dk1dk2�S2ðk1; k2; k3;�Þ
ðkt� k1� k2Þ
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ðk3Þ: (5.55)

From its definition, we know that the full S2ðk1; k2; k3Þ is symmetric in k1 and k2, and since the distinction between k1 and
k2 only comes from the measurement function, this symmetry cannot be changed by the renormalization and the
anomalous dimension must therefore also be symmetric in k1 and k2. Furthermore, from Eq. (5.52) we know that the
dependence on k3 must exactly cancel between �S2 and �

�
S3
. The most general form of �S2 that satisfies these requirements,

Eq. (5.55), and is only single logarithmic in � is
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ðk3Þ: (5.56)

The noncusp terms in Eqs. (5.53) and (5.56) are
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��
S3
½�s	 ¼ � X

i¼fq; �q;gg
ð�i

J½�s	 þ 2�i
C½�s	Þ ¼ 0þOð�2

sÞ;

�S2½�s	 ¼ � X
i¼fq; �qg

ð�i
J½�s	 þ 2�i

C½�s	Þ ¼ 0þOð�2
sÞ; (5.57)

where �i
J½�s	 and �i

C½�s	 are the noncusp terms in the jet and hard anomalous dimensions Eqs. (5.19) and (5.43), and are
given in Eqs. (C13) and (C14). This form of Eq. (5.56) agrees with our one-loop result in Eq. (5.24). Taking the difference
between Eqs. (5.53) and (5.56), we obtain the general form of ��

Sþ ,
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which again agrees with our explicit one-loop result in
Eq. (5.32). The part of the anomalous dimension of Sþ
which does not explicitly depend on � has a more com-
plicated structure than for S2 and S3. It has a nontrivial
color structure and a dependence on the kinematic varia-
bles k1 and k2, which effectively behaves as lnðk1=k2Þ. The
coefficient of that dependence is however still determined
by �cusp. This is the soft analog of what we saw for the
anomalous dimension of Cþ in Eq. (5.45), which contains
terms like lnðs13=Q2Þ ¼ lnðxÞ and lnðs23=Q2Þ ¼ lnð1� xÞ.

3. Combined consistency of factorized cross section

As we have seen above, the sum of the hard and soft
anomalous dimensions in SCETþ each reproduce the hard
and soft anomalous dimension �C2

and �S3 in SCET in the

limit s12 � s13 � s23. The full cross section in Eq. (4.35) is
a physical observable and cannot depend on the arbitrary
renormalization scale �. This implies that the anomalous
dimensions must satisfy the consistency relation

0 ¼ 2Re½�C2
ðQ2; �Þ þ ��

Cþðt; z; �Þ	Y
i


ðkiÞ

þX
i

Qi�
i
JðQiki; �ÞY

j�i


ðkjÞ þ �S2ðk1; k2; k3; �Þ

þ ��
Sþðk1; k2; �Þ
ðk3Þ; (5.59)

which is derived by taking the derivative of Eq. (4.35) with
respect to �, and following the same steps as in Ref. [7] to
derive the analogous relation for the cross section in SCET
given in Eq. (5.37).

Since the SCET cross section satisfies the RGE consis-
tency, we already know that Eq. (5.59) must be satisfied as
well. Nevertheless it is an instructive and straightforward
exercise to show that Eq. (5.59) is indeed satisfied to all
orders by the results for the anomalous dimensions given in
Eqs. (5.19), (5.43), (5.45), (5.56), and (5.58). The cancella-
tion of the different logarithmic dependence in the hard,
jet, and soft functions for the three color structures T1 � T2,
T1 � T3, and T2 � T3, now happens as follows,

0 ¼ � ln
t

�2
þ ln

Q1�

�2
þ ln

Q2�

�2
� ln

�2

�2ŝt
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(5.60)

The lnðQi�=�
2Þ terms are supplied by the jet functions.

Note that this cancellation crucially relies on a consistent
power expansion in �t, as in Eqs. (4.8) and (4.11), which
implies s13 � xQ2 ¼ Q1Q3ŝQ and s23 � ð1� xÞQ2 ¼
Q2Q3ŝQ, so Eq. (5.60) is satisfied exactly without requiring
any further expansion.

VI. GENERALIZATION TO pp ! N JETS

In Secs. IV and V, we have applied our new effective
theory SCETþ to the simple case of eþe� ! 3 jets. This
allowed us to discuss in detail how SCETþ is applied to
derive the factorized cross section, and to obtain all its
ingredients at NLO. In this section, we extend our discus-
sion to the general case of pp ! N jets plus additional
leptons relevant for the LHC. In particular this requires
adding hadrons to the initial state, as well as generalizing
to more final state jets and the resulting more complicated
color structure.
The key ingredients needed to derive the factorization

theorem are the same here as in our 3-jet example in
Sec. IV: We have to define a consistent power-counting,
determine the relevant operators, and show the factoriza-
tion of the measurement function. Many aspects in this
discussion are completely analogous to the 3-jet case, so
we will focus on those where the extension to more jets is
nontrivial, which are the kinematic dependence and the
color structure.
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A. Kinematics and power counting

For our observable we again use N-jettiness defined in
Eq. (4.1). The two beams are included using two reference
momenta qa and qb, which correspond to the momenta of
the incoming partons, and the corresponding dimension-
less reference vectors q̂a;b ¼ qa;b=Qa;b, which determined

the separation between the beam and jet regions (see
Refs. [6,7] for more details). We will consider the cross
section differential in the N-jettiness contributions
T a;T b;T 1; . . . ;T N , where T a;b measure the contribu-

tion from the beam regions. In addition we measure
the small dijet invariant mass t and the energy ratio
z ¼ E1=ðE1 þ E2Þ for the two nearby jets.

As before, we label jets 1 and 2 as the two nearby jets,
and consider the limit in Eq. (2.12), with all jet energies
parametrically of the same size, such that we have

t � s12 � sij �Q2; ŝt � ŝ12 � ŝij � 1: (6.1)

(To have a manageable notation, we specify 1 and 2 to be
two final-state jets. The case where jet 1 is close to a beam,
such that s1a ¼ 2q1 � qa � sij is completely analogous

and does not involve additional complications.)
The power expansion in �2

t ¼ t=Q2 is again defined by
choosing a common reference vector q̂t for jets 1 and 2, as
in Eq. (4.8). This gives

ŝQi � 2q̂t � q̂i ¼ ŝ1i½1þOð�tÞ	 ¼ ŝ2i½1þOð�tÞ	 (6.2)

for each jet i � 1, 2, which generalizes ŝQ from the 3-jet

case. The corresponding dijet invariant masses in the SCET
above

ffiffi
t

p
are then given by

s1i ¼ Q1QiŝQi; s2i ¼ Q2QiŝQi;

sti ¼ ðs1i þ s2iÞ ¼ ½ðq1 þ q2Þ þ qi	2½1þOð�tÞ	; (6.3)

which we can also express as

s1i¼xsti; s2i¼ð1�xÞsti; x¼ Q1

Q1þQ2

: (6.4)

For the geometric measure, Qi ¼ Ei, we have x ¼ z as
before.

The factorization of the measurement function follows
the same logic as in the 3-jet case. By taking the collinear,
csoft, and usoft limits of the full N-jettiness measurement
function, we obtain the generalizations of the measurement
functions in the 3-jet case. The collinear and csoft mea-
surement functions are not affected by the presence of
additional jets and so are unchanged from the 3-jet case.
The generalization of the usoft measurement function for
the N-jet case is given by

Mus
N ðT us

1 ;T us
2 ;T us

a ; . . . ;T us
N Þ

¼ Y
i¼1;2


ðT us
i � 2q̂t � P̂us

i ÞY
i�1;2


ðT us
i � 2q̂i � P̂us

i Þ; (6.5)

where the momentum operator P̂us
i is defined in Eq. (4.30),

and the�us
i ðpÞ are defined by the obvious generalization of

Eq. (4.23),

�us
1 ðpÞ¼ Y

i�1;2

	ðq̂i �p� q̂t �pÞ	½cos�tðpÞ	;

�us
2 ðpÞ¼ Y

i�1;2

	ðq̂i �p� q̂t �pÞ	½�cos�tðpÞ	;

�us
i�1;2ðpÞ¼	ðq̂t �p� q̂i �pÞ

Y
j�1;2;i

	ðq̂j �p� q̂i �pÞ: (6.6)

The reference vectors q̂i for i � 1, 2 can now have a
nonzero component in the transverse plane, and can there-
fore have �t dependence. This implies that the jet regions
for jets 1 and 2 are in general not symmetric (unlike the
3-jet case, where they were symmetric up to power cor-
rections in t=Q2).

B. Factorization

The hard factorization in SCETþ proceeds through the
same basic steps as for the 3-jet case. We first match from
QCD to SCET at the hard scale Q,

MQCDð2 ! N � 1Þ
¼ hN � 1j ~Oy

N�1ð�Þj2i ~CN�1ðfsijg; �Þ; (6.7)

where MQCDð2 ! N � 1Þ is the 2 ! N � 1 QCD ampli-

tude for the process we are interested in, and ~ON�1 is the
corresponding 2 ! N � 1-jet operator in SCET, discussed
below. We will again use � to denote the dependence on a
specific partonic channel when needed, but to simplify the
notation, we mostly suppress the label � in what follows.

As before, the bare loop diagrams of ~ON�1 vanish in pure
dimensional regularization, so including counterterms the

renormalized matrix element of ~ON�1 equals the tree-level
result plus pure 1=� IR divergences which precisely cancel
against the IR divergences in the QCD amplitude.

Therefore, to all orders in perturbation theory, ~CN�1 is
given by the finite parts of MQCDð2 ! N � 1Þ.
The operator ~ON�1 in the matching in Eq. (6.7) has the

form

~Oy
N�1 ¼ �½Cnt	½Cna	½Cnb	½Cn3	 . . . ½CnN 	

� ½YntYnaYnbYn3 . . .YnN 	: (6.8)

We let Cni denote a (usoft-decoupled) gauge-invariant col-
linear field in the ni direction, which can be a collinear
quark, antiquark, or gluon, and � represents the spin struc-
ture connecting the different fields together. In general
there are many such structures possible, so Eq. (6.8) really
represents a set of operators. As before, jets 1 and 2 are
described by a single collinear field Cnt in the nt direction,

Cna and Cnb are the fields for the incoming partons, and Cn3
to CnN are the fields for the outgoing partons that initiate the
remaining final-state jets for i 
 3. The usoft Wilson lines
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are written generically as Yni without any reference to their

particular color representation.

The operator ~ON�1 and Wilson coefficient ~CN�1 in
Eqs. (6.7) and (6.8) are now vectors in the color space
spanned by the 2þ N � 1 external partons, as indicated by
the vector symbols. That is,

~O
y
N�1

~CN�1 � O
y�t...�N

N�1 C
�t...�N

N�1 ; (6.9)

where �i is the color index of the ith external particle. The
product of all usoft Wilson lines in Eq. (6.8) is a matrix in
the same color space,

Ŷ � ½Ynt . . .YnN 	�t...�N j�t...�N : (6.10)

The vertical bar separates the column indices (on the left)
and row indices (on the right) of the matrix. The color
charges TA

k act in the external color space as

ðTA
k
~CÞ...ik... ¼ TA

ikjk
C...jk...; ðTA

k
~CÞ...ik... ¼ �TA

jkik
C...jk...;

ðTA
k
~CÞ...Ak... ¼ ifAkABkC...Bk...; (6.11)

where the three lines are for the kth particle being an
outgoing quark or incoming antiquark, an incoming quark
or outgoing antiquark, or a gluon, respectively. The prod-
ucts Ti � Tj ¼

P
AT

A
i T

A
j are matrices in color space. From

Eq. (6.11) it is clear that Ti for different i commute.
In the next step we match from SCET to SCETþ at the

scale
ffiffi
t

p
. From the construction of the effective theory in

Sec. III, it should be clear that the relevant operator in
SCETþ is constructed out of N þ 2 collinear fields, for the
two incoming and N outgoing partons in the hard interac-
tion, csoft fields that interact with the collinear fields in
directions 1 and 2, and usoft fields that interact with all
collinear degrees of freedom. The 2 ! N-jet operator in

SCETþ, ~Oþ
N , is obtained from Eq. (6.8) by the analogous

replacement as in Eq. (3.33),

C �t
nt ! C�1

n1 C
�2
n2 T

�1�2j�t
t V�tj�t

nt

! ½Cn1	�1½Cn2	�2½Xn1Xn2TtVnt	�1�2j�t : (6.12)

In the second line we performed the csoft decoupling
Eq. (3.25), which produces the csoft Wilson lines Xn1 and

Xn2 (dropping the superscripts that distinguish the fields

before and after the field redefinition). The color generator
Tt is contracted with the color indices of the daughter fields
as shown in the first line of Eq. (6.12). From the product of
csoft Wilson lines we define

X̂ � ½Xn1Xn2TtVnt	�1�2j�t1�a...�N j�a...�N ; (6.13)

which is a color space matrix that takes us from (N þ 1)-

parton to (N þ 2)-parton color space, and 1�a...�N j�a...�N ¼

�a�a . . .
�N�N denotes the identity in the remaining
N-parton color space for partons a; b; 3; . . . ; N. The opera-

tor ~Oþ
N then has the form

~O
þy
N ¼ �½Cn1	½Cn2	½Cna	 . . . ½CnN 	½X̂	½Ŷ	; (6.14)

where the product of all collinear fields is a row vector in
(N þ 2)-parton color space. We have grouped the different
factors in square brackets belonging to different sectors,
which do not interact with one another through the leading-
order SCETþ Lagrangian in Sec. III.
The matching from SCET to SCETþ takes the form

hNj ~Oy
N�1ð�Þj2i ¼ hNj ~Oþy

N ð�Þj2iCþðt; x; �Þ: (6.15)

Since ~ON�1 and ~Oþ
N are both vectors in color space, in

principle Cþ could be a matrix in color space. However,
since the different sectors in both SCET and SCETþ are
explicitly decoupled, the matching coefficient Cþ is ac-
tually determined by the 1 ! 2 matching in Eq. (6.12)

C nt ¼ Cþðt; xÞCn1Cn2Xn1Xn2TtVnt : (6.16)

In other words, Cþ � C�þ is universal and only depends on
the specific 1 ! 2 splitting channel q ! qg, g ! gg, or
g ! q �q. In Appendix A, we use reparameterization invari-
ance to show that Cþ depends only on t, x, and the
azimuthal angle of the splitting.
Using the same arguments as in Sec. VA, we can relate

Cþ to the collinear limit of the 2 ! N QCD amplitude.

Since the matching onto ~ON�1 in Eq. (6.7) is independent
of the external state, we have

MQCDð2 ! NÞjt�sij ¼ hNj ~Oy
N�1j2i ~CN�1ðfsijgÞ

¼ hNj ~Oþy
N j2i ~CN�1ðfsijgÞCþðt; xÞ;

(6.17)

where MQCDð2 ! NÞjt�sij is the 2 ! N QCD amplitude

expanded in the collinear limit of partons 1 and 2 becoming
close, and in the second step we used Eq. (6.15). The loop

diagrams of ~Oþ
N again vanish in pure dimensional regulari-

zation, so the product ~CN�1Cþ is given by the IR-finite part
of MQCDð2 ! NÞjt�sij . On the other hand, as we saw

above, ~CN�1 contains the IR-finite parts of MQCDð2 !
N � 1Þ. Therefore,
MIR-fin

QCD ð2!NÞjt�sij¼Cþðt;xÞMIR-fin
QCD ð2!N�1Þ: (6.18)

It is well known that the N-point QCD amplitudes in the
collinear limit t � sij factorize into (N � 1)-point ampli-

tudes times universal splitting amplitudes [36–41]. Just
like the IR-finite parts of the full amplitude determine the
hard matching coefficient, it follows from Eq. (6.18) that
the same is true for the splitting amplitudes: The IR-finite
parts of the splitting amplitudes directly determine
the matching coefficients Cþ for the different partonic
channels. Taking the square of the one-loop results for
the q ! qg splitting amplitudes from Ref. [38] and sum-
ming over helicities reproduces the expression for Hþ in

BAUER et al. PHYSICAL REVIEW D 85, 074006 (2012)

074006-24



Eq. (5.11). In the same way, the one-loop results for Cþ for
the other splitting channels can be obtained.

The cross section in SCETþ is obtained from the for-

ward matrix element of ~Oþ
N in Eq. (6.14) with the mea-

surement function inserted,

d�� jCþj2 ~Cy
N�1h2jŶyX̂yY

i

CyniMNðfT kgÞ

�Y
j

Cnj X̂ Ŷ j2i ~CN�1: (6.19)

Using the factorization of the measurement together with
that of the operator, the matrix element factorizes into
independent collinear, csoft, and usoft matrix elements.
The collinear matrix elements produce N jet functions
and two beam functions, which are all diagonal in color
and contribute a factor of 1 ¼ Q

i

�i�i . The remaining soft

matrix element is given by

~C
y�t...�N

N�1 h0jŶy�t...�N j�0
t...�

0
N X̂y�0

t...�
0
N j�00

1
�00
2
...�00

NMus
N McsX̂�00

1
�00
2
...�00

N j�0
t...�

0
N Ŷ�0

t...�
0
N j�t...�N j0i ~C�t...�N

N�1 ; (6.20)

where we explicitly wrote out the color indices in the
product of csoft and usoft Wilson lines. From Eq. (6.13)
we know that X̂ is diagonal in color except for the 1, 2, t
subspace, so the product X̂yX̂ has only two nontrivial color
indices �0

tj�0
t. The only object we can form from these is


�0
t�

0
t , which implies that the csoft matrix element is en-

tirely color diagonal,

h0j½X̂yMcsðk1; k2ÞX̂	�t...�N j�t...�N j0i
¼ Sþðk1; k2Þ1�t...�N j�t...�N : (6.21)

The csoft function Sþ is the same as in the 3-jet case,

S�þðk1; k2; �Þ ¼ 1

c�
trh0j �T½Vy

ntT
y
t X

y
n2X

y
n1	Mcsðk1; k2Þ

� T½Xn1Xn2TtVnt	j0i; (6.22)

where we restored the proper time-ordering, the trace is
over color indices, and the color normalization constant,

c�, is such that at tree-level S�þðk1; k2Þ ¼ 
ðk1Þ
ðk2Þ. Like
C�þ, the csoft function S�þ is universal and only depends on
the color representations of the partons 1, 2, t involved in
the 1 ! 2 splitting. The explicit form for qt ! q1g2 was
given in Eq. (4.36). Using Eq. (6.21) in Eq. (6.20), the
remaining usoft matrix element yields the usoft function

Ŝ�N�1ðfkig; �Þ ¼ 1

c�N�1

h0j �T½Ŷy	Mus
N ðfkigÞT½Ŷ	j0i; (6.23)

which is a matrix in N þ 1-parton color space, and the
color normalization factor, c�N�1, is such that at tree-level
Ŝ�N�1ðfkigÞ ¼ 1

Q
i
ðkiÞ.

Having discussed the color structure, assembling the full
factorization theorem for the N-jet case now follows the
usual steps. For the cross section differential in the T i, the
small dijet invariant mass t, and the energy fraction z, we
find

d�

dT adT bdT 1dT Ndtdz

¼
Z

d4qd�LðqÞ
Z

d�NðfqigÞMNð�N;�LÞð2Þ4
4

�
qa þ qb �

X
i

qi � q

�

ðt� s12Þ


�
z� E1

E1 þ E2

�

�X
�

Z
dxadxb

Z
dsadsbB�a

ðsa; xa;�ÞB�b
ðsb; xb; �ÞY

i

Z
dsiJ�i

ðsi; �ÞjC�þðt; z; �Þj2
Z

dk1dk2S
�þðk1; k2; �Þ

� ~C�y
N�1ð�N;�L;�ÞŜ�N�1

�
T 1 � s1

Q1

� k1;T 2 � s2
Q2

� k2;T a � sa
Qa

; . . . ;T N � sN
QN

;�

�
~C�
N�1ð�N;�L;�Þ: (6.24)

Here we have included the possibility for the hadronic
system to recoil against a color-singlet final state with
total momentum q and internal phase space �LðqÞ. This
allows us, for example, to describe W=Zþ jets at the
LHC. The massless N-jet phase space for the N final-
state jets is denoted as �NðfqigÞ. The incoming momenta
qa;b are given by qa;b ¼ xa;bEcmð1;�ẑÞ=2, where Ecm is
the total hadronic center-of-mass energy, ẑ points along
the beam axis, and xa;b are the light-cone momentum

fractions of the colliding hard partons. The restriction
MN enforces any phase space cuts on the final state,
such as requiring that the jets be energetic and only one
dijet invariant mass be small. The sum over � again runs
over all relevant partonic channels. The jet functions, J�i

,
and beam functions, B�a;b

, arise from the collinear matrix
elements as described above. The beam functions depend
on the momentum fractions xa;b and describe the collinear
initial-state radiation of the incoming hard partons [3,42],
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whereas the jet functions describe collinear final-state
radiation of the outgoing hard partons and are the same
as in the 3-jet case.

Since each of the ingredients in Eq. (6.24) only de-
pends on a single scale, the standard RGE procedure can
now be followed to resum the large logarithms in the
cross section, by evaluating each function at its natural
scale and then evolving all functions to a common scale
�. The solutions to the RGE equations are straightfor-
ward generalizations of the explicit results presented for
the case of eþe� ! 3 jets in Sec. VII.

C. Consistency

Having derived the factorization theorem for pp ! N
jets, we now discuss its renormalization group consistency.
We already know the structure of the anomalous dimen-
sions of the new objects Cþ and Sþ from Sec. VD.
Nevertheless, it is instructive to see how they fit together

with the anomalous dimensions of ~CN�1 and ŜN�1 includ-
ing the more complicated color structure now.

We will follow the same logic in our discussion here as
in Sec. VD. Our starting point is the factorized pp !
N-jet cross section for N-jettiness in SCET given in
Ref. [7], which has the form

�N �X
�

�
B�a

B�b

YN
i¼1

J�i

�
� ½ ~C�y

N Ŝ�N ~C�
N	: (6.25)

We then argue that the combined anomalous dimensions of

Cþ ~CN�1 and SþŜN�1 must reproduce those of ~CN and ŜN
in the limit t � sij. Using this, we rederive the general

form of the anomalous dimensions for Cþ and Sþ, repro-
ducing those found in Sec. VD.

1. Consistency of the hard functions to determine �Cþ

TheWilson coefficient ~CN in Eq. (6.25) is obtained from

M QCDð2 ! NÞ ¼ hNj ~Oy
Nð�Þj2i ~CNðfsijg; �Þ; (6.26)

and given by the IR-finite terms ofMQCDð2 ! NÞ, since as
before the loop corrections to the bare matrix element of
~ON vanish in pure dimensional regularization. Thus, from
Eq. (6.17) and the discussion below it, it follows that

~CNðfsijg; �Þjt�sij ¼ Tt
~CN�1ðfsijg; �ÞCþðt; x; �Þ: (6.27)

Note that ~CN and ~CN�1 are vectors in the color space of
2þ N and 2þ N � 1 external partons, respectively. We
can write this with explicit color indices as

~C
�1�2����N

N ¼ T�1�2j�t
t

~C
�t...�N

N�1 Cþðt; x; �Þ: (6.28)

Taking the derivative with respect � and using

�
d

d�
~CN ¼ �̂CN

~CN; (6.29)

we get

�
d

d�
Cþðt; x; �Þ ¼ �Cþðt; x; �ÞCþðt; x; �Þ;

�Cþðt; x; �Þ1 ¼ 1

Ct

Ty
t �̂CN

ðfsijg; �ÞTtjt�sij

� �̂CN�1
ðfsijg; �Þ; (6.30)

where Ty
t Tt ¼ 1Ct, with Ct determined by the parent

parton splitting to 1 and 2, Cq ¼ C �q ¼ CF and Cg ¼ CA.

Since Cþ is a scalar function and does not know about the
color space, the difference between the anomalous dimen-
sions in the second equation must be proportional to the
color identity.
The �-dependence of �̂CN

ð�Þ has the all-order structure
[33,34,43–45]

�̂CN
ð�Þ ¼ ��cusp½�sð�Þ	X

i�j

Ti � Tj

2
ln
ð�1Þ�ij sij � i0

�2

þ �̂CN
½�sð�Þ	; (6.31)

where�ij ¼ 1 if both i and j are incoming or outgoing and

�ij ¼ 0 otherwise; sij is always positive. We do not make

additional assumptions about the all-order structure of the
noncusp term �̂CN

½�s	, which can in general be a matrix in

color space. Beyond two loops and for four or more
external directions it can also depend on the sij through

conformal cross ratios of the form sijskl=siksjl [44,45].

Hence, we can write �̂CN�1
as

�̂CN�1
ð�Þ ¼ ��cusp½�sð�Þ	

� X
i�1;2

Tt � Ti ln
ð�1Þ�ti sti � i0

�2

þ X
i�j�1;2

Ti � Tj

2
ln
ð�1Þ�ij sij � i0

�2

�

þ �̂CN�1
½�sð�Þ	: (6.32)

Using Eqs. (6.3) and (6.4) to expand in the limit t � sij,

we find
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1

Ct

Ty
t �̂CN

ð�ÞTtjt�sij ¼ ��cusp½�sð�Þ	
� X
i�1;2

Tt � Ti ln
ð�1Þ�ti sti � i0

�2
þ X

i�j�1;2

Ti � Tj

2
ln
ð�1Þ�ijsij � i0

�2

þ 1

2
ðT2

t � T2
1 � T2

2Þ ln
�t� i0

�2
� 1

2
ðT2

t þ T2
1 � T2

2Þ lnx�
1

2
ðT2

t � T2
1 þ T2

2Þ lnð1� xÞ
�

þ 1

Ct

Ty
t �̂CN

½�sð�Þ	Tt; (6.33)

where we have used the identity
P

i�1;2Ti ¼ �ðT1 þ T2Þ and the following relations

1

Ct

Ty
t ðT1 þ T2Þ � TiTt ¼ Tt � Ti;

1

Ct

Ty
t T1 � T2Tt ¼ 1

2
ðT2

t � T2
1 � T2

2Þ; (6.34)

to write the contribution of �̂CN
entirely in 2þ N � 1 parton color space. Equation (6.34) generalizes Eq. (5.44) to the

N-jet case. Taking the difference of Eqs. (6.33) and (6.32), we obtain the result for �Cþ valid to all orders in perturbation
theory,

�Cþðt; x; �Þ1 ¼ ��cusp½�sð�Þ	 1
2
ðT2

t � T2
1 � T2

2Þ ln
�t� i0

�2
þ �Cþ½�sð�Þ	1;

�Cþ½�s	1 ¼ ��cusp½�s	
�
� 1

2
ðT2

t þ T2
1 � T2

2Þ lnx�
1

2
ðT2

t � T2
1 þ T2

2Þ lnð1� xÞ
�

þ ð�1
C½�s	 þ �2

C½�s	 � �t
C½�s	Þ1: (6.35)

Here we have used that the difference of the noncusp terms
in the collinear limit must be diagonal in color to all orders
since as above in Eq. (6.30) �Cþ½�s	 must be color diago-
nal,

1

Ct

Ty
t �̂CN

½�s	Tt � �̂CN�1
½�s	jt�sij

¼ ð�1
C½�s	 þ �2

C½�s	 � �t
C½�s	Þ1: (6.36)

This condition provides a nontrivial constraint on the col-
linear limit of �̂CN

and is equivalent to what was used in
Refs. [34,43] in deriving constraints on the form of �̂CN

beyond two loops. (It cannot be spoiled by conformal cross
ratios appearing in �̂CN

, which would require at least four
distinct momenta and thus cannot be reduced to functions
of t and x only.)

To see that Eq. (6.35) agrees with the result for �Cþ in

Eq. (5.45), we note that in the three-parton color space used
in Eq. (5.45) we have T3 ¼ �ðT1 þ T2Þ. Equivalently, we
can write the color factors in Eq. (6.35) in the external
N þ 2 color space using the inverse of Eq. (6.34), which
amounts to the replacements

1
2ðT2

t � T2
1 � T2

2Þ ! T1 � T2;

1
2ðT2

t þ T2
1 � T2

2Þ ! T1 � ðT1 þ T2Þ;
1
2ðT2

t � T2
1 þ T2

2Þ ! T2 � ðT1 þ T2Þ: (6.37)

With these replacements, Eq. (6.35) agrees with the
anomalous dimensions of the splitting amplitudes given
in Ref. [34]. Note that �Cþ in N þ 2 parton color space is

not color diagonal but essentially proportional to TtT
y
t .

Working in theN þ 1 parton color space has the advantage
that �Cþ is manifestly color diagonal as in Eq. (6.35).

2. Consistency of the soft functions to determine �Sþ

The cross section for pp ! N jets in SCETþ must
reproduce the corresponding cross section in SCET ex-
panded in the limit t � sij. Since the product of hard

matching coefficients in SCETþ, Cþ ~CN�1 reproduces ~CN

in SCET, as we saw in the previous section, and the beam
and jet functions are the same in both theories, the soft
functions must satisfy

ŜNðfkig; �Þjŝt�ŝij ¼
1

C2
t

Z
dk01dk02Sþðk01; k02; �ÞTtŜN�1ðk1 � k01; k2 � k02; ka; . . . ; kN; �ÞTy

t ; (6.38)

which is the N-jet generalization of Eq. (5.47). Taking the derivative with respect to � and using the known evolution
equations for ŜN in SCET from Ref. [7], we find
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�
d

d�
Sþðk1; k2; �Þ ¼

Z
dk01dk

0
2�Sþðk1 � k01; k2 � k02; �ÞSþðk01; k02; �Þ;

�Sþðk1; k2; �Þ1Y
i�1;2


ðkiÞ ¼ 1

Ct

Ty
t

1

2
½�̂SN ðfkig; �Þ þ �̂y

SN
ðfkig; �Þ	Ttjŝt�ŝij �

1

2
½�̂SN�1

ðfkig; �Þ þ �̂y
SN�1

ðfkig; �Þ	:
(6.39)

The Ty
t �̂SNTt projects the anomalous dimension of ŜN on the 2þ N � 1 parton color space. Similar to what we saw for

Cþ, the difference on the right-hand side of the second equation must be color diagonal, since Sþ knows nothing about the
larger color space.

We can now use the all orders form of the N-jettiness soft anomalous dimension derived in Ref. [7],

�̂SN ðfkig; �Þ ¼ �2�cusp½�sð�Þ	X
i�j

Ti � Tj

�
1ffiffiffiffiffiffi
ŝij

p
�
L0

�
kiffiffiffiffiffiffi
ŝij

p
�

�
� i

2
�ij
ðkiÞ

�Y
m�i


ðkmÞ þ �̂SN ½�sð�Þ	Y
j


ðkjÞ; (6.40)

to determine �̂SN in the limit ŝt � ŝij, which corresponds to setting ŝ1i ¼ ŝ2i ¼ ŝQi [see Eq. (6.2)]. It is then straightfor-
ward to extract the anomalous dimension of Sþ using Eq. (6.39). We obtain

�Sþðk1; k2; �Þ1 ¼ �2�cusp½�sð�Þ	 1
2
ðT2

t � T2
1 � T2

2Þ
1ffiffiffiffi
ŝt

p
�

�
L0

�
k1ffiffiffiffi
ŝt

p
�

�

ðk2Þ þL0

�
k2ffiffiffiffi
ŝt

p
�

�

ðk1Þ

�
þ �Sþ½�sð�Þ; k1; k2	1;

�Sþ½�s; k1; k2	1 ¼ ��cusp½�s	ðT2
2 � T2

1Þ
1

�

�
L0

�
k1
�

�

ðk2Þ �L0

�
k2
�

�

ðk1Þ

�
� ð�1

J½�s	 þ 2�1
C½�s	

þ �2
J½�s	 þ 2�2

C½�s	 � �t
J½�s	 � 2�t

C½�s	Þ1
ðk1Þ
ðk2Þ: (6.41)

This result agrees with Eq. (5.58) for eþe� ! 3 jets as it must since the csoft function is universal for a given splitting
channel.

To arrive at Eq. (6.41), we have used that the difference of the noncusp terms in �̂SN and �̂SN�1
in the collinear limit must

be color diagonal because �Sþ is, i.e.,
1

Ct

Ty
t �̂SN ½�s	Tt � �̂SN�1

½�s	jŝt�ŝij ¼ �ð�1
J½�s	 þ 2�1

C½�s	 þ �2
J½�s	 þ 2�2

C½�s	 � �t
J½�s	 � 2�t

C½�s	Þ1: (6.42)

This condition is equivalent to Eq. (6.36), since �̂SN and �̂CN
are related by consistency. We have also used the relations in

Eq. (6.34) to rewrite the different color structures appearing in �̂SN . The terms proportional to T1 � T2 in �̂SN directly give
the terms proportional to ðT2

t � T2
1 � T2

2Þ=2 in the first line of Eq. (6.41). The terms in �̂SN involving neither T1 nor T2

immediately cancel with the corresponding ones in �̂SN�1
. The nontrivial terms in �̂SN are those proportional to T1 � Ti and

T2 � Ti with i � 1, 2, which we can rewrite as

T1 � Ti

1ffiffiffiffiffiffiffi
ŝQi

p
�

�
L0

�
k1ffiffiffiffiffiffiffi
ŝQi

p
�

�

ðkiÞ þL0

�
kiffiffiffiffiffiffiffi
ŝQi

p
�

�

ðk1Þ

�Y
j�1;i


ðkjÞ

þ T2 � Ti

1ffiffiffiffiffiffiffi
ŝQi

p
�

�
L0

�
k2ffiffiffiffiffiffiffi
ŝQi

p
�

�

ðkiÞ þL0

�
kiffiffiffiffiffiffiffi
ŝQi

p
�

�

ðk2Þ	

Y
j�2;i


ðkjÞ

¼ ðT1 þ T2Þ � Ti

1ffiffiffiffiffiffiffi
ŝQi

p
�

�
1

2
L0

�
k1ffiffiffiffiffiffiffi
ŝQi

p
�

�

ðk2Þ þ 1

2
L0

�
k2ffiffiffiffiffiffiffi
ŝQi

p
�

�

ðk1Þ

� Y
j�1;2


ðkjÞ

þ ðT1 þ T2Þ � Ti

1ffiffiffiffiffiffiffi
ŝQi

p
�
L0

�
kiffiffiffiffiffiffiffi
ŝQi

p
�

�Y
j�i


ðkjÞ

þ 1

2
ðT1 � T2Þ � Ti

1

�

�
L0

�
k1
�
Þ
ðk2Þ �L0

�
k2
�

�

ðk1Þ

� Y
j�1;2


ðkjÞ: (6.43)

After projecting ðT1 þ T2Þ � Ti ! Tt � Ti, the first two
lines on the right-hand side cancel against �̂SN�1

. To see
this first note that as in the 3-jet case, our ŜN�1ðk1; k2; . . .Þ
is related to the usual ŜN�1ðkt; . . .Þ from Ref. [7] by pro-
jecting onto kt ¼ k1 þ k2. To determine how the kt mea-
surement is split between jets 1 and 2 notice that for
general N, ŜN�1ðk1; k2; . . .Þ is no longer symmetric under

k1 $ k2, because the boundary to the ith jet region can be
different for jet regions 1 and 2. However, the fact that the
anomalous dimension of Sþ must be color diagonal re-
quires that the first line on the right-hand side cancels
against �̂SN�1

. This tells us that the contribution to the
anomalous dimension of ŜN�1ðkt; . . .Þ involving Tt �
TiL0ðktÞ must again be split up symmetrically into Tt �
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Ti½L0ðk1Þ
ðk2Þ þL0ðk2Þ
ðk1Þ	=2 in �̂SN�1
in our case, just

as for �S2 in Eq. (5.56).3 Finally, since the last line on the
right-hand side of Eq. (6.43) has no dependence on i other
than Ti itself, we can sum over i using

P
i�1;2Ti ¼ �ðT1 þ

T2Þ. This yields the term proportional to T2
2 � T2

1 in
Eq. (6.41).

VII. NUMERICAL RESULTS

In this section we present some numerical results for our
example of eþe� ! 3 jets. For simplicity, we project onto
the total 3-jettiness of the event [see Eq. (4.3)],

T � T N¼3 ¼ T 1 þT 2 þT 3: (7.1)

Just as thrust characterizes how 2-jet-like an event is, the
total N-jettiness of an event characterizes how N-jet-like
an event is, and can be used as a veto against additional
jets. The factorized cross section for T is obtained from
Eq. (4.35) by projecting onto T using Eq. (7.1),

d�

dT dtdz
¼�0

Q2

X
�

H2ðQ2;�ÞH�þðt;z;�ÞY
i

Z
dsiJ�i

ðsi;�Þ

�
Z
dkSþðk;�ÞS2

�
T � s1

Q1

� s2
Q2

� s3
Q3

�k;�

�
:

(7.2)

The different hard, jet, and soft functions were discussed in
detail in Sec. V. They are renormalized objects, and in the
cross section must all be evaluated at the same scale �. To
resum the large logarithms in Eq. (7.2) we have to evaluate
each function at a scale where its perturbative series does
not involve large logarithms and then renormalization
group evolve all functions to the common scale �,

d�

dT dtdz
¼�0

Q2

X
�

H2ðQ2;�H2
ÞUH2

ðQ2;�H2
;�Þ

�H�þðt;z;�HþÞU�
Hþðt;z;�Hþ ;�Þ

�Y
i

Z
dsids

0
iJ�i

ðsi�s0i;�JÞUJ�i
ðs0i;�J;�Þ

�
Z
dkdk0Sþðk�k0;�SþÞUSþðk0;�Sþ ;�Þ

�
Z
d‘S2

�
T � s1

Q1

� s2
Q2

� s3
Q3

�k�‘;�S2

�

�US2ð‘;�S2 ;�Þ: (7.3)

The evolution kernels UX for each function in Eq. (7.3) are
given in Appendix C. After renormalization group
evolving the hard, jet, and soft functions, we obtain a
distribution with all large logarithms of T and mjj

resummed.
We are interested in the distribution inmjj, for which we

integrate the cross section over T and z,

d�

dmjj
¼ 2mjj

Z 1�zcut

zcut

dz
Z T cut

0
dT

d�

dT dtdz
; (7.4)

where the factor of 2mjj is the Jacobian from changing

variables from t ¼ m2
jj to mjj, and we suppress the depen-

dence of d�=dmjj on T cut and zcut. For our numerical

analysis, we choose

Q ¼ 500 GeV; T cut ¼ 10 GeV; zcut ¼ 1
3: (7.5)

The Qi are given in terms of z and t in Eq. (4.17). For this
zcut, the ratio of nearby jet energies ranges between 0.5 and
2. ForT cut ¼ 10 GeV the two nearby jets have a typical jet
mass of 35 GeV. In terms ofmjj andT cut, the scales for the

different functions in Eq. (7.3) have the scaling

�H2
’ Q; �Hþ ’ mjj; �Ji ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QiT cut

q
;

�Sþ ’ T cutffiffiffiffi
ŝt

p ; �S2 ’
T cutffiffiffiffiffiffi
ŝQ

p : (7.6)

The simultaneous resummation of logarithms of T cut

and mjj is challenging because the hierarchy between the

scales depends on several kinematic variables. At largemjj

we are in the kinematic region of 3 equally separated jets.
In this 3-jet limit, power corrections in m2

jj=Q
2 become

important and the resummation in mjj must be turned off,

which requires�Hþ ’ �H2
and�Sþ ’ �S2 . For anymjj we

also have the requirement that �Hþ�Sþ ��J1�J2 . To

satisfy these requirements we choose the scales as follows:

�H¼Q; �HþðmjjÞ¼�runð�H;mjjÞ; �Ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QiT cut

q
;

�S2 ¼
T cutffiffiffiffiffiffi
ŝQ

p ; �SþðmjjÞ¼
Q�S2

�runðQ;mjjÞ ; (7.7)

where ŝQ ¼ Q2=½Q3ðQ1 þQ2Þ	. The scales �H, �Ji , and

�S2 do not depend onmjj so we simply use their canonical

scales in Eq. (7.6). Themjj-dependent scales�HþðmjjÞ and
�SþðmjjÞ are given in terms of the profile function

�runð�;mjjÞ ¼

8>>><
>>>:

2amjj þ�0 mjj < m1;

�� a
ðmjj�m2Þ2
m2�m1

m1 <mjj < m2;

� mjj > m2;

a ¼ �H2
��0

m1 þm2

; (7.8)

3To see that �SN�1
must still be symmetric under k1 $ k2, we

can split up the phase space region associated to jets 1 and 2 into
a �tðpÞ independent region enclosing q̂1 and q̂2 and the UV-
finite difference to the boundaries of the ith jet region. In Ref. [7]
it was demonstrated at one loop that the UV divergences asso-
ciated with jet regions i and j only arise from i, j hemispheres,
whereas the contributions depending on the boundary with the
remaining jet directions are UV finite and do not affect the
anomalous dimension.

FACTORIZATION AND RESUMMATION FOR DIJET . . . PHYSICAL REVIEW D 85, 074006 (2012)

074006-29



such that they have a quadratic approach to �H and �S2

over the region m1 <mjj < m2. Analogous profile

functions have been used previously in different contexts
[46–48]. We choose the parameters of �run as

m1¼200GeV; m2¼300GeV; �0¼0GeV: (7.9)

To get a measure of how important the resummation in
mjj is, we will compare to results with the resummation in

mjj turned off. This is achieved by setting

�Hþ ¼ �H2
; �Sþ ¼ �S2 ; (7.10)

with�H2
,�Ji ,�S2 as in Eq. (7.7). Note that the distribution

without resummation inmjj is what one would obtain from

directly using SCET with three jet directions (up to the
power corrections in t=Q2 which we have not included).

The approach to the 2-jet region where the two nearby
jets merge into a single large jet is more complicated. This
happens for mjj & mj � 35 GeV, i.e., when the dijet in-

variant mass becomes smaller than the individual jet
masses. Here, �Hþ and �Sþ become equal to �Ji and

eventually �Sþ becomes larger than �Hþ . The 3-jet ob-

servables mjj and 3-jettiness are not meaningful anymore

once the two close jets merge into each other. In addition,
the proper theory would now be SCET with two collinear
sectors. We leave a more detailed investigation of this
transition to future work. For illustrative purposes, we
will plot our results all the way down to mjj ¼ 5 GeV,

where �Hþ becomes equal to �S2 .

A detailed numerical study is beyond the scope of this
work. Below, we will present results at NLL order, which
uses the one-loop noncusp and two-loop cusp anomalous
dimensions in the running and tree-level matching, and at
NLL0 order, which combines the NLL running with the
one-loop matching corrections. It is straightforward to
extend our results to next-to-next-to-leading logarithmic
order. To obtain a rough estimate of the perturbative un-
certainties we vary �H2

, �Ji , �S2 by factors of two. By

varying �H2
and �S2 we automatically let �Hþ and �Sþ

vary accordingly. This tends to give the largest effect in
the variation of �Hþ and �Sþ , whereas varying the pa-

rameters in �run within reasonable ranges has smaller
effects. We then determine the uncertainties by taking the
maximum range from varying each�H2

,�J1 ,�J2 ,�J3 ,�S2

individually while keeping the other scales fixed and in
addition from varying all of them up and down at the same
time. The largest variation mostly comes from the individ-
ual variations of �S2 and the gluon jet scale.

In Fig. 5, we plot the NLL and NLL0 distributions from
Eq. (7.4) for our default scale choices. The distribution is
stable in going from NLL to NLL0, with the expected
reduction in the scale uncertainties. The ninja region,
which has the hierarchy of scales shown in Fig. 1(b),
corresponds to the region to the right of the dotted line in

the plot. For smaller mjj we enter the 2-jet region where

our expansion breaks down. For mjj * 150 GeV we enter

the 3-jet region where power corrections of order mjj=Q

become important.
In Fig. 5 we also compare our resummed predictions to

the distribution obtained from Pythia8 [49]. To make the
distribution in Pythia, we simulated eþe� ! q �q events
and determined the reference momenta qi from the first
hard emission. For simplicity we use this as an approxi-
mate alternative instead of determining the q̂i by fully
minimizing the 3-jettiness for each event. (We found that
using a jet algorithm to determine the reference momenta
introduces a significant bias as the nearby jets get close to
each other and the events become more 2-jet-like. In this
limit, jet algorithms tend to merge nearby clusters of high
energy into a single jet [50], and hence become unsuitable
to determine the q̂i.) Pythia resums the kinematic loga-
rithms of mjj in the parton shower, which is formally

correct at leading-logarithmic order, but also includes vari-
ous other effects that contribute at NLL. We see that the
Pythia distribution agrees well with both the NLL and
NLL0 distributions even down to mjj � 25 GeV. Note

that Pythia is producing exclusive samples of events and
does not report any systematic uncertainties. This makes it
challenging to interpret the theory uncertainties in the
distributions generated by the Monte Carlo. Even though
the NLL and NLL0 distributions are more accurate than the
parton shower, since Pythia contains many NLL effects it is
reasonable to take the uncertainty band of the NLL curve
as a proxy for the systematic uncertainties in the Pythia
distribution in the range of mjj where we trust our

calculation.

FIG. 5 (color online). The distribution in mjj for Q ¼
500 GeV, T cut ¼ 10 GeV, and zcut ¼ 1=3 as in Eq. (7.5). The
bands show the perturbative scale uncertainties at NLL (light
blue band) and NLL0 (dark orange band) as explained in the text,
with the central values given by the center of the bands. The dots
show the result obtained from Pythia. The dotted line indicates
the value mjj ¼ 35 GeV below which we enter the 2-jet region

where our expansion breaks down.
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In the left panel of Fig. 6, we compare the NLL0 distri-
bution including the resummation in mjj to the NLL0 and
NLL distributions without mjj resummation. In the right

panel we show the same results in terms of the percent
difference from the central NLL0 curve with mjj resumma-

tion. We see that for mjj & 75 GeV the resummation in

mjj becomes important, where the results without mjj

resummation become unstable due to the presence of un-
resummed lnðmjj=QÞ.

VIII. CONCLUSIONS

In this paper we have constructed a new effective field
theory, SCETþ, which can describe exclusive multijet
events at the LHC where the kinematic configuration of
final-state jets give rise to a hierarchy of scales. We focused
on the case where the dijet invariant mass mjj of a pair of

jets is much smaller than all other dijet invariant masses,
which are of order the total center-of-mass energy Q. This
results in the presence of three separated scales m �
mjj � Q, where m is the typical jet mass. We have shown

that using SCETþ we can simultaneously and systemati-
cally resum the logarithms of both the individual jet mass,
lnðm=QÞ, as well as the dijet mass, lnðmjj=QÞ, to higher

orders in perturbation theory, which has a wide range of
applications.

Separating the additional kinematic scales that arise
requires a successive hard matching from QCD onto
SCET with N � 1 jet directions and then onto SCETþ
with N jet directions. The matching from SCET onto
SCETþ introduces a new hard matching coefficient, Cþ,
which encodes the splitting to two nearby jets, is universal
for a given splitting channel, and depends only on the scale
mjj to all orders in perturbation theory. We showed that it is

given by the finite parts of the known universal splitting
amplitudes of QCD in the collinear limit.

SCETþ is an extension of SCETwith an additional csoft
mode that has virtuality m4=m2

jj and is necessary to de-

scribe the soft radiation between the nearby jets. The usoft
modes of SCET have virtuality m4=Q2 and therefore can-
not resolve the two nearby jets. Thus, SCETþ is required to
properly separate the physics between these two scales. We
constructed the Lagrangian of SCETþ and showed how to
decouple the collinear, csoft, and usoft interactions. We
discussed the structure of gauge invariance in SCETþ and
used this to construct gauge invariant N-jet operators,
which require new csoft Wilson lines. The factorization
of the csoft and usoft interactions leads to the factorization
of the regular soft function into a new universal csoft
function, Sþ, and a usoft function.
As an example of our new effective theory, we derived

the factorization for the dijet invariant mass spectrum of
eþe� ! 3 jets, using N-jettiness to define the jets. We
determined all contributions to the factorized cross section
at NLO and derived the form of the anomalous dimensions
of Cþ and Sþ to all orders in perturbation theory. We also
extended our factorization theorem to pp ! N jets plus
leptons, discussing in detail the kinematic scales that ap-
pear and the nontrivial color structure for N jets. We
demonstrated that the new ingredients, Cþ and Sþ, are
color diagonal and independent of the number of additional
jets in the process.
We gave explicit numerical results for the example of

eþe� ! 3 jets using 3-jettiness, T , resumming both the
jet-mass logarithms of T =Q and the kinematic logarithms
ofmjj=Q toNLL0. We found that the resummation ofmjj is

important over a wide range. Our results show good agree-
ment with Pythia, which resums the kinematic logarithms
of mjj at leading order.

SCETþ has a wide range of applications, and expands
our ability to make accurate theoretical predictions rele-
vant for jet-based new-physics searches at the LHC. This

FIG. 6 (color online). Left panel: The distribution in mjj for Q ¼ 500 GeV, T cut ¼ 10 GeV, and zcut ¼ 1=3 as in Eq. (7.5). Right
panel: Same as the left plot but shown as the percent difference relative to the NLL0 central value. The bands show the perturbative
scale uncertainties as explained in the text. The dark orange band shows our result including the resummation (resum.) in mjj at NLL

0.
The medium blue and light green bands show the results at NLL and NLL0 with the resummation only in T cut but not in mjj.
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includes cases where dijet invariant masses lead to a natu-
ral scale hierarchy, ranging from the study of jet substruc-
ture to improving parton-shower programs, which are
currently the only tool available to resum logarithms of
kinematic scales in exclusive jet cross sections.
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APPENDIX A: ALL-ORDER SCALE
SENSITIVITY OF THE HARD FUNCTION

We have argued that the matching coefficient
Cþðt; z; �Þ, which arises from matching SCET to
SCETþ, can only depend on the scale t, which is the scale
where the matching is performed. In Sec. VAwe have seen
that at NLO Cþ contains only on a single dimensionful
scale t. In this appendix, we prove that this holds to all
orders in perturbation theory. In Sec. VI we argued that for
a given parton channel (q ! qg, g ! gg, or g ! q �q) the
matching coefficient Cþ is a universal function, and our
arguments here apply to all splitting channels. The main
tool we use is RPI [20]. RPI restores the symmetry that is
broken by choosing a particular basis of light-cone coor-
dinates to label the collinear fields. For example, by choos-
ing specific light-cone vectors n and �n to define the 2-jet
operator O2, we have picked out a specific direction in an
equivalence class of directions close to the jet directions
that would all give the same results. RPI transformations
correspond to reparameterizing to a different light-cone
basis within the equivalence class, and invariance under
such reparametrizations effectively restores the broken
symmetry. In Ref. [19], RPI has been used in a similar
way to what we follow here to understand the matching
between operators with different multiplicities in SCET.

There are three types of RPI transformations for each
pair of basis vectors fn; �ng. For our argument in this section
we are only concerned with what is known as RPI-III,
under which each direction n and its conjugate direction
�n transform as

n�i ! e�in�i ; �n�i ! e��i �n�i : (A1)

Invariance under this transformation implies that any oc-
currence of n

�
i must be accompanied by an occurrence of

�n�i . Each jet momentum q�i is RPI-III invariant, as it can be
written as

q�i ¼ 1
2ð �ni � qiÞn�i : (A2)

As discussed in Ref. [22], the hard matching onto an
N-jet operator in SCET is RPI invariant,

Mð2 ! NÞ ¼
Z �Y

i

d!i

�
CNðf!igÞhNjONðf!igÞj2i; (A3)

where !i ¼ �ni � qi, and we ignore the color structure as it
is irrelevant for this discussion. Since the operator ON is
built out of gauge-invariant quark and gluon jet fields with
given label momenta,

�n;! ¼ ½
ð!� �n � P nÞ�n	;
B�

n;!? ¼ ½
ð!� �n � P nÞB�
n?	; (A4)

it transforms under RPI-III as hONðf!igÞi ! expð�1 þ
� � � þ �NÞhONðf!igÞi. It follows that both the matching
coefficient, CNðf!igÞ, and the operator matrix element
together with the measure, hONðf!igÞi

Q
id!i, are sepa-

rately RPI-III invariant. In what follows we suppress the
integral over the !i labels.
Consider the matching of ON�1 in SCET onto Oþ

N in
SCETþ, evaluated by calculating the 2 ! N matrix ele-
ments of both operators with external momenta qi such that
s12=sij � �2

t . In the SCET above the matching scale t ¼
s12, the final states with momenta q1 and q2 are described
by the same nt collinear sector with scaling Qð�2

t ; 1; �tÞ.
Below this scale in SCETþ, the final states with q1 and q2
are described by two separate collinear sectors. The match-
ing then takes the schematic form [see Eq. (6.15)]

hNjON�1j2i ¼ CþhNjOþ
N jNi; (A5)

where in pure dimensional regularization, Cþ is given by
the IR-finite terms in the matrix element hNjON�1j2i.
After performing the BPS field redefinition, the matrix

element can be factorized as

hNjON�1j2i ¼ h2jCnt j0ih0jCna j1i . . . h1jCnN j0ih0jYN�1j0i;
(A6)

where YN�1 stands for the product of N � 1 usoft Wilson
lines. Since a separate RPI exists for each collinear sector,
each collinear matrix element h1jCni j0i must separately be

RPI-III invariant. However, the only objects that each col-
linear matrix element can depend on are

fn�i ; �n�i ; q�i g: (A7)

The only RPI-III invariant scale that we can define from
these objects is q2i ¼ 0. Therefore, the loop corrections to
the collinear matrix elements are scaleless and hence zero
in pure dimensional regularization. A similar argument
goes through for the usoft matrix element h0jYN�1j0i.
This is of course the familiar result that the virtual loop
corrections to jet and soft functions vanish in pure dimen-
sional regularization.
If we apply a similar argument to the nt collinear matrix

element h2jCnt j0i, we do not find that it vanishes in pure

dimensional regularization. Since there are two particles in
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the final state, the set of objects that the matrix element can
depend on is

fn�t ; �n�t ; n�1 ; �n�1 ; n�2 ; �n�2 ; q�1 ; q�2 g: (A8)

What RPI-III invariant, dimensionful parameters can be
constructed out of these? While there are many choices,
they fall into three categories:

fq21;2¼0;q1 �q2;ðni �q1;2Þð �ni �q1;2Þg; i¼1;2;t: (A9)

We now argue that all of the nonzero scales are the same
order as t ¼ 2q1 � q2. To understand this scaling, note that
all objects in Eq. (A8) can be constructed from the com-
ponents of q

�
1 , q

�
2 , and q

�
t . Enforcing q

�
t ¼ q

�
1 þ q

�
2 and

q21 ¼ q22 ¼ 0 leaves only 6 independent variables in the
components of q1, q2, and qt. We can choose these 6
variables to be t, the energy Et ¼ E1 þ E2, the energy
fraction z ¼ E1=Et, where we are working in the regime
where z is not near 0 or 1, i.e., parametrically E1=E2 � 1.
The last three variables are three angles. One is the azimu-
thal angle of the 1 ! 2 splitting, while the other two are
trivial and merely specify the coordinate system. The
dependence on the azimuthal angle is determined by the
spin structure and therefore only appears as an overall
dependence.

In principle, there are two scales, t and Et, which the
objects in Eq. (A9) can depend on, and t � E2

t . However,
using

t ¼ 2q1 � q2 ¼ ð �n1 � q1Þðn1 � q2Þ ¼ zEtðn1 � q2Þ (A10)

it follows that �n1 � q1 � Et and n1 � q2 � t=Et, and it is
easy to see that all other nonzero �ni � q1;2 and ni � q1;2 have
the same parametric scaling, ni � q1;2 � t=Et and �ni �
q1;2 � Et. Therefore all possible RPI-III invariant combi-

nations in Eq. (A9) are of order t, while the Et dependence
can only enter through higher-order power corrections
of t=E2

t .
This scaling dependence then implies that at leading

order in the power counting the only scale that all loop
corrections can depend on is t, and after integrating over
the azimuthal angle, the matching coefficient will only
depend on t and z, as we have seen in the NLO result for
Cþ in Eq. (5.11). This is the desired result, valid at all
orders in perturbation theory.

APPENDIX B: ALL-ORDER SCALE SENSITIVITY
OF THE SOFT FUNCTIONS

In Sec. VI we derived the factorization theorem for the
N-jettiness cross section in the limit t � sij. In this ap-

pendix we use RPI-III to derive the scale dependence of the
csoft and usoft functions and show that they each depend
on only a single parametric scale to all orders. The csoft
function Sþðk1; k2; �Þ only depends on the scale �Sþ �
ki=

ffiffiffiffi
ŝt

p
, and the usoft function SN�1ðk1; k2; . . . ; kN; �Þ de-

pends on the scale �SN�1
� ki=

ffiffiffiffiffiffi
ŝQ

p
.

We start with the csoft function, Sþðk1; k2; �Þ, defined in
Eq. (6.22), and determine how it transforms under RPI-III.
The structure of Sþ is independent of the partonic splitting
channel, which only determines the color representation of
the Wilson lines. The structure of the measurement func-
tion depends on the observable. Recall that our discussion
of the measurement in Sec. IVB applies to the geometric
measure.
In general, Sþ depends on fk1; k2g through its measure-

ment function in Eq. (4.34) and on the reference vectors
fq̂1; q̂2; q̂t; q̂�tg. The dependence on q̂1 and q̂2 comes from
the X Wilson lines and the measurement function, while
the dependence on q̂�t comes from the V Wilson line and the
dependence on q̂t comes from the zero-bin subtraction.
The directions q̂1;2;t are in the same csoft RPI equivalence

class and therefore transform under RPI-III as

q̂ 1;2;t ! e�q̂1;2;t; q̂�t ! e��q̂�t: (B1)

To determine the transformation properties of Sþ under
RPI-III, we only need to consider the transformation of the
measurement function since the Wilson lines are RPI-III
invariant. The csoft measurement function transforms
under the RPI-III transformation in Eq. (B1) as

M csðk1; k2Þ ! e�2�
Y
i¼1;2


ðki � 2q̂i � P̂cs
i Þ; (B2)

where we have rescaled the ki convolution variables to
e�ki, which determines their transformation properties
under RPI-III. The analogous result also holds for the
zero-bin measurement function. The csoft function there-
fore transforms as Sþ ! e�2�Sþ. We can see this scaling
in the RPI transformation of the tree level result

Streeþ ðk1; k2; �Þ ¼ 
ðk1Þ
ðk2Þ ! e�2�
ðk1Þ
ðk2Þ; (B3)

which is simply the statement that the Sþ has mass dimen-
sion �2 and therefore has an overall scaling factor of
1=ðk1k2Þ at all orders in perturbation theory multiplying a
RPI-III invariant function with nontrivial k1;2 and � de-

pendence. The convolution measure dk1dk2 has a compen-
sating e2� dependence and therefore the combination
dk1dk2Sþðk1; k2; �Þ is RPI-III invariant. It is useful to
rescale the measure to factor out this 1=ðk1k2Þ scaling
from the csoft function, which effectively changes the
measurement function to an RPI-III invariant measure-
ment,

~M csðk1; k2; �Þ ¼ Y
i¼1;2




�
1� 2q̂i � P̂cs

i

ki

�
(B4)

and similarly for the zero-bin measurement function. This
allows us to write the csoft function in an RPI-III invariant

form, while the combination dk1dk2=ðk1k2Þ~Sþ is un-
changed. We can now consider all RPI-III invariant scales
that arise in the rescaled csoft function. This method of
changing the convolution variable to write the delta
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function in an RPI-III invariant form is analogous to the
method used in Ref. [22] to analyze the RPI transformation
properties in the hard matching onto SCET. The only
RPI-III invariant dimension-one combinations that we
can construct in the rescaled csoft function are�

k1ffiffiffiffiffiffi
ŝij

p ;
k2ffiffiffiffiffiffi
ŝij

p
�
; (B5)

where i, j 2 f1; 2; tg, and recall that ŝij ¼ 2q̂i � q̂j.
Additionally, we can form the dimensionless RPI-III in-
variants q̂�t � q̂i and ŝij=ŝik, but these are order 1, and so we
can ignore them. Since all of the ŝij are of order ŝt ¼ 2q̂1 �
q̂2, this shows that the only parametric scales that the csoft
function depends on are k1;2=

ffiffiffiffi
ŝt

p
, as advertised.

The scale dependence of the usoft function ŜN�1 can be
constrained using analogous arguments. The usoft function
depends on the N þ 2 measurements ka; kb; k1; . . . ; kN and
the N þ 1 directions q̂a; q̂b; q̂t; q̂3; . . . q̂N . Note that all of
these directions are well separated, so that any ŝij ¼ 2q̂i �
q̂j � 1. Additionally, in the k1 and k2 measurement func-

tions the jet boundaries depend on the orientation of the
nearby jets relative to the rest of the event, which is
parameterized by an angle �t. Since this angle is para-
metrically order 1, we need not consider its dependence.

The RPI-III transformation properties are more intricate
now, as there are N þ 1 separate collinear sectors contrib-
uting usoft Wilson, each of which can in principle have a
separate RPI-III transformation parameter �i. The jet
boundaries are not invariant under arbitrary RPI-III trans-
formations, since the measurement contains comparisons
of the form

	ðq̂i � pk < q̂j � pkÞ; (B6)

which do not have simple transformation properties under
q̂i ! e�i q̂i and q̂j ! e�j q̂j.

However, the usoft function has simple transformation
properties under a restricted set of RPI-III transformations
with all �i set equal, so that all q̂i transform as

q̂ i ! e�q̂i: (B7)

We call this a global RPI-III transformation, since it uni-

versally affects all collinear sectors. Note that in ŜN�1

there are no �n directions to consider, since they do not
enter in the Wilson lines or the measurement function.
Under a global RPI-III transformation, the jet boundaries
are invariant, and the measurement function has a simple
transformation property

M Nðk1; . . . ; kNÞ ! e�ðNþ2Þ�MNðk1; . . . ; kNÞ; (B8)

where ki ! e�ki under global RPI-III transformations, just
as for Sþ. The usoft function therefore transforms as

ŜN�1 ! e�ðNþ2Þ�ŜN�1. This is compensated for by the
transformation of the measure of the convolution variables

under global RPI-III
Q

idki ! eðNþ2Þ�Q
idki, such that the

combination
Q

idkiŜN�1 is invariant. As before, it is useful
to rescale the measure to factor out the

Q
i1=ki scaling

dependence of ŜN�1. The usoft measurement function then
becomes

~M us
N ðfkigÞ ¼

Y
i¼1;2




�
1� 2q̂t � P̂us

i

ki

�Y
i�1;2




�
1� 2q̂i � P̂us

i

ki

�
:

(B9)

The rescaled usoft function is now invariant under global
RPI-III. To determine its kinematic dependence, we con-
struct all global RPI-III invariant dimension-one combina-
tions, which are �

kiffiffiffiffiffiffi
ŝjk

p
�

(B10)

for all i 2 a; b; 1; 2; . . . ; N and j; k 2 a; b; t; . . . ; N with
j � k. Unlike the Sþ function, there is no �ni dependence

in ŜN�1. The only dimensionless RPI-III invariant combi-
nations of the q̂i that we can construct are the ratios ŝij=ŝkl,

which are all order 1 and can again be ignored.
We can further restrict the set in Eq. (B10) using the fact

that in the rescaled function, each ki only appears in the
measurement function and always comes with q̂i in
the combination q̂

�
i =ki. (Since the q̂i can also arise from

the Wilson lines, they can also appear without correspond-
ing factors of ki.). This requires either j ¼ i or k ¼ i in

Eq. (B10), reducing the set of possible combinations ŜN�1

can depend on to �
kiffiffiffiffiffiffi
ŝij

p
�
: (B11)

Therefore, the only scales that the soft function can depend
on to all orders in perturbation theory are those in
Eq. (B11). Since all of the ŝij � ŝQ, these scales are all

of the same parametric order.

APPENDIX C: RESUMMATION FORMULAS

In this appendix we collect all inputs needed for the
resummation at NLL in Sec. VII. The inputs required for
the resummation at next-to-next-to-leading logarithmic
order can be found, for example, in Appendix D.2 of
Ref. [42] and Appendix B.3 of Ref. [48].
The evolution kernels UX for the different functions in

Eq. (7.3) which solve their evolution equations are written
in terms of the evolution functions

KXð�0; �Þ ¼ �jXCXK�ð�0; �Þ þ K�X
ð�0; �Þ;

�Xð�0; �Þ ¼ CX��ð�0; �Þ; (C1)

where jX is the dimension of the evolution variable and
CX the coefficient of �cuspð�sÞ in the anomalous dimension

for each function, which are summarized in Table II. The

BAUER et al. PHYSICAL REVIEW D 85, 074006 (2012)

074006-34



evolution functionsK�ð�0; �Þ,��ð�0; �Þ, andK�X
ð�0; �Þ

are given further below.
The RGE of the hard function H2 following from Eqs.

(5.5) and (5.6) is

H2ðQ2;�Þ¼H2ðQ2;�0ÞUH2
ðQ2;�0;�Þ;

UH2
ðQ2;�0;�Þ¼

��������eKC2
ð�0;�Þ

��Q2� i0

�2
0

�
�C2

ð�0;�Þ��������
2

: (C2)

The RGE of the hard function H�þ following from Eq.
(5.13) is

H�þðt;z;�Þ¼H�þðt;z;�0ÞU�
Hþðt;z;�0;�Þ;

U�
Hþðt;z;�0;�Þ¼

��������eK
�
Cþð�0;�;zÞ

��t�i0

�2
0

�
�Cþð�0;�Þ��������

2

: (C3)

Here, K�
Cþð�0; �; xÞ explicitly depends on � and x via

��
Cþ½�s; x	.
The solution for the soft function RGE in Eq. (5.35) is

given by [46,51–53]

Sðk;�Þ ¼
Z

dk0Sðk� k0; �0ÞUSðk0; �0; �Þ;

USðk;�0; �Þ ¼ eKS��E�S

�ð1þ �SÞ
�

�Sffiffiffî
s

p
�0

L�S

�
kffiffiffî
s

p
�0

�
þ 
ðkÞ

�
;

(C4)

where KS � KSð�0; �Þ, �S � �Sð�0; �Þ, and ŝ ¼ ŝt or
ŝ ¼ ŝQ for Sþ or S2, respectively. The plus distribution

L� is defined as

L�ðxÞ ¼
�
	ðxÞ
x1��

�
þ
¼ lim

�!0

�
	ðx� �Þ
x1��

þ 
ðx� �Þ x
� � 1

�

�
:

(C5)

The RGE for the jet functions is given in Eq. (5.18). The
solution has exactly the same structure as Eq. (C4),

Jðs; �Þ ¼
Z

ds0Jðs� s0; �0ÞUJðs0; �0; �Þ;

UJðs; �0; �Þ ¼ eKJ��E�J

�ð1þ �JÞ
�
�J

�2
0

L�J

�
s

�2
0

�
þ 
ðsÞ

�
; (C6)

whereKJ � KJð�0; �Þ and�J � �Jð�0; �Þ as in Eq. (C1).
The convolutions of the plus distributions in the final cross
section are easily evaluated analytically and can be found in
Appendix B of Ref. [46].
The RGE functions are defined as

K�ð�0; �Þ ¼
Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�cuspð�sÞ
Z �s

�sð�0Þ
d�0

s

�ð�0
sÞ ;

��ð�0; �Þ ¼
Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�cuspð�sÞ;

K�X
ð�0; �Þ ¼

Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�Xð�sÞ: (C7)

Expanding the beta function and anomalous dimensions in
powers of �s,

�ð�sÞ ¼ �2�s

X1
n¼0

�n

�
�s

4

�
nþ1

;

�cuspð�sÞ ¼
X1
n¼0

�n

�
�s

4

�
nþ1

;

�ð�sÞ ¼
X1
n¼0

�n

�
�s

4

�
nþ1

; (C8)

the explicit expressions of the evolution functions at NLL
are

K�ð�0; �Þ ¼ � �0

4�2
0

�
4

�sð�0Þ
�
1� 1

r
� lnr

�

þ
�
�1

�0

� �1

�0

�
ð1� rþ lnrÞ þ �1

2�0

ln2r

�
;

��ð�0; �Þ ¼ � �0

2�0

�
lnrþ �sð�0Þ

4

�
�1

�0

� �1

�0

�
ðr� 1Þ

�
;

K�ð�0; �Þ ¼ � �0

2�0

lnr: (C9)

Here, r ¼ �sð�Þ=�sð�0Þ and the running coupling is given
by the three-loop expression

1

�sð�Þ ¼
X

�sð�0Þ þ
�1

4�0

lnXþ �sð�0Þ
162

�
�2

�0

�
1� 1

X

�

þ �2
1

�2
0

�
lnX

X
þ 1

X
� 1

��
; (C10)

where X � 1þ �sð�0Þ�0 lnð�=�0Þ=ð2Þ.
The coefficients of the beta function [54,55] and cusp

anomalous dimension [32] in MS are

TABLE II. Anomalous dimension coefficients for the various
functions in the factorization theorem.

CX jX �0
X

C2 CF 2 �6CF

Cf�;g;�g
þ CA=2 2 2ð2CF � CAÞ lnxþ 2CA lnð1� xÞ � �0

Cfg;�;�g
þ CA=2 2 2ð2CF � CAÞ lnð1� xÞ þ 2CA lnx� �0

Jq �2CF 2 6CF

Jg �2CA 2 2�0

Sþ 2CA 1 0

S2 4CF 1 0
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�0 ¼ 11

3
CA � 4

3
TFnf;

�1 ¼ 34

3
C2
A �

�
20

3
CA þ 4CF

�
TFnf;

�2 ¼ 2857

54
C3
A þ

�
C2
F � 205

18
CFCA � 1415

54
C2
A

�
2TFnf

þ
�
11

9
CF þ 79

54
CA

�
4T2

Fn
2
f (C11)

�0¼4; �1¼4

��
67

9
�2

3

�
CA�20

9
TFnf

�
: (C12)

The individual quark and gluon contributions to the non-
cusp parts of the hard and jet anomalous dimensions in
Eqs. (5.19) and (5.43) at one loop are

�q
J½�s	 ¼ � �q

J½�s	 ¼ �s

4
6CF þOð�2

sÞ;

�g
J½�s	 ¼ �s

4
2�0 þOð�2

sÞ; (C13)

�q
C½�s	 ¼ � �q

C½�s	 ¼ �s

4
ð�3CFÞ þOð�2

sÞ;

�g
C½�s	 ¼ �s

4
ð��0Þ þOð�2

sÞ:
(C14)
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