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We extend the ideas of using AdS/CFT to calculate energy loss of extended defects in strongly coupled

systems to general holographic metrics. We find the equations of motion governing uniformly moving

defects of various dimension and determine the corresponding energy loss rates in terms of the metric

coefficients. We apply our formulae to the specific examples of both bulk geometries created by general

Dp-branes, as well as to holographic superfluids. For the Dp-branes, we find that the energy loss of our

defect, in addition to the expected quadratic dependence on velocity, depends on velocity only via an

effective blue-shifted temperature—despite the existence of a microscopic length scale in the theory. We

also find, for a certain value of p and dimension of the defect, that the energy loss has no dependence on

temperature or velocity other than the aforementioned quadratic dependence on velocity. For the

superfluid example, we find agreement with previous results on the existence of a cutoff velocity, below

which the probe experiences no drag force. For both examples we can easily extend the equations of

motion and energy loss to defects of larger dimension.
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I. INTRODUCTION

The duality between Type IIB string theory on AdS5 �
S5 andN ¼ 4 SUðNÞ supersymmetric Yang-Mills (SYM)
[1–3] has been studied extensively as a means to provide
insight to the inner workings of strongly coupled systems
where perturbation theory is not valid, and where lattice
gauge theory and Monte Carlo techniques are available but
struggle with real time physics. Motivated by the QGP
created at RHIC, holography has helped guide our under-
standing of shear viscosity, drag, screening length and jet
quenching to name a few; see [4] for a recent perspective
on these developments by one of us. The dual description
of a classical string ending on a probe brane has given
information on the characteristics of a point particle, pos-
sibly a quark, traveling through the Yang-Mills plasma,
which is thought to be a good approximation for the
strongly coupled QCD. Recently it has been seen that
one can also study extended defects with dimensions larger
than a point, living in AdSd spaces, the idea being that one
can shed new light on the dynamics of energy loss at strong
coupling [5]. We extend the ideas of [5–7] to a general
metric with a compact internal space. We produce general
solutions for the equation of motion and the energy loss of
an extended defect moving uniformly through the bulk
whose geometry is described by a generic branelike metric.
We study two examples in detail, generalDp-brane metrics
and holographic superfluids. After working out the energy
loss for Dp-branes, we find that the energy loss of these
extended probes is given by simple power laws in velocity
and temperature, revealing that the energy loss depends
only on an effective temperature multiplied by the velocity

squared—the moving probe being affected only by a blue-
shifted energy density—despite the existence of an intrin-
sic scale in the underlying theory.We then apply our results
to dragging stringlike and sheetlike defects through holo-
graphic superfluids.
We organize these ideas as follows: In Sec. II, we will

calculate a general equation of motion and solution to a
uniformly moving defect in a general bulk theory. We
then find a general energy loss formula for said defect. In
Sec. III, we apply these results to metrics created by
general Dp-branes. In Sec. IV, we apply our results to a
holographic superfluid.

II. CALCULATIONS

We want to study a general holographic branelike met-
ric. This metric will preserve the symmetries of the dual
field theory. Therefore, it should be rotationally invariant
and translationally invariant in both the spatial and time
dimensions. In addition, it should preserve the isometries
of the internal space. To these ends, we introduce the
following diagonal metric

ds2 ¼ G��dx
�dx�

¼ Gttdt
2 þGxx

X
i¼1

dx2i þGuudu
2 þG��d�

2; (1)

with N þ 2 total space-time dimensions. At this point, the
N þ 1 spatial coordinates are arbitrarily separated into M
Cartesian coordinates and N �M spherical angles of the
internal space. The additional radial coordinate is denoted
by u. It is understood that G�� is only a function of u and
since none of our results depend on the details of the
internal space we will take d�2 be a unit sphere—i.e.
d�2 contains the appropriate terms for the angular
variables of a unit sphere of arbitrary dimension. The
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background will continue to solve the same equations of
motion should the sphere be replaced with any other com-
pact Einstein manifold. We are only considering metrics
whose Gii depend only on u, and whose Gtt and Gxx grow
with u at the same rate, both of which grow faster with u
than G��. The rationale behind this is that the gravity
theory in the bulk has a dual interpretation in terms of a
field theory at the u ¼ 1 boundary which lives in Mþ 1
space-time dimensions.

In a manner similar to [5], we introduce a defect of
spatial dimension nþ 1 in the bulk. The defect has n
spatial dimensions orthogonal to u which are divided
into m infinitely extended Cartesian directions on the
boundary, denoted ~y, and n�m angular directions, de-

noted ~�. It will then move in an additional transverse
direction, x. Since the dimensionality of the bulk puts
constraints on the size of the defect we find mþ 1 � M
and nþ 1 � N.

In the static gauge, the world-volume map is of the

form X ¼ ðt; u; ~y; ~�; xðt; u; ~y; ~�Þ; ~z ¼ constÞ where ~z are
any additional unused orthogonal coordinates in the bulk.
The induced metric on the world-volume is defined as
g�� ¼ G��

@X�

@��
@X�

@�� . We find g ¼ detðg��Þ to be

g ¼ Gm
xxG

n�m
��

�
GttGuu þGttGxxðx;uÞ2 þGuuGxxðx;tÞ2

þGttGuu

Xm
i

ðx;yiÞ2 þ
GttGuuGxx

G��

Xn�m

j

ðx;�jÞ2
�

(2)

where ðx;�Þ denotes the partial derivative of x with respect

to the coordinate �.
Our general metric will have some intrinsic scale gov-

erned by its radii of curvature, all of which we take para-
metrically to be of the same order R. The bulk theory will
be governed by classical gravity if R abides byMplR � 1,

where MN
pl ¼ 1=16�G, (ensuring our curvature is not too

large in Planck units). We want to describe the defect by
the following Nambu-Goto-like action

S ¼ �T0

Z
e�� ffiffiffiffiffiffiffi�g

p Y
i

d�i (3)

where g is given by (2), T0 is the tension and the integral is
over all world-volume coordinates. � is a function of the
background scalar fields, the dilaton field, �, for example.
Unlike the coupling to the background metric, the func-
tional form of the coupling to the background scalars is not
fixed by diffeomorphism invariance and in principle e��

can be a complicated function of the background scalars.
As long as the background scalars respect the symmetries
of the metric, they can only depend on the radial coordinate
u and we can treat � as a function of u. Two important
probes we are going to consider in examples for�ðuÞ are a
fundamental string, whose action has the form (3) with
� ¼ 0, and probe D-branes, whose action is of the form (3)
with � ¼ �. We can trust the classical treatment of this

action so long as T0R
nþ2 � 1. Additionally, demanding

that ðMplRÞN � T0R
nþ2 will render gravitational back-

reaction negligible.
With L ¼ �T0e

�� ffiffiffiffiffiffiffi�g
p

we find the following canoni-

cal momentum densities:

�t
x ¼ @L

@ðx;tÞ ¼ �T0

GuuG
mþ1
xx Gn�m

��ffiffiffiffiffiffiffi�g
p ðx;tÞe��

�u
x ¼ @L

@ðx;uÞ ¼ �T0

GttG
mþ1
xx Gn�m

��ffiffiffiffiffiffiffi�g
p ðx;uÞe��

�yi
x ¼ @L

@ðx;yiÞ
¼ �T0

GttGuuG
m
xxG

n�m
��ffiffiffiffiffiffiffi�g

p ðx;yiÞe��

��i
x ¼ @L

@ðx;�iÞ
¼ �T0

GttGuuG
mþ1
xx Gn�m�1

��ffiffiffiffiffiffiffi�g
p ðx;�iÞe��

(4)

Requiring a vanishing variation in our action yields

Xn
i

@�i
ð��i

� Þ ¼ 0 (5)

Setting � to x gives us our equation of motion.
We are interested in a solution of a uniformly moving

object. The defect should move in a direction transverse to
its spatial extent and travel with a constant velocity in the x
direction. Thus, our ansatz is

xðt; u; ~yÞ ¼ vtþ xðuÞ:
With this form, g becomes independent of time and our

equation of motion,
P

n
i @�i

��i
x ¼ 0, will then reduce to

@u

�
GttG

mþ1
xx Gn�m

��ffiffiffiffiffiffiffi�g
p ðx;uÞe��

�
¼ 0;

which gives us

ðx;uÞ2 ¼ C2e2�ð�gÞ
G2

ttG
2ðmþ1Þ
xx G2ðn�mÞ

��

; (6)

and plugging in for g

ðx;uÞ2 ¼ �ðCe�Þ2 Guu

GttGxxe
2�

�
Gtt þGxxv

2

GttG
mþ1
xx Gn�m

�� e�2� þ C2

�
(7)

We expect on physical grounds, that ðx;uÞ should be

real, and thus ðx;uÞ2 and ð�gÞ should be positive. From

(7), we see that this will be true if Gtt þGxxv
2 and

GttG
mþ1
xx Gn�m

�� e�2� þ C2 both switch sign at the same

value of u. Assuming that there is at most one root, call
it uc, we can solve for it from

GttðucÞ þGxxðucÞv2 ¼ 0 (8)

and if this root exists, we have

C ¼ �e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GttG

mþ1
xx Gn�m

��

q
ju¼uc :
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The case where uc does not exist occurs in our example
of a holographic superfluid and will be discussed in
section IV. The induced metric can be diagonalized and
this diagonal form has a time component which vanishes
when GttðucÞ þGxxðucÞv2 ¼ 0. This tells us that uc
denotes the world-volume horizon.

Using (8) to plug in for Gtt and defining ~C ¼ C=v
we have

~C ¼ �e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmþ2

xx G��

q
ju¼uc (9)

The momentum loss rate, due to momentum flowing
along the defect and towards the horizon, is given by
-�u

x which is seen from (4) and (6) to be

��u
x ¼ T0C: (10)

The momentum loss rate directly gives us the drag force
density. The energy loss rate, ��u

t , is simply v times the
momentum loss rate. Physically, we expect that we have
energy flowing towards the horizon of the black brane,
which requires our loss rate to be positive. We thus pick

the positive sign for ~C.

~C ¼ e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmþ2

xx Gn�m
��

q
ju¼uc : (11)

While we have established that this stationary solution is a
consistent solution to the equations of motion, what is less
obvious is that it is stable. Small fluctuations around drag-
ging sheets in AdS7 have recently been studied in [8] and it
has been found that these fluctuations do not exhibit any
instabilities, that is, any modes that grow exponentially in
time. A new potential instability in our case is the slipping
mode on the internal space, that is, fluctuations in the �
directions that take our defect off the equator of the internal
sphere. As such fluctuations reduce the volume of the
defect (and hence its potential energy), they clearly corre-
spond to negative mass squared modes and are hence
potentially problematic. It is well known from the case of
static defects, starting with the work on flavor probe branes
[9], that these negative mass squared slipping modes often
are actually stable. For a background AdS space the basic
physics behind this is the BF bound [10]. The potential
energy gain of the fluctuation is offset by the kinetic energy
cost of any fluctuation in a spacetime geometry that effec-
tively corresponds to a finite size box. A similar effect
also occurs in the more general holographic metrics. In
particular, it has been shown in [11] that supersymmetric
Dq-brane defects in black Dp-brane backgrounds (which
will be the first example we apply our results to) have
stable slipping modes. For nonsupersymmetric defects
stability of the slipping mode will have to be checked on
a case by case basis.

III. P-BRANES

We now turn to the example of generalDp-branes which
create geometries dual to SYM in pþ 1 dimensions on the
boundary, at finite temperature. From [12] we see that in
the limit that

g2YM ¼ ð2�Þp�2gs�
0ðp�3Þ=2 ¼ fixed;

as

�0 ! 0

where gs ¼ e�1 , and gYM is the Yang-Mills coupling
constant, the Dp brane metric becomes,

ds2 ¼ �0
(

uð7�pÞ=2

gYM
ffiffiffiffiffiffiffiffiffiffiffi
dpN

0
q �

�
�
1� u7�p

0

u7�p

�
dt2 þ dy2k

�

þ
gYM

ffiffiffiffiffiffiffiffiffiffiffi
dpN

0
q

uð7�pÞ=2ð1� u7�p
0

u7�pÞ
du2

þ gYM

ffiffiffiffiffiffiffiffiffiffiffi
dpN

0
q

uðp�3Þ=2d�2
8�p

)
(12)

which indeed is of the general form (1). Here, N0 is the

number of branes and dp ¼ 27�2p�ð9�3pÞ=2�ð7�p
2 Þ.

The dilaton is

e� ¼ ð2�Þ2�pg2YM

�
g2YMdpN

0

u7�p

�ð3�pÞ=4
; (13)

and

u7�p
0 ¼ �ð9�p

2 Þ211�2p�ð13�3pÞ=2

ð9� pÞ g4YM	; (14)

where 	 corresponds to the energy density of the Yang-
Mills theory.
Following the outline laid out in the previous section, we

first need to find uc from (8). Extracting Gtt and Gxx from
(13), and plugging into (8) we find

uc ¼ u0

ð1� v2Þ1=ð7�pÞ (15)

At this stage we need to commit to the nature of the
probe, that is, we need to chose a particular function�. Let
us first focus on the case where the dragging object is a
Dðnþ 1Þ-brane itself, in which case it couples to the string
theory dilaton � with an overall prefactor of e�� in the
action, that is� ¼ �. From (11) we find we can isolate the

dependence of ~C on v and T

~C ¼ Pð1� v2ÞATB (16)

Where the prefactor is,

P ¼
� ð�0Þnþ2ð2�Þ2ðp�2Þ

g4YMðgYM
ffiffiffiffiffiffiffiffiffiffi
dpN

p Þ2m�n�pþ5

�
1=2

�
4�

7� p

�
B
; (17)
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A ¼ � 1

4

�
5þm� pþ ðp� 3Þðn�mÞ

ð7� pÞ
�

(18)

and

B ¼ �2
ð7� pÞ
ð5� pÞA: (19)

Here we have made use of the relation

u0 ¼
�
4�T

7� p

�
2=ð5�pÞ

: (20)

Various dependencies of ~C on velocity and temperature
are shown in the following tables for different values of p
(rows) and n (columns). Each table has a specific value of
m, and the entries in the table are of the form fA; Bg, where
A and B are defined as in (16).

Table I shows the dependencies for allowing our defect
to have a point on the internal sphere, n ¼ m. For Table II
we allow one spatial dimension of the defect to go to the
internal space (our defect must have a minimum dimension
of n ¼ 1, as we are insisting that one of our spatial dimen-
sions lives in the internal sphere). For Table III we allow
two spatial dimensions of our defect to go to the internal
space (now our defect must have at least 2 spatial dimen-
sions, n ¼ 2, and p must contain n, meaning p � 2).

The Dp-brane energy density obeys the following rela-

tion, 	� T2ð7�pÞ=ð5�pÞ. Under a boost, we expect 	 ! 
2	

and thus T2ð7�pÞ=ð5�pÞ ! 
2T2ð7�pÞ=ð5�pÞ. This motivates
the definition of

Teff ¼ 
ð5�pÞ=ð7�pÞT ¼ 
�2A=BT: (21)

With this definition of the effective temperature we see
that, analogous to relation (21), we have an identical
relation between the world-volume horizon and the effec-
tive temperature,

uc ¼
�
4�Teff

7� p

�
2=ð5�pÞ

: (22)

Consequently we see that TB ¼ ð1� v2Þ�ATB
eff and so we

can rewrite ~C as

~C ¼ PTB
eff: (23)

This tells us that the loss rate of the moving defect is only
dependent on velocity in a trivial way—the defect only
sees a blue-shifted energy density—and that there are no
sensitivities to the microscopic details of the plasma de-
spite the fact that gYM is a dimensionfull quantity and
hence defines a microscopic scale in the system.
Presumably this is a consequence of the hidden conformal
invariance that is present in the Dp brane systems as first
exhibited in [13].
There is an area of overlap between this work and [5],

where in the latter, various dimensional defects are studied
is AdS spaces of variable dimension. Our results for a
Dp-brane with p ¼ 3 reproduce the equation of motions
and loss rates found in [5] for the case AdS5, as it should.
For the case of a pointlike defect, m ¼ n ¼ 0, our results
can be compared to the formulas quoted for the dragging
string in [14], following the analysis of dragging strings in
general holographic metrics performed in [7]. Our m ¼
n ¼ 0 results are for a dragging D-string, as we included an
overall e�� coupling in the action. To compare with the
results for the dragging fundamental string we have to set
� ¼ 0 in our analysis (that is, the world-volume action is
independent of the dilaton). It is easy to see that in this case
our general expression (10) indeed nicely reduces to the
result of [14]. Other than the trivial velocity dependence,
the energy loss rate still only depends on velocity and
temperature via a power of uc, and hence, due to (22),
via the effective temperature.
Last but not least, it is interesting to note that for the case

m ¼ n ¼ 1 and p ¼ 6, our defect’s energy loss rate is
independent of both velocity and temperature, other than
the expected velocity squared dependence. In p ¼ 6 case,
there is no good decoupling limit [12] and it is not clear
what significance should be attached to this result.

TABLE I. fA;Bg displayed for the case where the defect does
not extend into the internal space, m ¼ n.

pnn 0 1 2 3 4

1 f�1; 3g f� 5
4 ;

15
4 g N/A N/A N/A

2 f� 3
4 ;

5
2g f�1; 103 g f� 5

4 ;
25
6 g N/A N/A

3 f� 1
2 ; 2g f� 3

4 ; 3g f�1; 4g f� 5
4 ; 5g N/A

4 f� 1
4 ;

3
2g f� 1

2 ; 3g f� 3
4 ;

9
2g f�1; 6g f� 5

4 ;
15
2 g

TABLE II. fA; Bg displayed for the case where the defect
extends into one dimension in the internal space, m ¼ n� 1.

pnn 1 2 3 4

1 f� 11
12 ;

11
4 g N/A N/A N/A

2 f� 7
10 ;

7
3g f� 19

20 ;
19
6 g N/A N/A

3 f� 1
2 ; 2g f� 3

4 ; 3g f�1; 4g N/A

4 f� 1
3 ; 2g f� 7

12 ;
7
2g f� 5

6 ; 5g f� 13
12 ;

13
2 g

TABLE III. fA; Bg displayed for the case where the defect
extends into two dimensions of the internal space, m ¼ n� 2.

pnn 2 3 4

2 f� 13
20 ;

13
6 g N/A N/A

3 f� 1
2 ; 2g f� 3

4 ; 3g N/A

4 f� 5
12 ;

5
2g f� 2

3 ; 4g f� 11
12 ;

11
2 g
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IV. SUPERFLUIDITY

Pointlike probes have been used to study superfluids that
have a gravity dual [15,16]. This is an area in which
strongly interacting extended defects exist in nature
(vortices in Liquid Helium) and thus suggests a possible
analysis using a gauge-string duality. Following the layout
of [17], we are interested in using a superconducting black
hole in AdS5.

The bulk theory has metric, gauge field, and a complex
scalar field (magnitude � and phase �) degrees of freedom,
and is governed by

L bulk ¼ R� 1

4
F2
�� � 1

2
½ð@��Þ2 þ �ð�Þð@��� qA�Þ2�

� Vð�Þ:
This Lagrangian density allows a charged black brane
solution to the metric of the form

ds2 ¼ e2AðuÞð�hðuÞdt2 þ d~x2Þ þ du2

hðuÞ ; (24)

where A�dx
� ¼ A0ðuÞdt, � ¼ �ðuÞ, � ¼ 0, AðuÞ is the

warp factor, hðuÞ is the blackening function, and u is the
‘‘radial coordinate’’ that is defined between �1 and 1. V
and � are in principle free functions of � which in refer-
ence [17] are taken to be Vð�Þ ¼ � 3

L2 cosh
2ð�2Þ�

ð5� coshð�ÞÞ and �ð�Þ ¼ sinh2ð�Þ. These particular
forms are required for a consistent truncation of Type II
B supergravity on a Sasaki-Einstein manifold [18]. The
blackening function smoothly interpolates from 1 at large
u, to its asymptotically value v2

IR as u ! �1.
We can now apply our general formulae to the gravity

dual metric for this holographic superfluid. We first repro-
duce some results of [17]. A string in the bulk has the
following action,

S ¼ �
Z

d�d�
1

2��0 Qð�Þ ffiffiffiffiffiffiffi�g
p

; (25)

where Q ¼ coshð�2Þ, and �0 is the square of the string

length scale and goes to zero in the limit of infinite string
tension. We compare their action for the string (20) to our
general formula (3) settingm ¼ n and n ¼ 0 so that we are
discussing the same defect. We find that we should make

the associations T0 ! 1
2��0 , and e��ðuÞ ! Qð�ðuÞÞ.

Following our prescription for finding the solution to a
uniformly moving defect, we first find the root of Eq. (8)
where we are now using the metric appropriate for our bulk
theory in AdS5 (24). We see that Gtt ¼ �e2Ah, Gxx ¼ e2A

and Guu ¼ h�1.
From (8), uc should be given by hðucÞ ¼ v2. It is clear

from the form of hðuÞ that if v2 < v2
IR there is no solution,

and thus the value hðuÞ approaches as u ! �1 defines a
cutoff velocity, vIR [17]. Defects whose velocities are
below this cutoff experience zero drag force.

For velocities above the cutoff, we find the nonzero drag
force density from the momentum density of our uniformly

moving defect,�u
x ¼ �T0

~Cv, which comes from (4), with

ðx;uÞ given by (6) and ~C defined in (11). We correctly

reproduce the following,

~C ¼ �e2AðucÞQðucÞ (26)

and again choosing the positive sign we have,

�u
x ¼ � e2AðucÞ

2��0 QðucÞv ¼ fdrag: (27)

We can now easily extend these arguments to a sheetlike
defect. This comes down to setting n ¼ 1 and continuing to
demand that m ¼ n. Since our general solution to (8) does
not depend on the dimensionality of the defect, we will
again find the same cutoff velocity for the sheet. This
supports the interpretation of [17] as this cutoff velocity
is a property of the system and not of the defect. The drag

force will be modified as it is proportional to ~C, which
depends on n through (11). We find,

~C sheet ¼ �e3AðucÞQðucÞ (28)

and

�u
x ¼ � e3AðucÞ

2��0 QðucÞv ¼ fsheet;drag (29)

Like in the case of a dragging string in this holographic
superfluid background, our analysis has been performed
entirely in the effective four dimensional language. While
the background itself is a consistent truncation of a full ten
dimensional solution, it is not entirely obvious what sort of
object is described by the defect action Eq. (25) with the
specific form for Qð�Þ from the ten dimensional point of
view. For the case of dragging strings in the background of
five-dimensional charged black holes that correspond
to spinning black branes in ten dimension this question
has been carefully addressed in [19] and indeed the use
of the analog of Eq. (25) turned out to be questionable
in that case. Here we take the point of view of simply
being interested in an effective four dimensional descrip-
tion and take the action of the form Eq. (25) as it is
the most general two derivative action consistent with
symmetries.

V. DISCUSSION

We gave a systematic study of dragging sheets in arbi-
trary holographic metrics. Our results reconfirm in this
most general setting the general structure that was found
for pointlike defects in general holographic metrics as well
as for the study of dragging sheets in anti-de Sitter spaces:
the energy loss is completely insensitive to microscopic
details of the system and only depends on the velocity via
an overall blue-shifted energy density. This seems to be the
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most general characteristic of energy loss at ‘‘strong cou-
pling’’, where a particle interpretation of the medium is not
possible.

An example that may have a real world counterpart is the
study of string like defects (corresponding to dragging
membranes) in holographic superconductors. Vortices in
superfluid Helium and their energy loss can be studied
experimentally. To the extent that holographic superfluids
and superconductors are candidates for real world systems,

the loss rate experienced by a vortex in such a medium
could be a physical observable.
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