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The lattice Weinberg-Salam model at zero temperature is investigated numerically. We consider the

model for the following values of the coupling constants: the Weinberg angle �W � 30�, the fine structure
constant �� ð1=150Þ, and the Higgs massMH � 150 GeV. We find that the fluctuational region begins at

the values of the cutoff � above about 0.8 TeV. In this region the average distance between Nambu

monopoles is close to their sizes. At �> 1:1 TeV the Nambu monopole currents percolate. Within the

fluctuational region the considered definitions of the scalar field condensate give values that differ from

the expected one 2Mz=gz. We consider the given results as an indication that the nonperturbative effects

may be present in the Weinberg-Salam model at the large values of the cutoff. Our numerical results were

obtained on the lattices of sizes up to 163 � 32.
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I. INTRODUCTION

Investigation of the phase transitions often requires the
application of nonperturbative methods. In particular,
the nonperturbative phenomena are important for the
description of the finite temperature Electroweak phase
transition [1–14]. At the same time, the phase diagram of
the lattice Weinberg-Salam model at zero temperature also
contains the phase transition [15–18]. The phase transition
surface separates the Higgs phase from the symmetric
phase. On both sides of the phase diagram it is necessary
to find the way to approach continuum physics within the
lattice model. It is expected that the continuum physics
arises in some vicinity of this transition (on different sides
of the transition different continuum models appear).
Strictly speaking, this pattern is self-consistent only if the
transition is of the second order. In this case close to the
phase transition lattice spacing tends to zero and a kind of a
continuum field theory appears. Indeed, zeroth order of
the perturbation theory predicts the second order phase
transition in the Weinberg-Salam model. However, already
on the one-loop level the Coleman-Weinberg effective
potential predicts the first order phase transition. This
discrepancy points out to numerical lattice methods as
to the judge. There may take place the 1st order phase
transition or the 2nd order phase transition. Also another
possibility appears: the transition may appear to be a
crossover.

That is why we expect nonperturbative effects to appear
in the lattice Weinberg-Salam model close to the transition
between the two above mentioned phases. Or, in the other
words, we expect nonperturbative effects to appear above
some energy scale, because the increase of the energy scale
corresponds to the decrease of the lattice spacing and,
therefore, is achieved when the phase transition is
approached. Based on trivial dimensional analysis we

may expect that the mentioned scale can be compared to
the electroweak scale�250 GeV. In fact, some indications
were recently found that this scale might be around 1 TeV
(see, for example, [19–25]). Namely, in the electroweak
theory there exist objects that are not described by the first
orders of the perturbation theory: Nambu monopoles and
the Z-strings [26]. It has been found that there exists the
vicinity of the phase transition [24], where the average
distance between the Nambu monopoles is compared to
their sizes. This region was called in [22] the fluctuational
region (FR). Nambu monopoles may be considered as
embryos of the unphysical phase within the physical one.
Therefore, it is natural to suppose that within the FR both
phases are mixed and neither the perturbation expansion
around vacuum with zero scalar field nor the perturbation
expansion around vacuum with nonzero scalar field cannot
give the correct description of the situation. Besides, in
[25] it was shown that there exist different ways to define
scalar field condensate that give identical values out of the
FR, and different values within the FR. On the boundary of
the FR the lattice spacing a remains finite and practically
does not depend on the lattice size (for the considered
lattices). Actually, the value of the ultraviolet cutoff �=a
on this boundary for the values of the Higgs boson mass
100 GeV, 150 GeV, 300 GeV is around 1 TeV. Thus the
hypothesis suggested that above the energy scale 1 TeV in
the Weinberg-Salam model nonperturbative effects may
become important. It is worth mentioning that these
effects, most likely, are related to the expansion in powers
of � while the first orders of the perturbation theory for the
expansion in powers of � are expected to stay at work.
In particular, no discrepancy was found between the
renormalized fine structure constant and its one-loop
estimate [25].
In this paper we extend the research of [25] to larger

lattices (in [25] the lattices of sizes 83 � 16were used; here
we use lattices 163 � 32). In addition we investigate the
properties of Nambu monopoles and Z-strings that were*zubkov@itep.ru
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out of the scope of the mentioned above papers. Namely,
we consider their percolation properties that are related
to their possible condensation. In the finite temperature
theory it was found that the electroweak transition is
accompanied with the condensation of the Nambu mono-
poles and the condensation of the Z-strings [27–29]. Here
we find that in the zero-temperature model this occurs as
well. The ‘‘percolation transition’’ in the Weinberg-Salam
model at the values of couplings we consider is situated
within the FR. And there exists the subregion of the FR,
were both Z-strings and Nambu monopoles are condensed,
while at least one of the considered definitions of the scalar
field condensate still gives nonzero value.

This paper is organized as follows. In Sec. II we consider
the definition of the lattice regularized Weinberg-Salam
model and describe the details of the simulation. In Sec. III
we discuss the phase diagram of the lattice model and the
lines of constant physics. In Sec. IV we describe how
lattice spacing was calculated in our study. In Sec. V we
calculate the renormalized fine structure constant. In
Sec. VI we investigate three different scalar field conden-
sates. In Sec. VII we calculate Z-string and Nambu mono-
pole percolation probabilities. In Sec. VIII we discuss the
obtained numerical results. Throughout the paper the
notations of differential forms on the lattice are used (for
their definition see, for example, [30]).

II. THE LATTICE REGULARIZED
WEINBERG-SALAM MODEL

We consider the Weinberg-Salam model without fermi-
ons. Its partition function has the form:

Z ¼
Z

DHD� expð�Að�; HÞÞ: (1)

Here Að�; HÞ is the action for the scalar doublet H and the
gauge field � ¼ U � ei� 2 SUð2Þ �Uð1Þ:
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On the tree level we have:

v ¼
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Here we have introduced the vacuum expectation value v
of jHxj, the lattice Higgs boson mass mH ¼ MHa, the
lattice Z-boson mass mZ ¼ MZa, and the critical value �c.

After fixing unitary gauge

H ¼ h

0

 !
; h 2 R; (4)

where H is the scalar doublet, and the Z2 gauge ambiguity
remains hx ! ð�1Þnxhx, Z ! ½Zþ �dn�mod2�. Here the
Z-boson field is defined as

Z ¼ �Arg½U11e
i��: (5)

The tree-level approximation gives for the infrared
effective constraint potential [25] after any Z2 gauge is
fixed:

Vi�rð�Þ ¼ N4�ð�2 � v2Þ2: (6)

Here N4 is the lattice volume.
In numerical simulations we use the Metropolis algo-

rithm. The model is simulated in unitary gauge with the
signs of h unfixed. After each 150 Metropolis sweeps the
Z (or DZ) version of unitary gauge is fixed (for the defini-
tion of these gauges, see the next sections). As a starting
point of our simulations on the lattice 163 � 32 we use
configurations obtained on the lattice 83 � 16 during the
preparation of [25]. Sixteen identical configurations are
merged together forming the starting 163 � 32 configura-
tion. Then, about 60 000 Metropolis sweeps are made
before the measurement of observables begins (this requ-
ired about 600 hours CPU time). During this preliminary
run the 16 above mentioned parts of the lattice become
decorrelated which signalizes that the thermalization is
achieved.

III. PHASE DIAGRAM AND LINES OF
CONSTANT PHYSICS

The lattice model defined by Eq. (2) has the four-
dimensional ð�; �; �; �WÞ phase diagram. On this phase
diagram phase transition surface is three dimensional.
The lines of constant physics on the tree level are the lines
[ð�=�2Þ ¼ ð1=8�ÞðM2

H=M
2
WÞ ¼ const; �W ¼ const]. We

suppose that in the small vicinity of the transition the
deviation of the lines of constant physics from the tree-
level estimate may be significant. However, qualitatively
their behavior is the same. Namely, the cutoff is increased
along the line of constant physics when � is decreased and
the maximal value of the cutoff is achieved at the transi-
tion. Nambu monopole density in lattice units is also
increased when the ultraviolet cutoff is increased.
In our lattice study we fix bare �W ¼ �=6, � ¼ 12, � ¼

0:0025. Therefore, strictly speaking we investigate the
system along the line on the phase diagram that differs
from the line of constant physics. This is illustrated by
Fig. 1, where the projection of the phase diagram to the
plane (� ¼ 12, �W ¼ �=6) is drawn. This diagram is
obtained, mainly, using the lattice 83 � 16. Some regions
(� ¼ 0:009, required about 600 hours), however, were
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checked using larger lattices (see, for example,
[19,20,22–24]). According to our data there is no depen-
dence of the diagram on the lattice size. The physical
Higgs phase is situated right to the solid transition line.
The position of this line was determined using various
methods [19,20,22–24]. However, the uncertainty is still
present in the final determination of the phase transition
points. This uncertainty on this figure is within the error
bars of � ¼ �c � 0:005. The details of this uncertainty at
� ¼ 0:0025 are discussed in the this paper (see below). The
dashed line represents the tree-level estimate for the line of
constant physics. The dotted line is the line � ¼ 0:0025.
One can already see that on the tree level this straight line
deviates from the line of constant physics. However, Fig. 1
demonstrates also that within the interval � 2
½0:255; 0:27� (where the physical quantities are measured
in the present research) the deviation of the tree-level
estimate for the line of constant physics from the straight
line � ¼ 0:0025 is not crucial. In fact, on the tree level
along this straight line the fine structure constant does not
vary. The renormalized fine structure constant is also al-
most not changed (see discussion below in Sec. V). As for
the Higgs boson mass, its value on the tree level varies
between 154 GeVat � ¼ 0:255 and 145 GeVat � ¼ 0:27.
The variation of the renormalized Higgs mass along the
line � ¼ 0:0025 is discussed in Sec. IV. Our data (with
large statistical errors) also demonstrate that the Higgs
mass does not deviate significantly from bare value
�150 GeV at � ¼ 0:0025, � 2 ½0:2585; 0:27�. It is worth

mentioning that we did not investigate the renormalized
W-boson mass in the present research. Therefore we do not
represent here any data on the renormalized Weinberg
angle. However, we also expect that it does not vary
sufficiently at the considered values of �.
In this paper we deal with the line � ¼ 0:0025, � ¼

�=6, � ¼ 12 for � 2 ½0:2585; 0:27� as with an approxi-
mation of the line of constant physics because along this
line the main physical quantities (Higgs mass and fine
structure constant) do not vary essentially. The lowest
value � ¼ 0:2585 in the above mentioned interval is
chosen because we expect that for the description of the
model at � < 0:2585 larger lattice sizes are necessary. This
is related to the fact that at � < 0:2585 the value of the
cutoff is larger than 1.5 Tev and increases very fast [see
discussion below in Sec. IV, Eq. (11)]. At the same time
already for the values of the cutoff �� 10 TeV we need
lattices of linear size � 10 (see discussion in Sec. VIII).
We expect that the line of constant physics at � � 1 TeV
deviates essentially from the straight line investigated in
this paper. Not only may the Higgs mass deviate from its
bare value but also the renormalized fine structure constant
and, probably, the renormalized Weinberg angle may de-
viate from their bare values. However, for the investigation
of such large values of � extremely large lattices are
needed and such a research is out of the scope of this paper.
Below in this paper we deal with the investigation of the

lattice model at fixed �W ¼ �=6, � ¼ 12, � ¼ 0:0025. In
Fig. 2 the data of the link part of the action
ð1=4N4Þ

P
xyH

þ
x Uxye

i�xyHy are represented. The depen-

dence of the link part of the action on � indicates that
the phase transition (or a crossover) can be localized at
�� �0

c ¼ 0:25775� 0:00025. (See also [25], where the
same conclusion was made based on the data obtained on
the lattice 83 � 16.) As in [25] we exclude the first order

FIG. 1. The phase diagram of the model in the ð�; �Þ-plane at
� ¼ 12. The dashed line is the tree-level estimate for the line
of constant physics (ð�=�2Þ ¼ ð1=8�ÞðM2

H=M
2
WÞ ¼ const) cor-

respondent to bare M0
H ¼ 150 GeV. The continuous line is the

line of the phase transition between the physical Higgs phase and
the unphysical symmetric phase (statistical errors for the values
of � at each � on this line are about 0.005). The dotted line is the
line � ¼ 0:0025. Along this line the physical quantities are
calculated in the present research.

Li
nk

 a
ct
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n

FIG. 2. The link part of the action as a function of � at � ¼
0:0025, � ¼ 12 on the lattice 163 � 32.
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phase transition because we do not observe any sign of a
two-state signal. In the next sections we shall demonstrate
that the infraredUZ potential for the scalar field also points
out to �0

c as to the transition point.
In addition in Fig. 3 we represent the fluctuation of

the zero momentum scalar field � ¼ ½	Hp¼0�2 ¼
h½Hp¼0�2i � hHp¼0>

2i in lattice units as a function of �.

Here Hp¼0 ¼ ð1=N4ÞPxjHxj. From this plot we obtain the

critical value �00
c ¼ 0:258� 0:0005. Moreover, the given

plot indicates that we deal with the second order phase
transition localized at �00

c . Indeed, the values of the fluc-

tuation 	Hp¼0 on the lattice 83 � 16 are about
ffiffiffiffiffi
24

p
¼ 4

times larger than on the lattice 163 � 32 for � > �00
c . This

means that for these values of � the physical size of the
lattice 83 � 16 is two times smaller than that of the lattice
163 � 32, as it should when the correlation length is
smaller than the lattice size. However, at �00

c the fluctua-
tions calculated using both lattices almost coincide with
each other. This means that at � ¼ �00

c the physical sizes of
both lattices are the same; that may happen only if the
correlation length is much larger than the lattice size. It is
worth mentioning that the difference between �0

c and �
00
c is

0.00025, which is within the statistical errors of both
quantities.

It is worth mentioning that Fig. 3 allows us to estimate
the fluctuation of the scalar field within the fluctuational
region. On its boundary, at � ¼ 0:2625 (see below) we
have �� 0:001 on the lattice 83 � 16. Also we know that
at this value of � the correlation length for the scalar field is
about two lattice spacings. Therefore the given lattice
contains 43 � 8 ¼ 512 cubes of the linear size equal to
the correlation length. This means that the fluctuation of the

scalar field within such a cube is 	jHj � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512 	 �p � 0:7

that is to be compared with the average value hjHji � 2.
The formal requirement for the perturbation theory to be

applied is 2� hjHji � 	jHj � 0:7. It seems that this
inequality is not satisfied. For � < 0:2625 the situation is
even worse. For example, at � ¼ 0:26 we have hjHji � 2
while 	jHj � 0:9.

IV. Z-BOSON MASS, LATTICE SPACING,
AND HIGGS BOSON MASS

For the calculation of the Z-boson mass we use the
following definition of the Z-boson field:

Zxy ¼ Z


x ¼ �½Argð�þ

x Uxye
i�xy�yÞ�: (7)

Actually this definition of the Z-boson field coincides with
the previous one (5) taken in the version of unitary gauge
(4) with nonnegative h.
In order to evaluate the mass of the Z-boson we use the

correlator:

1

N6

X
�x; �y

�X



Z


x Z



y

�
� e�mZjx0�y0j þ e�mZðL�jx0�y0jÞ: (8)

Here the summation
P

�x; �y is over the three ‘‘space’’

components of the four vectors x and y while x0, y0 denote
their ‘‘time’’ components. N is the lattice length in space
direction. L is the lattice length in the time direction. The
full lattice 4-volume is N4 ¼ N3 � L.
In order to evaluate the Higgs boson mass we use the

correlator

1

N6

X
�x; �y

fhjHxjjHyji � hjHxji2g � e�mH jx0�y0j

þ e�mHðL�jx0�y0jÞ: (9)

We can roughly evaluate the dependence of the lattice
Z-boson mass on the lattice size as follows. In finite
temperature theory gauge boson thermal masses appear
of the order of mg ¼ Mga� gTa� ðg=NTÞ, where T is

the temperature while NT is the lattice size in imaginary
time direction. Analogous to the finite temperature theory,
this allows us to evaluate the finite volume contribution to
the Z-boson mass as �mZ � ðgZ=NÞ, where N is the linear
lattice size. For �� 1=150, N � 8 we have �mZ � 0:08
while at N � 16 we expect �mZ � 0:04.
In Fig. 4 we represent our data on the Z-boson mass. Our

numerical results confirm the results of [24]. Nonzero
values of Z-boson mass are obtained at � 
 0:2585. At
the same time for � � 0:258 we observe large statistical
errors for the ZZ correlator. Therefore, in this region of the
phase diagram the Z-boson mass cannot be calculated and
we suppose it vanishes somewhere between � ¼ 0:25 and
� ¼ �0

c.
Taking into account expression (3) for the Z-boson mass

we use the following fit (�c is changed to ~�0
c ¼ 0:2575) to

the data of Fig. 4:

FIG. 3. Susceptibility � (in lattice units) as a function of � at
� ¼ 12, � ¼ 0:0025. Circles correspond to lattice 83 � 16while
squares correspond to lattice 163 � 32.
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mZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�� ~�0

cÞ
��cos2�W

s
: (10)

This fit is represented on the plot by the dashed line. It is
worth mentioning that ~�0

c is within the error bars of �
0
c. We

find that (10) with this value substituted instead of �c

approximates the data better than with �0
c ¼ 0:25775 or

�00
c ¼ 0:258. This does not mean that Fig. 4 points out to

~�0
c ¼ 0:2575 as to the transition point instead of �0

c ¼
0:25775. Instead, this means that there exist also other
contributions to the dependence of the Z-boson mass on
� in addition to the tree-level estimate with the real critical
value of � substituted instead of its naive estimate.

Using the value of lattice Z-boson mass mZ we can
evaluate the ultraviolet cutoff � ¼ ð�=aÞ as a function
of � via the relation mZ ¼ a� 91 GeV. Further we shall
use fit (10) in order to represent our results as a function
of �. Namely, we use the following representation for �:

� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��cos2�W

2�ð�� 0:2575Þ

s
	 91 GeV: (11)

In particular, in Fig. 5 we represent the Higgs boson
mass calculated on the lattice 83 � 16 in physical units
(in GeV) as a function of the cutoff. Unfortunately, we do
not have enough statistics to calculate this mass on the
larger lattices. We observe that the calculated values of
the mass are close to the expected value �150 GeV. The
deviation is within the statistical errors.

Our estimate for the ultraviolet cutoff at �c is �1 TeV.
The value of Z-boson mass in lattice units at this point is
about �0:2. The above mentioned estimate of the finite
volume effect is �0:04. Therefore we expect that the
values of the ultraviolet cutoff reported here cannot differ
from that of obtained on an ideal infinite lattice by more

than 20%. Thus we give here the following estimate for the
cutoff � at � ¼ �c: �c ¼ 1� 0:02 TeV.

V. RENORMALIZED FINE STRUCTURE
CONSTANT

In order to calculate the renormalized fine structure
constant �R ¼ e2=4� (where e is the electric charge) we
use the correlator of Polyakov lines for the right-handed
external leptons. These lines are placed along the selected
direction (called below the imaginary time direction). The
spacelike distance between the lines is denoted by R.

Cðj �x� �yjÞ ¼ hRe�te
2i�ð �x;tÞð �x;tþ1Þ�te

�2i�ð �y;tÞð �y;tþ1Þ i (12)

The potential is extracted from this correlator as follows:

V ðRÞ ¼ �1
L logCðRÞ: (13)

Here L is the size of the lattice in imaginary time direction.
Because of exchange by virtual photons and Z-bosons

one would expect the appearance of the Coulomb and
Yukawa interactions:

V ðrÞ¼��R

�
U0ðrÞþ1

3
UmZ

ðrÞ
�
þconst;

UmðrÞ¼� �

N3

X
�p

eip3r

sin2p1=2þsin2p2=2þsin2p3=2þsh2m=2
:

(14)

Here N is the lattice size, pi ¼ 2�
L ki, ki ¼ 0; . . . ; L� 1.

We substitute to (14) the fit to the Z-boson mass repre-
sented in (10). The results are presented in Fig. 6 and are
to be compared with the tree-level estimate for the

fine structure constant �ð0Þ � ð1=151Þ and the one-loop
approximation (when we assume bare value of � to live
at the scale �1 TeV while the renormalized value lives at

the Electroweak scale MZ): �
ð1ÞðMZ=1 TeVÞ � 1

149:7 .

M
z

FIG. 4. Z-boson mass in lattice units as a function of � at � ¼
0:0025, � ¼ 12. Crosses correspond to lattice 83 � 16. Circles
correspond to lattice 163 � 32.

Cutoff

M

FIG. 5. Higgs boson mass in physical units as a function of the
cutoff at � ¼ 0:0025, � ¼ 12 on the lattice 83 � 16.
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The values of the renormalized fine structure constant
calculated on the lattice 163 � 32 are close to the values
calculated on the lattice 83 � 16 represented in [25]. We
observe that the renormalized fine structure constant
calculated in the mentioned above way is rather close to

the one-loop estimate (when the cutoff � in �ð1ÞðMZ=�Þ is
around 1 TeV. It is worth mentioning, that the present data
on the renormalized fine structure constant (and the data of
[25]) differ from that of reported in [24]. In [24] we used
the potential extracted from the Wilson loops and approxi-
mated it by the simple 1=R fit. Moreover, in [24] the
exchange by virtual Z-bosons was neglected. Therefore
the values represented in [24] depend strongly on the
lattice size and deviate essentially from the one-loop
estimate near to the phase transition point.

VI. SCALAR FIELD CONDENSATE

In [25] three different effective constraint potentials
were introduced. All them are defined in unitary gauge

H ¼ h
0

� �
with real h. The first one is the ultraviolet

potential

expð�Vu�vð�ÞÞ ¼ h	ð�� hxÞi: (15)

Here real scalar field hx is defined on the lattice points x.
In order to define the infrared potential

expð�Vi�rð�ÞÞ ¼
�
	

�
�� 1

N4

X
x

hx

��
; (16)

(where N4 is the number of lattice points) it is necessary to
fix the ambiguity

hx ! ð�1Þnxhx; Z ! ½Zþ �dn�mod2�; (17)

where the Z-boson field is defined in (5).
The first way is minimization of

X
links

ð1� cosZÞ ! min (18)

with respect to the mentioned Z2 transformations. In [25]
this gaugewas called the Z version of the unitary gauge and
the corresponding effective potential (16) is called the UZ
potential.
The second way to define the unitary gauge with hx 2 R

is to minimize the divergence of Z with respect to the
remaining Z2 transformations:

X
x

½	Z�2 ! min: (19)

This gauge is called the DZ version of the unitary gauge
and the corresponding effective potential (16) is called
UDZ potential.
The three above mentioned effective potentials give

three different definitions of the scalar filed condensate.
(The condensate v is defined as the value of�, at which the
potential Vð�Þ has its minimum).
In Fig. 7 we represent these three condensates as func-

tions of the cutoff � ¼ �
a . We consider the condensates in

physical units, i.e. we multiply the values expressed in
lattice units by

ffiffiffiffi
�

p
=a. So, we define vphys ¼ ð ffiffiffiffi

�
p

=aÞv.

Cutoff

FIG. 6. The inverse renormalized fine structure constant
1=�ðMZ=�Þ as a function of the cutoff � at � ¼ 0:0025,
� ¼ 12 on the lattice 163 � 32. The dashed line is the one-
loop estimate for � ¼ 1 TeV.

C
on

de
ns

at
e

Cutoff

FIG. 7. The scalar field condensate (in GeV) as a function of
the cutoff for � ¼ 0:0025, � ¼ 12. Circles correspond to the UZ
potential, lattice 163 � 32. Empty squares correspond to the
UZ potential, lattice 83 � 16. Crosses correspond to the UDZ
potential, lattice 163 � 32. Stars correspond to the UDZ poten-
tial, lattice 83 � 16. Triangles correspond to the ultraviolet
potential, lattice 163 � 32. Diamonds correspond to the ultra-
violet potential, lattice 83 � 16.
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The scalar field condensate (in physical units) has to be
renormalized. The renormalized condensate is usually

defined as v
phys
R ¼ ð1=Z½1=2�

H Þvphys, where the wave
function renormalization constant enters the following
approximation for the scalar field propagator:

h½Hp�þHqi�jhHij2¼ZH

	pq

N4ð4P
i
sin2p=2þ4sh2mH

2 Þ
: (20)

Here Hp ¼ ð1=N4Þ
P

xe
ipxHx, and N4 ¼ N3L.

Because of the renormalizability the Z-boson mass is
related to the scalar field condensate as follows:

MZ ¼ gZv
phys
R =2 ¼ ð1=Z½1=2�

H ÞgZvphys=2, where gZ ¼
ð4 ffiffiffiffiffiffiffiffi

��
p Þ=ðsin2�WÞ is the renormalized coupling constant.

In the perturbation theory the deviation of ZH from unity is
proportional to the factor �� logð�=MZÞ � 0:02 (for
�� 1 TeV). Therefore, for �� 1 TeV we expect
ZH � 1.

That is why the perturbation theory prompts that both
the (nonrenormalized) scalar field condensate (represented
in Fig. 7) and the renormalized one must be close to the

value vphys
0 ¼ 2MZ=gZ ¼ sin2�WMZ=

ffiffiffiffiffiffiffiffiffiffi
4��

p � 273 GeV
(this value differs from the conventional value 246 GeV
due to the difference in �). We observe that all considered
condensates approach this value when the cutoff is
decreased. However, an essential deviation from this value
appears at the values of the cutoff�1 TeV. Looking at this
plot we also conclude that the condensates extracted from
the UDZ potential and from the ultraviolet potential rep-
resent close quantities.1 At the same time the UZ potential
gives different value of the scalar field condensate. At the
present moment we do not understand what is the reason
for such a behavior. It is worth mentioning that the
condensate extracted from the UZ potential vanishes at
�0
c (see Fig. 8). We must remember, that the cutoff was not

calculated at this point but Fig. 3 indicates that at this point
we may have �0

c �1. (Let us remind also that Fig. 2
points out to �0

c as to the phase transition point.) The other
two condensates vanish at �c � 1 TeV, i.e. at �c ¼
0:26075� 0:00005, where the value of the cutoff has
been calculated explicitly. We shall see in the next section
that close to this point of the phase diagram both the
Z-string and the Nambu monopoles begin to percolate.

The observed behavior of the scalar field condensates
calculated in UZ and UDZ versions of unitary gauge
means that the wave function renormalization constant
for the scalar field (defined in these gauges) differs from
the perturbation theory prediction at �> 800 GeV. (We
may calculate this constant as ZH ¼ ð273GeV=vphysÞ2,
where vphys is drawn in Fig. 7.)

VII. Z-STRINGS AND NAMBU MONOPOLES

In this section we use definition (7) of the Z-boson field.
The classical solution corresponding to a Z-string should
be formed around the two-dimensional topological defect
which is represented by the integer-valued field defined on
the dual lattice � ¼ ð1=2�Þ	ð½dZmod2� � dZÞ. Therefore,
� can be treated as the worldsheet of a quantum Z-string
[27]. Then, the worldlines of quantum Nambu monopoles
appear as the boundary of the Z-string worldsheet
jZ ¼ 	�.
The percolation probability of Nambu monopoles is

defined as follows. First let us denote the probability that
two points x, y are connected by the monopole cluster by
�ðx; yÞ. We may identify it with the following quantity

h�þ
x �yi ¼ �ðx; yÞ; (21)

where operator �þ
x creates the monopole-antimonopole

pair at the point x. This identification allows us to calculate
the lightest monopolium mass mM, i.e. the mass of the
quantum state consisted of the monopole-antimonopole
pair connected by the Z-string

�1ðjx0 � y0jÞ ¼ 1

N6

X
x1;x2;x3;y1;y2;y3

h�þ
x �yi

� Aðe�mMjx0�y0j þ e�mMðL�jx0�y0jÞÞ: (22)

Here the lattice size is N3 � L, and it is implied that the
mass is calculated in the region of the phase diagram,
where the condensate of � vanishes. In order to calculate
this condensate we consider the following quantity:

�3ðj �x� �yjÞ ¼ 1

N2

X
x3;y3

h�þ
ð �x;x3Þ�ð �y;y3Þi

� jh�ij2 þ ~�3ðj �x� �yjÞ; (23)

C
on

de
ns

at
e

FIG. 8. The scalar field condensate extracted from the UZ
potential in lattice units as a function of � for � ¼ 0:0025, � ¼
12 on the lattice 163 � 32.

1For �< 0:8 TeV we do not have data from the lattice 163 �
32. Therefore for these values of the cutoff we represent on the
plot the data obtained on the lattice 83 � 16.
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where �x ¼ ðx0; x1; x2Þ, and ~�3ðrÞ ! 0ðr ! 1Þ. Thus the
condensate is defined through the percolation probability
Cmon ¼ jh�ij2 ¼ limr!1�3ðrÞ. It is worth mentioning
that the two quantities �1ðrÞ and �3ðrÞ give different
values at r ! 1 if there is the massless scalar excitation
in the spectrum, otherwise �1ðrÞ ��3ðrÞ ! 0ðr ! 1Þ.

In a similar way we are also able to calculate the mass of
the lightest excitation of the Z-string. First, the probability
of the two points to be connected by the Z-string cluster is
defined. Next, this probability is related to the two-point
correlator of the operators that create the Z-string excita-
tions. After that the mass of the lightest excitation is
extracted and the percolation probability for the Z-strings
is defined. The percolation probabilities for the Nambu
monopoles and the Z-strings are represented in Fig. 9.
We observe that both monopole currents and Z-string
worldsheets percolate at �> 1:1 TeV.

The monopolium mass and the lightest Z-string exci-
tation mass calculated are represented in Fig. 10 as
functions of the cutoff. One can see, that both these
masses decrease when the cutoff is increased. At �>
1:1 TeV we do not calculate the mentioned masses
because the condensates of the monopolium and of the
Z-string excitations appear.

The code for the calculation of the percolation proba-
bility was written especially for the investigation reported
in this paper. It has been tested in several ways. In particu-
lar, results of [28,29] were reproduced.

According to the classical picture the Nambu monopole
size is of the order of M�1

H . Therefore, for example, for
a�1 � 250 GeV and MH � 150 GeV the expected size of
the monopole is about two lattice spacings. The monopole
density around 0.015 means that among about 16 sites
there exists 1 site that is occupied by the monopole.

Average distance between the two monopoles is, therefore,
about 2 lattice spacings that is the monopole size. In Fig. 11
(where the Nambu monopole density is represented as a
function of the cutoff) we observe, that at �>�c2 �
0:8 TeV the Nambu monopole density is larger than
0.015, i.e. the average distance between monopoles is
less then the classical monopole size. According to [24]
this means that at�c2 we enter the fluctuational region. It is
worth mentioning that within this region the notion of
quantum Nambu monopole differs from the notion of the
classical Nambu monopole considered in [26]. In particu-
lar, the size of the quantum object may be sufficiently less
than that of the classical Nambu monopole.

P
er

co
la

tio
n

Cutoff

FIG. 9. The percolation probability for the Z-string (circles)
and for the Nambu monopoles (crosses) as a function of the
cutoff � ¼ �

a (in GeV) at � ¼ 0:0025, � ¼ 12 on the lattice

163 � 32.

Cutoff

M

FIG. 10. The monopolium mass (triangles) and the lightest
string excitation mass (squares) as a function of the cutoff
calculated at � ¼ 0:0025, � ¼ 12 on the lattice 83 � 16 (empty
symbols) and 163 � 32 (dark symbols).

Cutoff

FIG. 11. The Nambu monopole density (in lattice units) as a
function of the cutoff at � ¼ 0:0025, � ¼ 12 on the lattice
163 � 32.
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The original estimate of the Nambu monopole mass was
given by Nambu [26]:

MN � 4�

3e
sinð5=2Þ�W

ffiffiffiffiffiffiffiffi
MH

MW

s
246 GeV� 900 GeV: (24)

Then, according to [26] the classical energy of
monopole-antimonopole pair is

E ¼ 2MM � Q2

4�l
; (25)

whereQ ¼ ð4�Þ=ðesin2�WÞ is the monopole charge while l
is the average distance between the monopoles in the
monopolium. We can use this formula to estimate roughly
the dependence of the monopolium mass on the cutoff. At
small values of � the contribution of the 1=l term can be
neglected (as the monopole density is negligible) and the
lightest monopolium mass is expected to be close to the
value �1:8 TeV. However, when the cutoff is increased,
the average distance between Nambu monopoles is
decreased. Therefore, l in (25) is decreased as well. As a
result the monopolium mass is decreased. Indeed, we
observe this kind of behavior in Fig. 10.

It is worth mentioning that the monopolium and the
Nambu monopole itself are unstable as classical objects
[26]. However, when the cutoff is increased, the whole
picture of Nambu monopoles and monopolium is changed.
The operator [defined in (21)] that creates the monopole-
antimonopole pair actually creates the quasiparticle, the
properties of which may differ essentially from the prop-
erties of the classical monopolium. In particular, these
quasiparticles are condensed at �> 1:1 TeV.

VIII. DISCUSSION

Let us try to estimate the conditions under which the
perturbation theory can be applied to this model. We
make this estimate in the spirit of Vol. 5, paragraph
146 of [31] (where the similar considerations were used
in order to estimate the width of the fluctuational region
in the finite temperature Ginzburg-Landau model). We
are going to compare the vacuum average of H with the
fluctuations of H within the 4-volume N4, the linear size
of which is equal to the correlation length of H. This
correlation length in lattice units is equal to 1=mH. The
fluctuations are obtained from (6) and are of the order of

	H � ð1=v ffiffiffiffiffiffiffiffiffiffiffiffi
8N4�

p Þ � ðm2
H=v

ffiffiffiffiffiffi
8�

p Þ. Therefore, at v �
ðm2

H=v
ffiffiffiffiffiffi
8�

p Þ the perturbation theory can be applied while
otherwise it might not be applied. Finally, we obtain

� � �2=8 or mH

mW

ffiffiffiffiffiffiffiffiffiffi
4��

p � 1. For mH � 150 GeV and

�� 1=150 this expression reads 0:54 � 1. This estimate
is indeed confirmed by numerical results (see the end of
Sec. II). Thus already on this level there may appear
some doubts about the validity of the perturbation
expansion within the given model.

Above we have reported the results of our numerical
investigation of lattice Weinberg-Salam model at � ¼ 12,
� ¼ 0:0025, �W ¼ 30�. For these values of couplings the
bare Higgs boson mass is close to 150 GeV near to the
transition between the Higgs phase and the symmetric
phase. Numerical simulations were performed on the
lattices of sizes up to 163 � 32.
Our data draw the following pattern of the phase tran-

sition:

(1) When the cutoff is increased (� is decreased) Z
vortices become more and more dense. Somewhere
around �� 0:8 TeV (�c2 � 0:2625) the transition
to the fluctuational region occurs [24]. In this region
Z-vortices and the Nambu monopoles dominate.
The average distance between Nambu monopoles
becomes compared to their sizes.

(2) At the value of � around �c � 1 TeV (� around
�c � 0:26075) the scalar field condensates calcu-
lated using the UDZ effective potential and the
ultraviolet effective potential vanish. At �>
1:1 Tev the Nambu monopoles and the Z-strings
begin to percolate. This means, in particular, that
the operator that (naively) creates the so-called
monopolium state actually creates the quasiparticles
that are condensed.

(3) At the value of � around �0
c � 0:25775 the scalar

field condensate calculated using the UZ effective
potential vanishes. Also somewhere close to �0

c the
derivative of the link part of the action has the step-
like discontinuity. We cannot calculate the ultra-
violet cutoff at �0

c due to large statistical errors. At
the present moment we do not exclude that it tends
to infinity at this point on the ideal infinite lattice.

The technical question about the order of the phase
transition remains. There still exist two possibilities: either
we deal with the second order phase transition (localized at
�0
c) or with the crossover. The first possibility is realized if

at �0
c all lattice masses vanish or the correlation lengths are

infinite at this point. The behavior of the scalar field
fluctuation indicates that this may indeed be true.
However, accurate investigation of the lattice masses is
still to be performed in the vicinity of �0

c. Let us now
estimate the lattice size needed for such an investigation.
Suppose, we need to investigate the region of the phase
diagram with � ¼ ð�=aÞ � 1 TeV. Then, the lattice size
has to be much larger than the correlation length: L �
ð1=mHÞ ¼ ð1=150 GeVaÞ � 2. Therefore, the lattices of
sizes 163 � 32 seem to us large enough to investigate the
model at � 
 0:2585. If, however, we are going to inves-
tigate the region of the phase diagram with �� 10 TeV,
we need to have lattices of sizes L � 10. For this purpose
lattices used in the present research are not large enough.
That’s why if the second order phase transition is indeed
present at �0

c, in a small vicinity of this point, where
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� � 1 TeV (most likely, this vicinity is situated within the
interval [0.2575, 0.2585], the numerical lattice methods
that use lattices of sizes up to 163 � 32 cannot be applied
for the calculation of lattice masses.

The scalar field condensates calculated in three different
ways in our study differ from each other and from the
expected value�273 GeV for the values of�> 800 GeV.
However, all them have tendencies to approach this value
when � is decreased. This means that the wave function
renormalization constant for the scalar field differs from its
perturbative estimate at �> 800 GeV. The percolation
probability for the Nambu monopoles and for the
Z-strings differ from zero at �> 1 TeV. We consider
this behavior as a manifestation of the nonperturbative
effects present in the given model at large enough energy
scales. It is worth mentioning that the point of view that the
nonperturbative effects may become important in the
Higgs sector of the standard model is not new. In particular,
in [32] it was argued that the wave function renormaliza-
tion constant for the scalar field contains large nonpertur-
bative contribution (at zero temperature). This conclusion
of [32] is in accordance with our results represented here.

The situation seems to us similar to the phase transition
in the second order superconductors at finite temperature.

Namely, there exists the fluctuational region around the
critical temperature (Tc � �T; Tc þ �T), where the per-
turbation theory cannot be applied and the nonperturbative
effects are present [31]. In the lattice Weinberg-Salam
model (at zero temperature) there also exists such a region
around the phase transition at �0

c. This region is localized
within the interval ½�0

c;�c2� that corresponds to values of
the cutoff �> 0:8 TeV. As it was explained above we
observe indications that within this region nonperturbative
effects become important.
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