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We calculate next-to-leading-order (NLO) corrections to the B ! � transition form factors at leading

twist in the kT factorization theorem. Light partons off shell by k2T are considered in the quark diagrams, in

the effective diagrams for the B-meson wave function defined with the effective heavy-quark field, and in

the effective diagrams for the pion wave function. It is explicitly demonstrated that the infrared logarithms

lnk2T cancel between the above sets of diagrams, as deriving the kT-dependent NLO hard kernel from their

difference. The infrared finiteness of the hard kernel confirms the application of the kT factorization

theorem to B-meson semileptonic decays. The NLO pion wave function is identical to those constructed

from the pion transition and electromagnetic form factors, consistent with its universality. Choosing the

renormalization and factorization scales lower than the B-meson mass, the NLO corrections are under

control: they amount only up to 30% of the form factors at large recoil of the pion, when varying models

for the meson wave functions.
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I. INTRODUCTION

B-meson transition form factors are an essential input
of the factorization approaches to nonleptonic two-body
B-meson decays, such as the perturbative QCD (PQCD)
approach [1,2] based on the kT factorization theorem [3–8].
For next-to-leading-order (NLO) contributions in leading-
twist PQCD, the vertex corrections, the quark loops, and
the magnetic penguins associated with the weak decay
vertices in factorizable emission amplitudes have been
calculated [9–11]. As explained in [9], the above correc-
tions may be the most crucial NLO pieces for understand-
ing the known B ! �� and B ! �K puzzles, which result
from the large observed �0�0 branching ratio, and from
the dramatically different direct CP asymmetries between
the ��K� and �0K� modes, respectively. There have
been many applications of this NLO PQCD formalism to
nonleptonic two-body B- and Bs-meson decays in the
literature. For NLO corrections to spectator diagrams, we
have identified the so-called Glauber divergences, in addi-
tional to those which are absorbed into hadron wave func-
tions, and summed them into a phase factor to all orders
[12]. It was observed that the phase factor modifies the
interference pattern between the spectator diagrams, and
further improves the resolution of the B ! ��, �K puz-
zles in NLO PQCD. At the same level of accuracy, we need
to calculate NLO corrections to the B-meson transition
form factors for completeness.

In this paper, we shall extend the NLO framework for
the pion electromagnetic form factor in the kT factorization
[13] to the B ! � transition form factors. In this frame-
work, light partons in both QCD quark diagrams and

effective diagrams for hadron wave functions are off
mass shell by k2T [14,15]. Not only the collinear divergen-
ces from gluon emissions collimated to the pion, but also
the soft divergences from gluon exchanges between the
two mesons exist. Compared to the pion form factor [13], a
new point is that an infrared regulator associated with the b
quark is not needed. Because of its finite mass, gluons
radiated by the b quark do not generate collinear divergen-
ces. Soft divergences can be regularized either by the
virtuality of internal particles, or by the virtuality k2T of
other light partons, to which the radiative gluons attach.
That is, the b quark remains on shell in the above frame-
work, a condition which justifies the approximation of the
b-quark field by the effective heavy-quark field for defining
the B-meson wave function. The NLO pion wave function
is found to be identical to those constructed in the pion
electromagnetic and transition form factors [13,15],
consistent with its universality. Note that the diagrams
considered here differ from those in the QCD-improved
factorization approach [16] and in the soft-collinear effec-
tive theory [17], which are based on the collinear factori-
zation theorem [18]: there is no end-point singularity in the
kT factorization, so it is not necessary to introduce soft
form factors [19] or to perform the zero-bin subtraction
[20] in our calculation.
It will be demonstrated that the collinear and soft diver-

gences in the quark diagrams are cancelled by those in the
effective diagrams for the B-meson and pion wave func-
tions. Taking the difference of the above sets of diagrams,
we derive the kT-dependent NLO hard kernel at leading
twist for the B ! � transition form factors. The infrared
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finiteness of the hard kernel confirms the application of the
kT factorization theorem to B-meson semileptonic decays
[21]. Similar to the analysis in [13,15], both the large
double logarithms �sln

2kT and �sln
2x, x being a parton

momentum fraction, are identified. The former is absorbed
into the B-meson and pion wave functions and summed to
all orders in the coupling constant �s by the kT resumma-
tion [1], and the latter is absorbed into a jet function and
summed to all orders by the threshold resummation [22].
Because of the dominant soft dynamics associated with
the b quark, the effect of the kT resummation from the
B-meson side is minor. The renormalization scale � and
the factorization scale �f are introduced by higher-order

corrections to the quark diagrams and to the effective
diagrams, respectively. Choosing � and �f appropriately,

with both being lower than the B-meson mass as postulated
in [2,7], the NLO corrections are under control: they
amount only up to 30% of the form factors at large recoil
of the pion, when varying models for the meson wave
functions.

In Sec. II, we calculate the Oð�2
sÞ QCD quark diagrams

for the B ! �‘ �� semileptonic decay, the Oð�sÞ effective
diagrams for the B-meson and pion wave functions, and
their convolutions with theOð�sÞ hard kernel. Since the kT
factorization is appropriate for QCD processes dominated
by contributions from small x [14], we shall keep only
terms in leading power of x. The important double loga-
rithms are identified, and the kT-dependent NLO hard
kernel is presented. Section III contains the numerical
investigation, in which we examine the dependence of
the NLO contributions to the B ! � transition form fac-
tors on the renormalization and factorization scales, and on
the shape of the B-meson and pion wave functions.
Section IV is the conclusion.

II. NLO CORRECTIONS

In this section, we calculate the Oð�2
sÞ quark diagrams

for the B ! �‘ �� semileptonic decay, and the Oð�sÞ effec-
tive diagrams for the B-meson and pion wave functions in

the Feynman gauge. The B ! � transition form factors are
defined via the matrix element

h�ðP2Þj �u��bjBðP1Þi ¼ fþðq2ÞðP�
1 þ P�

2 Þ þ ½f0ðq2Þ

� fþðq2Þ�m
2
B �m2

�

q2
q�; (1)

where mB (m�) is the B-meson (pion) mass, and q ¼
P1 � P2 is the transfer momentum. The momentum P1

(P2) of the B meson (pion) is chosen as P1 ¼ Pþ
1 ð1; 1; 0TÞ

(P2 ¼ ð0; P�
2 ; 0TÞ) with the component Pþ

1 ¼ mB=
ffiffiffi
2

p
(P�

2 ¼ �mB=
ffiffiffi
2

p
). The large recoil region of the pion

corresponds to the energy fraction ��Oð1Þ. According
to the kT factorization, the antiquark �q carries the momen-
tum k1 ¼ ðx1Pþ

1 ; 0;k1TÞ in the B meson and k2 ¼
ð0; x2P�

2 ;k2TÞ in the pion, x1 and x2 being the momentum
fractions, as labeled in the leading-order (LO) quark dia-
grams in Fig. 1. We postulate the hierarchy

m2
B � x2m

2
B � x1m

2
B � x1x2m

2
B; k

2
1T; k22T; (2)

in the small-x region, which is roughly consistent with the
order of magnitude: x2 � 0:3, x1 � 0:1, mB � 5 GeV, and
kT & 1 GeV. Under the above hierarchy, only those terms
that do not vanish in the x ! 0 and kT ! 0 limits are kept,
so the expressions of our NLO results will be greatly
simplified.
To obtain the LO hard kernels, we sandwich Fig. 1 with

the following leading-twist spin projectors for the Bmeson
and the pion [16,23],

1

2
ffiffiffiffiffiffi
Nc

p ð6P1 þmBÞ�5

�
6nþ�ðþÞ

B ðx1Þ þ ð6n� � kþ1 �
�
?

@

@k�
1T

�
�ð�Þ

B ðx1Þ
�
;

1ffiffiffiffiffiffiffiffiffi
2Nc

p �5 6P2��ðx2Þ; (3)

respectively, where the dimensionless vectors are defined by nþ ¼ ð1; 0; 0TÞ, and n� ¼ ð0; 1; 0TÞ along P2, and Nc is the
number of colors. The contributions proportional to the B-meson distribution amplitudes �ðþÞ

B and �ð�Þ
B from Fig. 1(a) are

computed as

Hð0Þ
a ðx1; k1T; x2; k2TÞ ¼ �4g2CF

½x2��ðþÞ
B ðx1Þ þ�ð�Þ

B ðx1Þ�P�
2

x2�ðx1x2�m2
B þ jk1T � k2Tj2Þ

��ðx2Þ; (4)

with the strong coupling g, and the color factor CF. To reach the above expression, we have applied the hierarchy
x2m

2
B � k22T in Eq. (2) to the internal b-quark propagator. The denominator x1x2�m

2
B þ jk1T � k2Tj2 comes from the

virtuality of the LO hard gluon, in which the jk1T � k2Tj2 term smears the end-point singularity from small x2. Similarly,
Fig. 1(b) leads to the amplitude

FIG. 1. Leading-order quark diagrams for the B ! � transi-
tion form factors with � representing the weak vertex.
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Hð0Þ
b ðx1; k1T; x2; k2TÞ ¼ �4g2CF

ð�P�
1 � P�

2 Þ�ðþÞ
B ðx1Þ þ P�

2 �
ð�Þ
B ðx1Þ

�ðx1x2�m2
B þ jk1T � k2Tj2Þ

��ðx2Þ: (5)

Comparing Eqs. (4) and (5), it is easy to see that the term
proportional to �ð�Þ

B from Fig. 1(a) dominates numerically
according to the hierarchy in Eq. (2). As explained above,
the B ! � form factors receive major contributions from
the small-x region, in which the kT factorization is an
appropriate framework. Since the amplitude from
Fig. 1(b) is suppressed by a power of x2, we will not
consider the NLO corrections to Hð0Þ

b ðx1; k1T; x2; k2TÞ, and
focus on those to Fig. 1(a) below. The term proportional to
P
�
1 in Eq. (5) gives the symmetry breaking effect [16],

which is calculable even in the collinear factorization, as
convoluted with �ðþÞ

B ðx1Þ � x1 at small x1.

A. NLO quark diagrams

The NLO corrections to Fig. 1(a) contain Figs. 2–4 for
the self-energy corrections, the vertex corrections, and the
box and pentagon diagrams, respectively. The ultraviolet
poles are extracted in the dimensional reduction [24] in
order to avoid the ambiguity from handling the matrix �5.
We adopt the following convenient dimensionless ratios,

�1 ¼ k21T
m2

B

; �2 ¼ k22T
m2

B

;

�12 ¼ x1x2�m
2
B þ jk1T � k2Tj2

m2
B

;

(6)

as presenting our results. The infrared poles are then
identified as the logarithms ln�1 and ln�2.

The self-energy corrections in Fig. 2 give

Gð1Þ
2a ¼ ��sCF

4�

�
6

�1

�
1

	
þ ln

4��2

m2
Be

�E
þ 5

3

�

þ 1

2

�
1

	
þ ln

4��2

m2
Be

�E
þ 2 ln

m2
g

m2
B

� 1

��
Hð0Þ; (7)

Gð1Þ
2b ¼ ��sCF

8�

�
1

	
þ ln

4��2

�1m
2
Be

�E
þ 2

�
Hð0Þ; (8)

Gð1Þ
2c;2d ¼ ��sCF

8�

�
1

	
þ ln

4��2

�2m
2
Be

�E
þ 2

�
Hð0Þ; (9)

Gð1Þ
2e ¼ ��sCF

4�

�
6

x2�

�
1

	
þ ln

4��2

m2
Be

�E
þ 5

3

�

þ
�
1

	
þ ln

4��2

m2
Be

�E
þ 4 lnðx2�Þ � 5

��
Hð0Þ; (10)

Gð1Þ
2fþ2gþ2hþ2i ¼

�s

4�

��
5

3
Nc�2

3
Nf

��
1

	
þ ln

4��2

�12m
2
Be

�E

��
Hð0Þ;

(11)

where 1=	 represents the ultraviolet pole, � is the renor-
malization scale, �E is the Euler constant,Nf is the number

of quark flavors, and Hð0Þ denotes the leading-twist LO
hard kernel proportional to P

�
2 ,

FIG. 2. Self-energy corrections to Fig. 1(a).
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Hð0Þðx1; k1T; x2; k2TÞ ¼ � 4g2CFP
�
2

x2��12m
2
B

: (12)

The above expressions are basically similar to the cor-
responding ones obtained in the pion electromagnetic form
factor [13]. We emphasize only that Fig. 2(a), the self-
energy correction to the b quark, requires a mass renor-
malization as indicated by the first term in the square
brackets of Eq. (7). The finite piece of the first term is
then absorbed, with the relation ðP1 � k1Þ2 �m2

b ¼ �k21T ,
into the redefinition the b-quark mass,

1

ðP1 � k1Þ2 �m2
b

�
1� �sCF

4�

6

�1

�
ln
�2

m2
B

þ 5

3

��

¼ 1

ðP1 � k1Þ2 �m2
bð�Þ ; (13)

leading to the pole mass

mbð�Þ ¼ mb

�
1þ �s

�

�
ln
�2

m2
B

þ 5

3

��
: (14)

In this work, we shall not differentiate mbð�Þ from mB,
because the distinction between them contributes at next-
to-leading power. The second term in the square brackets
of Eq. (7) represents the correction to the b-quark wave
function. As explained before, we shall consider an on-
shell valence b quark, so the involved soft divergence is
regularized by a gluon massmg, which will be cancelled by

the corresponding soft divergence in the effective diagram
Fig. 5(a) below.

The results from the vertex corrections in Fig. 3 are
summarized as

Gð1Þ
3a ¼ �sCF

4�

�
1

	
þ ln

4��2

m2
Be

�E
� 2 ln

�
�2

�

�
ð1þ lnx2Þ

þ ln2x2 � �2 � 3

2

�
Hð0Þ; (15)

Gð1Þ
3b ¼ � �s

8�Nc

�
1

	
þ ln

4��2

m2
Be

�E
þ 4 lnðx2�Þ

�
Hð0Þ; (16)

Gð1Þ
3c ¼ � �s

8�Nc

�
1

	
þ ln

4��2

�12m
2
Be

�E
� 2 ln

�
�1

�12

�
ln

�
�2

�12

�

� 2 ln

�
�1�2

�2
12

�
� 2�2

3
þ 9

2

�
Hð0Þ; (17)

Gð1Þ
3d ¼ �sNc

8�

�
3

	
� 3�E þ 3 ln

4��2

�12m
2
Be

�E

þ 2 ln

�
�2
12

�1�2

�
þ 7

�
Hð0Þ; (18)

Gð1Þ
3e ¼ �sNc

8�

�
3

	
þ 3 ln

4��2

m2
Be

�E
� 1

2
ln2

�
�12

�2

�

þ 2ðlnx2 � 1Þ ln
�
x1
�

�
� �2

2
þ 3

�
Hð0Þ: (19)

The amplitude from Fig. 3(a) depends only on the regulator
�2, because the radiative gluon attaches to the virtual
b-quark line. The double logarithm 2 ln�2 lnx2 leads to
the known Sudakov logarithm ln2�2 and the known thresh-
old logarithm ln2x2 [13,15], as reexpressed in the form

2 ln�2 lnx2 ¼ ln2�2 þ ln2x2 � ln2
�2

x2
: (20)

The radiative gluon in Fig. 3(b) attaches to the massive
valence b quark and the virtual b quark, so Eq. (16) is
infrared finite. The radiative gluon in Fig. 3(c) attaches to
the light valence antiquarks, such that both the collinear
and soft divergences are produced, with the latter being
denoted by the product ln�1 ln�2. This term can be ab-
sorbed neither into the B-meson wave function nor into the
pion wave function. Since the radiative gluon attaches to
the virtual LO hard gluon in Fig. 3(d), the soft divergence

FIG. 3. Vertex corrections to Fig. 1(a).
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does not appear Eq. (18). Equations (17) and (18) are
symmetric under the exchange of the regulators �1 and
�2, as they should. Similar to Fig. 3(b), Fig. 3(e) also gives
an infrared-finite contribution.

The box diagrams and the pentagon diagrams in Fig. 4
lead to the amplitudes

Gð1Þ
4a ¼ ��sNc

4�

�
ln

�
x2�

2

�2

�
þ 1

�
x2H

ð0Þ; (21)

Gð1Þ
4c ¼ � �s

4�Nc

�
ln

�
x1�

�1

�
ln

�
�12

�2

�
þ �2

6

�
Hð0Þ; (22)

Gð1Þ
4d ¼ ��sCF

4�

�
ln2

�
�1

x21

�
� ln2x1 � 7�2

3

�
Hð0Þ; (23)

Gð1Þ
4e ¼ �s

8�Nc

�
ln2

�
x2�

2

�2

�
þ �2

�
Hð0Þ; (24)

Gð1Þ
4f ¼ �s

8�Nc

�
ln

�
�12

�2

�
ðlnð�12�2Þ � 4 lnðx2�ÞÞ

�
Hð0Þ:

(25)

Note that Eq. (21) is power-suppressed in the small x2
region, while the corresponding diagram gives a leading
amplitude in the pion form factor [13]. The difference is
attributed to the spin projectors: it is 6n� / �þ on the
B-meson side here, but 6P1 / �� on the initial pion side
in the latter case. Simply counting the sequence of the
gamma matrices, it is easy to understand that Fig. 4(a)

does not produce an amplitude proportional to Hð0Þ at
leading power. Figure 4(b) is a two-particle reducible
diagram, so its contribution will be cancelled by the cor-
responding effective diagram for the pion wave function
[13], and needs not to be computed. Figure 4(c) also
contains the soft divergence denoted by the ln�1 ln�2

term, which cancels that in Fig. 3(c). It seems that

Fig. 4(d) generates a collinear divergence, as the gluon
on the right is parallel to the light antiquark in the pion.
However, a careful look at the sequence of the gamma
matrices, similar to that for Fig. 4(a), reveals power sup-
pression on this collinear divergence. Equation (24) does
not depend on an infrared regulator associated with the
massive valence b quark, because �2 alone is enough to
regularize the collinear and soft divergences. The collinear
divergence associated with the light valence antiquark on
the B-meson side is also power-suppressed in Fig. 4(f), so
Eq. (25) does not contain ln�1.
The amplitudes from all the NLO quark diagrams are

summed into

Gð1Þ ¼ �sCF

4�

�
21

4

�
1

	
þ ln

4��2

m2
Be

�E

�
� ln2�1

þ
�
4 lnx1 � 3

2

�
ln�1 þ ln

m2
B

m2
g

� ð2 lnx2 þ 3Þ ln�2 � 55

16
ln2x1 þ 7

16
ln2x2

þ 9

8
lnx1 lnx2 þ 7 ln�� 18

8
lnx1 þ 7 ln�� 36

8
lnx2

� ln�ð7 ln�þ 4Þ
16

þ 23

16
�2 þ 235

16

�
Hð0Þ; (26)

for Nf ¼ 6. The ultraviolet pole in the above expression is

the same as in the pion electromagnetic form factor, which
determines the renormalization-group (RG) evolution of
the coupling constant �s.

B. NLO effective diagrams

The Oð�sÞ B-meson wave function �ð1Þ
B [25] and the

Oð�sÞ pion wave function�ð1Þ
� [14,26] collect the effective

diagrams from the matrix elements of the leading Fock
states

FIG. 4. Box and pentagon diagrams.
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�Bðx1; k1T; x01; k01TÞ ¼
Z dz�

2�

d2zT
ð2�Þ2 e

�ix0
1
Pþ
1
z�þik0

1T
�zT h0j �qðzÞWzðn1ÞyW0ðn1Þ6nþ�hvð0Þjhv �qðk1Þi; (27)

��ðx2; k2T ; x02; k02TÞ ¼
Z dyþ

2�

d2yT
ð2�Þ2 e

�ix0
2
P�
2
yþþik0

2T
�yT h0j �qðyÞWyðn2ÞyW0ðn2Þ6nþ�5qð0ÞjuðP2 � k2Þ �qðk2Þi; (28)

respectively, with z ¼ ð0; z�; zTÞ and y ¼ ðyþ; 0; yTÞ being
the coordinates of the antiquark field �q, respectively, hv the
effective heavy-quark field, and � an appropriate gamma
matrix. In the above expressions, the Wilson line Wzðn1Þ
with n21 � 0 is written as

Wzðn1Þ ¼ P exp

�
�ig

Z 1

0
d
n1 � Aðzþ 
n1Þ

�
; (29)

and the definition of the Wilson lineWyðn2Þ is similar. It is
understood that the two Wilson lines Wzðn1Þ and W0ðn1Þ
(Wyðn2Þ and W0ðn2Þ) are connected by a vertical link at
infinity [27,28]. Equation (27) and (28) produces
additional light-cone singularities [25,29,30] from the re-
gion with a loop momentum collinear to n� (nþ), as the
Wilson line direction approaches the light cone, i.e., as
n1 ! n� (n2 ! nþ) [29]. Hence, n21 and n22 serve as the
infrared regulators for the light-cone singularities in our
formalism. The B-meson and pion wave functions then
depend on the scales �21 	 4ðn1 � P1Þ2=jn21j and �22 	
4ðn2 � P2Þ2=jn22j, respectively, whose variation is regarded
as a factorization-scheme dependence. This scheme depen-
dence, entering the hard kernel when taking the difference
between the quark diagrams and the effective diagrams,
can be minimized by adhering to fixed n21 and n22.

We compute the convolution of the NLO wave function

�ð1Þ
B with the LO hard kernel Hð0Þ over the integration

variables x01 and k0
1T ,

�ð1Þ
B �Hð0Þ

	
Z

dx01d
2k0

1T�
ð1Þ
B ðx1;k1T ; x

0
1;k

0
1TÞHð0Þðx01;k0

1T; x2;k2TÞ:
(30)

The sign of the plus component nþ1 of the vector n1 is
arbitrary, which could be positive or negative (n�1 has a
positive sign, the same as of P�

2 ). Choosing nþ1 < 0,
i.e., n21 < 0 as in [1,7,31], we derive, from Figs. 5(a)–5(d)
and 5(g),

�ð1Þ
5a �Hð0Þ ¼ �sCF

4�

�
1

	
þ ln

4��2
f

m2
ge

�E

�
Hð0Þ; (31)

�ð1Þ
5b �Hð0Þ ¼ ��sCF

8�

�
1

	
þ ln

4��2
f

�1m
2
Be

�E
þ 2

�
Hð0Þ; (32)

�ð1Þ
5c �Hð0Þ ¼ ��sCF

4�

�
ln2

�1

x21

�
Hð0Þ; (33)

�ð1Þ
5d �Hð0Þ ¼ ��sCF

4�
ln
�21
m2

B

�
1

	
þ ln

4��2
f

m2
ge

�E

�
Hð0Þ; (34)

�ð1Þ
5e �Hð0Þ ¼ �sCF

4�
ln
�21
m2

B

�
ln
�21
m2

g

þ 1

2
ln
�21
m2

B

þ 2 lnx1

�
Hð0Þ;

(35)

FIG. 5. Oð�sÞ diagrams for the B-meson wave function.
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�ð1Þ
5f �Hð0Þ ¼ �sCF

4�

�
1

	
þ ln

4��2
f

x21�
2
1e

�E
� ln2

�1m
2
B

x21�
2
1

� 2 ln
�1m

2
B

x21�
2
1

þ �2

3

�
Hð0Þ; (36)

�ð1Þ
5g �Hð0Þ ¼ �sCF

4�

�
ln2

�1m
2
B

x21�
2
1

� 2�2

3

�
Hð0Þ; (37)

�f being the factorization scale. The two-particle reduc-

ible diagrams Figs. 5(a) and 5(c) are calculated, since the
effective heavy-quark field employed in the B-meson wave
function differs from the b-quark field in the quark
diagrams. Though the effective diagrams and the quark
diagrams have the same soft poles, the finite pieces
are different, which contribute to the NLO hard kernel.
The self-energy corrections to the Wilson lines in
Figs. 5(h)–5(j) yield

ð�ð1Þ
5h þ�ð1Þ

5i þBð1Þ
5j Þ�Hð0Þ ¼�sCF

2�

�
1

	
þ ln

4��2
f

�12m
2
Be

�E

�
Hð0Þ;

(38)

the same as in the pion wave function [13].
It is pointed out that the gluon massmg has been adopted

to regularize the soft divergences in the diagrams involving
the effective heavy-quark field, namely, Figs. 5(a), 5(d),
and 5(e). The soft divergence in Fig. 5(a) indeed cancels
that in Fig. 2(a) as stated in the previous subsection. The
mg dependence disappears in the sum of Eqs. (34) and (35),

which must be the case, because the gluons emitted by the
b quark and attaching to other particle lines do not generate
soft divergences. The hierarchy �21 � m2

B was employed in
the derivation of Eq. (35) [25], so the large double loga-
rithm ln2ð�21=m2

BÞ demands an additional resummation
treatment of the B-meson wave function, which will not
be performed in this work. The double logarithms ln2�1

from the quark diagram Fig. 4(d) and from the effective
diagram Fig. 5(c) cancel each other. The double logarithms
ln2ðm2

B�1=ðx21�21 ÞÞ are not only attenuated by x21, but also

cancel exactly between Eqs. (36) and (37). Summing all
the above Oð�sÞ contributions, we obtain

�ð1Þ
B �Hð0Þ ¼ �sCF

4�

��
ln
m2

B

�21
þ 7

2

��
1

	
þ ln

4��2
f

m2
Be

�E

�
� ln2�1

þ
�
4 lnx1 � 3

2

�
ln�1 þ ln

m2
B

m2
g

þ 3

2
ln2

m2
B

�21

� ð2 lnx1 � 1Þ lnm
2
B

�21
� 4ln2x1

� 2 lnðx2�Þ � �2

3
� 1

�
Hð0Þ: (39)

We then compute the convolution of the NLO wave

function �ð1Þ
� with the LO hard kernel Hð0Þ over the inte-

gration variables x02 and k0
2T ,

Hð0Þ ��ð1Þ
�

	
Z

dx02d2k0
2TH

ð0Þðx1;k1T; x
0
2;k

0
2TÞ�ð1Þ

� ðx2;k2T ; x
0
2;k

0
2TÞ:
(40)

The corrections from Figs. 6(a)–6(f) are summarized as

Hð0Þ ��ð1Þ
6a ¼ Hð0Þ ��ð1Þ

6b

¼ ��sCF

8�

�
1

	
þ ln

4��2
f

�2m
2
Be

�E
þ 2

�
Hð0Þ; (41)

Hð0Þ ��ð1Þ
6c ¼ 0; (42)

Hð0Þ ��ð1Þ
6d ¼ �sCF

4�

�
1

	
þ ln

4��2
f

�2m
2
Be

�E
� ln2

�22
�2m

2
B

þ ln
�22

�2m
2
B

þ 2� �2

3

�
Hð0Þ; (43)

Hð0Þ ��ð1Þ
6e ¼ �sCF

4�

�
ln2

x2�
2
2

�2m
2
B

þ �2

�
Hð0Þ; (44)

FIG. 6. Oð�sÞ diagrams for the pion wave function.
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Hð0Þ
b ��ð1Þ

6f ¼ �sCF

4�

�
1

	
þ ln

4��2
f

�2m
2
Be

�E
� ln2

x22�
2
2

�2m
2
B

þ ln
x22�

2
2

�2m
2
B

þ 2� �2

3

�
Hð0Þ; (45)

Hð0Þ ��ð1Þ
6g ¼ �sCF

4�
ðln2 �2m

2
B

x22�
2
2

� �2

3
ÞHð0Þ; (46)

Hð0Þ �ð�ð1Þ
6h þ�ð1Þ

6i þ�ð1Þ
6j Þ¼

�sCF

2�

�
1

	
þ ln

4��2
f

�12m
2
Be

�E

�
Hð0Þ;

(47)

which are similar to those extracted from the pion transi-
tion and electromagnetic form factors [13,15], but with the
hard scale Q being replaced by mB here. This similarity
supports the universality of the pion wave function.
Summing all the above Oð�sÞ contributions, we have

Hð0Þ ��ð1Þ
� ¼ �sCF

4�

�
3

�
1

	
þ ln

4��2
f

m2
Be

�E

�
� ln�2ð2 lnx2 þ 3Þ

þ 2 ln
�22
m2

B

ðlnx2 þ 1Þ � 2 ln�12

þ lnx2ðlnx2 þ 2Þ þ 2

�
Hð0Þ: (48)

We stress that the ultraviolet poles are different in
Eqs. (39) and (48), since the former involves the effective
heavy-quark field, instead of the b-quark field. That is, the

B-meson and pion wave functions exhibit different evolu-
tions as illustrated below. First, the B-meson decay con-
stant, defined via the matrix element with the effective
heavy-quark field, evolves with an energy scale. Hence,
part of the ln�f term in Eq. (39) should be absorbed into

fBð�fÞ through the RG equation in the heavy-quark effec-

tive theory �
�

d

d�
þ �sCF

4�
�f

�
fBð�fÞ ¼ 0; (49)

with the anomalous dimension �f ¼ �3 at one loop [32].

The RG equation for the B-meson wave function without
the decay constant, �Bðx1; �fÞ=fBð�fÞ, is then written as

�
�

d

d�
þ �sCF

4�
�B

�
�Bðx1; �fÞ
fBð�fÞ ¼ 0; (50)

where the anomalous dimension

�B ¼ �2

�
ln
m2

B

�21
þ 2

�
; (51)

governs part of the RG evolution in the kT factorization
formulas for the B ! � form factors [1,21].

C. NLO hard kernel

The infrared-finite kT-dependent NLO hard kernel for
the B ! � transition form factors is derived by taking the
difference between the quark diagrams and the effective
diagrams [14]

Hð1Þðx1;k1T; x2;k2TÞ ¼ Gð1Þðx1;k1T; x2;k2TÞ �
Z

dx01d
2k0

1T�
ð1Þ
B ðx1;k1T ; x

0
1;k

0
1TÞHð0Þðx01;k0

1T; x2;k2TÞ

�
Z

dx02d
2k0

2TH
ð0Þðx1; k1T; x02;k0

2TÞ�ð1Þ
� ðx2;k2T; x

0
2;k

0
2TÞ: (52)

Note that �s appearing in Eqs. (26), (39), and (48) denotes
the bare coupling constant, which can be rewritten as

�s ¼ �sð�fÞ þ �Zð�fÞ�sð�fÞ; (53)

with the counterterm �Z being defined in the modified
minimal subtraction scheme. We insert Eq. (53) into the
expressions of the LO and NLO quark diagrams, and of the

NLO effective diagrams. The LO hard kernel Hð0Þ
multiplied by �Z then regularizes the ultraviolet pole in
Eq. (26). The ultraviolet poles in Eqs. (39) and (48) are
regularized by the counterterm of the quark field and by an
additive counterterm in the modified minimal subtraction
scheme.
The NLO hard kernel for Fig. 1(a) is given by

Hð1Þ ¼ �sð�fÞCF

4�

�
21

4
ln
�2

m2
B

�
�
ln
m2

B

�21
þ 13

2

�
ln
�2

f

m2
B

þ 9

16
ðln2x1 þ 2 lnx1 lnx2 � lnx22Þ þ

�
2 ln

m2
B

�21
þ 7

8
ln�� 1

4

�
lnx1

þ
�
2 ln

m2
B

�22
þ 7

8
ln�� 5

2

�
lnx2 þ 2 ln

m2
B

�22
þ

�
15

4
� 7

16
ln�

�
ln�� 1

2
ln
m2

B

�21

�
3 ln

m2
B

�21
þ 2

�
þ 85

48
�2 þ 219

16

�
Hð0Þ; (54)

in which all the infrared regulators mg, �1, and �2 have
disappeared. A choice of the scales �1 and �2 corresponds
to a factorization scheme, which should be fixed for con-
sistency. Following the scheme �2 ¼ Q2 adopted in the

NLO analysis of the pion transition and electromagnetic
form factors [13,15], we set �2 to m2

B. The important
logarithms lnðm2

B=�
2
1 Þ, arising from the B-meson

wave function, enter the hard kernel after the infrared
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subtraction. Instead of performing resummation of these
logarithms, we choose a sufficiently large �1, say, �1=mB ¼
25 in the numerical analysis, which has been assumed for
achieving the simplified result in Eq. (35). In this scheme,
the ln2ðmB=�1Þ term happens to cancel the large constant
term in the hard kernel, and reduces the NLO correction.

Moreover, the double logarithm ln2x2 has been absorbed
into the jet function Jðx2Þ [22] defined in the kinematic
region where the virtual b quark in Fig. 1(a) becomes
almost on shell, namely, with x2 ! 0. The organization

of this important logarithm to all orders leads to the thresh-
old resummation factor, which further suppresses the
end-point singularity from small x2 in the B ! � form
factors [21]. Therefore, we have to subtract the NLO jet
function [15]

Jð1ÞHð0Þ ¼ � �s

4�
CF

�
ln2x2 þ lnx2 þ �2

3

�
Hð0Þ; (55)

from Eq. (54), which finally turns into

Hð1Þ ! Hð1Þ � Jð1ÞHð0Þ

¼ �sð�fÞCF

4�

�
21

4
ln
�2

m2
B

�
�
ln
m2

B

�21
þ 13

2

�
ln
�2

f

m2
B

þ 7

16
ln2ðx1x2Þ þ 1

8
ln2x1 þ 1

4
lnx1 lnx2 þ

�
2 ln

m2
B

�21
þ 7

8
ln�� 1

4

�
lnx1

þ
�
7

8
ln�� 3

2

�
lnx2 þ

�
15

4
� 7

16
ln�

�
ln�� 1

2
ln
m2

B

�21

�
3 ln

m2
B

�21
þ 2

�
þ 101

48
�2 þ 219

16

�
Hð0Þ: (56)

Because the double logarithm ln2x1 was not resummed in
[21], it is left in the above NLO hard kernel Hð1Þ. Another
double logarithm ln2ðx1x2Þ actually arises from the
approximation ln2�12 
 ln2ðx1x2Þ. This approximation
makes sense: a logarithm does not develop an end-point
singularity, so the k2T term is negligible in ln�12. Equation
(56), proportional to P

�
2 , generates the NLO corrections at

leading twist to the B ! � transition form factors fþðq2Þ
and f0ðq2Þ in Eq. (1).

III. NUMERICAL ANALYSIS

In this section, we evaluate the B ! � transition form
factors numerically in the kT factorization up to NLO,
adopting the following nonasymptotic pion distribution
amplitudes [33,34],

�A
�ðxÞ ¼ 6f�

2
ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ½1þ a2C
3=2
2 ðuÞ þ a4C

3=2
4 ðuÞ�;

�P
�ðxÞ ¼ f�

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ½1þ 0:59C1=2
2 ðuÞ þ 0:09C1=2

4 ðuÞ�;

��
�ðxÞ ¼ 6f�

2
ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ½1þ 0:11C3=2
2 ðuÞ�; (57)

with the pion decay constant f� ¼ 130 MeV, the
Gegenbauer moments a2 ¼ 0:16 and a4 ¼ 0:04, and the
Gegenbauer polynomials

C1=2
1 ðuÞ ¼ u; C3=2

1 ðuÞ ¼ 3u;

C1=2
2 ðuÞ ¼ 1

2ð3u2 � 1Þ;
C3=2
2 ðuÞ ¼ 3

2ð5u2 � 1Þ;
C1=2
3 ðuÞ ¼ 1

2uð5u2 � 3Þ;
C3=2
4 ðuÞ ¼ 15

8 ð21u4 � 14u2 þ 1Þ; (58)

and the variable u ¼ 1� 2x. The B-meson distribution
amplitudes inspired from a QCD sum-rule analysis in the
heavy-quark effective theory [35]

�ðþÞ
B ðx; bÞ ¼ fB

2
ffiffiffiffiffiffiffiffiffi
2Nc

p x

�
mB

!0

�
2
Exp

�
� xmB

!0

� 1

2
ð!0bÞ2

�
;

�ð�Þ
B ðx; bÞ ¼ fB

2
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
mB

!0

�
Exp

�
� xmB

!0

� 1

2
ð!0bÞ2

�
;

(59)

are employed, where the B-meson decay constant is set to a
constant fB ¼ 214 MeV for convenience (namely, ne-
glecting its evolution), and the shape parameter is chosen
as !0 ¼ 0:35 GeV.
The first issue concerns the choice of the renormaliza-

tion scale � and the factorization scale �f in order to

minimize the NLO corrections to the form factors. For
the first choice, �f is set to the hard scales specified in

the PQCD approach to exclusive processes [2,7,36]

ta ¼ maxð ffiffiffiffiffiffiffiffi
x2�

p
mB; 1=b1; 1=b2Þ;

tb ¼ maxð ffiffiffiffiffiffiffiffi
x1�

p
mB; 1=b1; 1=b2Þ;

(60)

corresponding to the largest energy scales in Figs. 1(a) and
1(b), respectively. Then, we utilize the freedom of choos-
ing � to diminish all the single-logarithmic and constant
terms in the NLO hard kernel, which is found to be

tsð�fÞ ¼
�
Exp

�
c1 þ

�
ln
m2

B

�21
þ 5

4

�
ln
�2

f

m2
B

�
xc21 x

c3
2

�
2=21

�f;

(61)

with the coefficients
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c1 ¼ �
�
15

4
� 7

16
ln�

�
ln�þ 1

2
ln
m2

B

�21

�
3 ln

m2
B

�21
þ 2

�

� 101

48
�2 � 219

16
;

c2 ¼ �
�
2 ln

m2
B

�21
þ 7

8
ln�� 1

4

�
; c3 ¼ � 7

8
ln�þ 3

2
:

To have an idea of the magnitude of the renormalization
scale � ¼ tsð�fÞ, we display its behavior in the dominant

region with the small momentum fractions x1 and x2 in
Fig. 7, where the factorization scale �f is fixed at its

typical value 1.5 GeV. The ratio of the NLO contributions
over the total ones as a function of the transfer momentum
squared q2 is summarized in Fig. 8, which is approximately
30% for both the form factors fþðq2Þ and f0ðq2Þ. In the
second choice, we set both scales to � ¼ �f ¼ ta (tb) in

the factorization formula associated with Fig. 1(a)
(Fig. 1(b)). It turns out that this simple scenario yields
larger NLO corrections around 40% as shown in Fig. 8.
The third choice corresponds to�f ¼ mB and� ¼ tsð�fÞ,
for which the NLO corrections are approximately 15%.
However, the inverse relation �f >� in this case seems

not to be natural. Hereafter, we shall adopt the first choice
of the renormalization and factorization scales as the de-
fault one.
The B ! � transition form factors in the kT factoriza-

tion up to NLO are presented in Fig. 9. It is observed that
the LO and NLO contributions exhibit the similar power-
law behavior, as they should. It is not a surprise that the
form factors at the maximal recoil of the pion, fþð0Þ ¼
f0ð0Þ, are close to their LO value [21], even after including
the NLO contributions. The reason is that the meson wave
functions have been adjusted accordingly to maintain this
value, which is regarded as an input. That is, when choos-
ing hadron wave functions in the PQCD approach, one
must pay attention to the order in the coupling constant, at
which the hadron wave functions are determined. Though
the form-factor values, treated as inputs, are not changed at
higher orders, the different hadron wave functions ex-
tracted at different orders do affect other topologies of
nonleptonic two-body B-meson decay amplitudes. It is
worthwhile to investigate the corrections to nonleptonic
two-body B-meson decays from this NLO source in future
works.
To test the impact of higher conformal-spin partial

waves in the pion distribution amplitudes, we plot the q2

dependence of the form factors in Fig. 10 with the

0.10

0.15

0.20

x1 0.2

0.4

0.6

0.8

x2

2

3

4

FIG. 7 (color online). Renormalization scale tsð�fÞ, defined in
Eq. (61), as a function of momentum fractions x1 and x2 for
a typical factorization scale �f ¼ 1:5 GeV and the ratio

�1=mB ¼ 25.

FIG. 8. Ratios of the NLO corrections over the total contributions to the B ! � form factors for three different choices of the
renormalization and factorization scales.
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asymptotic pion distribution amplitudes. Numerically, both
the form factors are reduced by about 25% for q2 �
12 GeV2 without the nonasymptotic Gegenbauer terms in
Eq. (57). We also investigate the effects from different
models of the B-meson distribution amplitudes. A model
widely adopted in the PQCD analysis is given by

�ðþÞ
B ðx; bÞ ¼ �ð�Þ

B ðx; bÞ

¼ fB
2

ffiffiffiffiffiffiffiffiffi
2Nc

p NBx
2ð1� xÞ2Exp

�
� x2mB

2!2
0

� 1

2
ð!0bÞ2

�
; (62)

with the normalization constant NB defined viaR
dx�ðþÞ

B ðx; 0Þ ¼ fB=ð2
ffiffiffiffiffiffiffiffiffi
2Nc

p Þ. Note that the two leading

B-meson distribution amplitudes have been assumed to be
equal for the purpose of numerical estimate, which do not
obey the equations of motion [37]. Besides, it exhibits an
asymptotic behavior at x ! 0 different from that derived in
[38]. The corresponding q2 dependence in Fig. 11 indicates
that the form factors with the model in Eq. (62) are
approximately 25% smaller than those with the model in
Eq. (59). It is interesting to notice in Fig. 11 that the NLO
corrections are relatively small, less than 20% of the total
contributions. The reason is attributed to the fact that the
end-point region of x1 is strongly suppressed by this model
and the double logarithm ln2x1 in the NLO hard kernel
does not play an essential role.
The extraction of the Cabibbo-Kobayashi-Maskawa ma-

trix element jVubj [39] from the semileptonic decay
B ! �‘ �� is of intensive phenomenological interest

FIG. 9. LO and NLO contributions to the B ! � form factors with the nonasymptotic pion distribution amplitudes in Eq. (57) and
the first scenario for the scale choice, �f ¼ t and � ¼ tsð�fÞ.

FIG. 10. LO and NLO contributions to the B ! � form factors with the asymptotic pion distribution amplitudes and the first
scenario for the scale choice, �f ¼ t and � ¼ tsð�fÞ.
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recently (see [34] and references therein). Here, we com-
ment on the consistency of the B ! � form factors pre-
dicted in the NLO kT factorization with those in the
literature, in view of the extraction of jVubj. For this
purpose, we also estimate the theoretical uncertainties of
the form factors fþðq2Þ and f0ðq2Þ from the variations of
the Gegenbauer moments a2 and a4 in the twist-2 pion
distribution amplitudes, from the variations of the chiral
scale m0 	 m2

�=ðmu þmdÞ, mu (md) being the u (d) quark
mass, involved in the two-parton twist-3 pion distribution
amplitudes [40], and from the variations of the shape
parameter !0 in the B-meson distribution amplitudes in
Eq. (59). Unfortunately, the extraction of !0 still suffers
large uncertainty from QCD sum-rule calculations. We
simply take !0 ¼ 0:35� 0:05 GeV to illustrate the effect
on the form factors from the variation of!0. It is seen from

Fig. 12 that both the form factors fþðq2Þ and f0ðq2Þ,
including LO and NLO contributions, increase (decrease)
by 15% with the decrease (increase) of !0. Combining
the uncertainties due to a2ð1 GeVÞ ¼ 0:16þ0:09

�0:07,

a4ð1 GeVÞ ¼ 0:04þ0:12
�0:08, m0ð1GeVÞ¼1:74þ0:67

�0:38 GeV, and

!0 ¼ 0:35� 0:05 GeV, we predict the form factors
fþðq2Þ and f0ðq2Þ as displayed in Fig. 13. Fitting to the
BABAR data on the integrated B ! �‘ �� branching ratio
within the region 0 � q2 � 8 GeV2 [41], where the
leading-twist kT factorization is expected to work well,
we obtain

jVubj ¼ 2:90þ0:77
�0:80

��������th

þ0:13

�0:14

��������exp
: (63)

The above value is in good agreement with that in [41],
which employed the data on q2 bins in the whole kinematic

FIG. 11. LO and NLO contributions to the B ! � form factors with the B-meson distribution amplitudes in Eq. (62) and the first
scenario for the scale choice: �f ¼ t and � ¼ tsð�fÞ.

FIG. 12. LO and NLO contributions to the B ! � form factors with the B-meson distribution amplitudes in Eq. (59), however,
varying the shape parameter !0 from 0.30 GeV to 0.40 GeV and the first scenario for the scale choice: �f ¼ t and � ¼ tsð�fÞ.
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region and the lattice QCD results of the B ! �
form factors from the FNAL/MILC Collaboration
[42]. Equation (63), however, differs from jVubj ¼
3:59þ0:38

�0:33jth � 0:11jexp extracted in [34], where the

B ! � form factors were computed in the light-cone
sum rule. The distinction can be traced back to the different
q2 dependence of the form factor fþðq2Þ predicted in the
kT factorization and in light-cone sum rule, albeit with the
similar fþð0Þ value in both approaches. More dedicated
efforts on the study of the shape of B ! � form factors in
QCD are in demand in order to resolve the potential
difference in the extraction of jVubj.

IV. CONCLUSION

In this paper, we have calculated the NLO corrections to
the B ! � transition form factors at leading twist in the kT
factorization theorem. Both the collinear and soft diver-
gences in the NLO quark diagrams and in the NLO effec-
tive diagrams for meson wave functions are regularized by
the off-shellness k2T of light partons. The b quark remains
on shell, such that it can be approximated by the standard
effective heavy quark in the kT factorization. The key is
that the soft gluons radiated by the b quark and attaching to
other particle lines can be regularized by the virtuality of
other particle lines. The NLO pion wave function is the
same as constructed in the pion transition and electromag-
netic form factors, confirming its universality. Compared to
the pion wave function, the NLO B-meson wave function
contains the additional double logarithm ln2ð�21=m2

BÞ.
Because of the assumed hierarchy �21 � m2

B, the appear-

ance of this double logarithm demands the implementation
of the resummation technique, which is expected to mini-
mize the scheme dependence from different choices of �1.

This subject, together with the asymptotic behavior of the
B-meson wave function in the kT factorization, will be
discussed in a forthcoming work.
The exact cancellation of the infrared divergences be-

tween the quark diagrams and the effective diagrams veri-
fies the validity of the kT factorization for the B-meson
semileptonic decays at NLO level. Though the NLO hard
kernel for the B ! � transition form factors contains a
huge constant term, it is reduced by the large double
logarithm ln2ð�21=m2

BÞ mentioned above. This is the reason

why the conventional choice of the factorization scale in
the PQCD approach, as the virtuality of internal particles,
can work to render the NLO corrections under control. By
tuning the renormalization scale to cancel the single-
logarithmic and constant terms, which is still lower than
the B-meson mass in the dominant kinematic region, the
NLO corrections are about 30% of the form factors. The
effect of varying the meson wave functions has been also
investigated: the model for the B-meson wave function
with a stronger suppression at a small momentum fraction,
and the asymptotic model for the pion wave function lower
the NLO corrections down to 20%.
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