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Renormalizability of the (minimal) single-fermion QED extension is investigated at all orders of

perturbation theory in the framework of algebraic renormalization, a regularization-independent method.

Relative to the standard QED, new structures that could lead to gauge anomalies are identified.

Nevertheless, even if the anomaly coefficients fail to vanish in the general case, they shall be absent

provided we require invariance of the action under C and/or PT transformations. Stability is also verified

in this case, hence full renormalizability is attained.
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I. INTRODUCTION

Quantum gravity effects, coming from Planck scale,
may appear as small violations of fundamental laws in
the limit of low energies and in the last two decades a
great deal of effort has been put in the possibility of break-
ing both Lorentz and CPT symmetries: detection of such
effects could help pave the way towards a consistent quan-
tum theory of gravity [1].

An example of a systematic approach which has been
intensively studied is the standard model extension (SME)
[2], a Lorentz- and CPT-violating1 extension of the stan-
dard model. This extension is an effective low-energy limit
theory comprising all the possible deviations from the
standard model arising from high-energy fundamental
theories with Lorentz covariant dynamics in which sponta-
neous Lorentz violation may occur. The minimal extension
respects SUð3Þ � SUð2Þ � Uð1Þ gauge symmetry and is
power-counting renormalizable—eventually, further re-
quirements like causality, unitarity, etc., may be imposed,

yielding more restricted models. High-precision tests in
various sectors of the SME have already bounded many of
the breaking coefficients [5], but with no evidence for the
violation of Lorentz symmetry so far.
In this work, we consider the issue of renormalizability

of the (minimal) single-fermion QED extension. At one-
loop order, a proof of multiplicative renormalizability
was given in [6]. Here, renormalizability will be studied
at all orders of perturbation theory in the algebraic
approach [7], a regularization-independent method.
Despite being an effective model, this kind of study is
important because it inevitably looks at the unitarity of
the theory and, if we are to expect the high-energy
behavior to be unitary, any nonunitarity appearing in
the low-energy effective regime would signal a limit of
the domain of validity of this approximation. We find
new anomaly structures besides the usual Adler-Bardeen-
Bell-Jackiw one. Although the latter remains under con-
trol thanks to the Adler-Bardeen nonrenormalization
theorem [8], the remaining anomalies are potentially
dangerous since no analogous theorem is known, which
would guarantee their absence from an eventual vanish-
ing of their one-loop order coefficients. To any extent, we
show that restricted models which are C and/or PT
invariant are definitely free of anomalies. Stability—
meaning that all renormalization ambiguities are equiva-
lent to a redefinition of the parameters of the theory—is
checked in this anomaly-free case, completing the proof
of its renormalizability.
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1An important result states that violations of CPT symmetry in

a (local) quantum field theory [3] must be accompanied with the
loss of Lorentz invariance, although the converse may not be true
[4].
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II. EXTENDED QED: CLASSICAL APPROACH

A. The model

In the tree approximation, the action we work with is
given by [2]

S ¼ SQEDex þ SGF þ SIR; (1)

where SQEDex is the extension, with Lorentz and CPT
symmetry breakings, of the action of QED for electrons
and photons,

SQEDex¼
Z
d4x

�
i �c��D�c � �cMc �1

4
F��F��

�1

4
ðkFÞ����F��F��þðkAFÞ�A�

~F��

�
; (2)

which, besides the usual QED terms, includes Lorentz-
breaking terms whose coefficients have the form of con-
stant background fields.2 We have used the definitions:

�����þc����þd���5��þe�þ if��5þ1

2
g������;

(3)

M � mþ im5�5 þ a��� þ b��5�� þ 1

2
H�����: (4)

We note that constant tensor fields of even number of
indexes respect CPT symmetry and the ones with odd
number do not, both violating (active) Lorentz invariance
once they give rise to preferential directions in spacetime,
breaking its isotropy. The coefficient ðkFÞ���� and those

appearing in �� are dimensionless, while ðkAFÞ� and the

ones in M have dimensions of mass, all of them being real
because of the reality of the action. The gauge-fixing action
is of the Stueckelberg type [9],

S GF ¼
Z

d4x

�
� 1

2�
ð@�A�Þ2

�
; (5)

and the infrared regulator action, introduced in order to
avoid infrared (IR) singularities,

S IR ¼
Z

d4x

�
�2

2
A�A

�

�
; (6)

is a mass term for the photon field—gauge Ward identities
are not spoiled by the photon mass, a peculiarity of the
Abelian case [10].

On experimental grounds, already breaking coefficients
are known to be very small—possibly leading to Planck-
suppressed effects—in any Earth-based frames of refer-
ence or other inertial frames with low velocity relative to

Earth [5]. To avoid spurious enlargement of these parame-
ters, we restrict ourselves to these frames. Also, Lorentz
violation effects may be of the same order of magnitude as
higher-loop corrections and, for consistence of the ap-
proach, since we perform analyses at all orders in pertur-
bation theory, we consider contributions of arbitrary order
in these coefficients.

B. Classical symmetries

Not only is CPT lost, but none of the discrete operations
C, P or T is a symmetry of the model (see Table I, where
the coefficients represent the associated field operators)
and since Lorentz is also broken, invariance under U(1)
gauge transformations is the only exact symmetry of the
extended QED action. Variations under this transformation
are functionally implemented by the gauge Ward operator,

Wg ¼
Z

d4x�ðxÞwgðxÞ; (7)

with

wgðxÞ ¼ �@�
	

	A� þ ie

�
	Q

	c
c � �c

~	

	 �c

�
; (8)

where �ðxÞ is the infinitesimal gauge transformation pa-
rameter. The action (1) therefore changes under infinitesi-
mal gauge transformations as

WgS ¼ �
Z

d4x�ðxÞ
�
hþ ��2

�

�
@�A

�: (9)

Note that this breaking of the gauge invariance is linear in
A� and therefore will not be renormalized, remaining a
classical breaking [7,10]. The local form of (9),

wgðxÞS ¼ �
�
hþ ��2

�

�
@�A

� (10)

is the classical gauge Ward identity.
It should be stressed that in the model we are consider-

ing here—contrary to the case presented in [11], where
Lorentz symmetry is broken only by a soft breaking term—
Lorentz symmetry is fully broken by the most general
terms respecting gauge invariance, Hermiticity, therefore,
Lorentz Ward identities are meaningless.

TABLE I. Discrete-symmetry properties of the field operators.

C P T CP CT PT CPT

c00, ðkFÞ0j0k,cjk, ðkFÞjklm þ þ þ þ þ þ þ
c0j, cj0, ðkFÞ0jkl þ � � � � þ þ
bj, gj0l, gjk0, ðkAFÞj þ þ � þ � � �
b0, gj00, gjkl; ðkAFÞ0 þ � þ � þ � �
a0, e0, fj � þ þ � � þ �
aj, ej, f0 � � � þ þ þ �
Hjk, d0j, dj0 � þ � � þ � þ
H0j, d00, djk � � þ þ � � þ

2A linear operator A� coupled with a background field ðkAÞ�
could also be present but would introduce linear instabilities in
the potential and is therefore assumed to vanish at tree-level
(radiative corrections to this term are not expected to be
present—see first reference of [2]).
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When dealing with the issue of quantization of the
model, one asks whether or not its symmetries survive after
this process. If they do not, one says that there are anoma-
lies. In the following, we study this issue for the U(1) gauge
symmetry within the algebraic method of renormalization
[7]. The anomaly issue, in the case of a gauge symmetry, is
physically crucial because of its well-known link with the
unitarity of the corresponding quantum theory.

III. QUANTIZATION

The algebraic renormalization approach is based on two
fundamental steps: (i) the study of the Wess-Zumino con-
sistency condition in order to verify that the quantization of
the model does not destroy any classical symmetry, i.e., no
anomaly is present; and (ii) the analysis of the stability of
the action, guaranteeing that it is the most general power-
counting renormalizable action obeying the symmetries of
the model, ensuring that all counterterms will be properly
reabsorbed by a redefinition of the parameters of the start-
ing action. Verification of both proves the existence of a
renormalized theory fulfilling the Ward identity (10) to-
gether with suitable normalization conditions [7,12] fixing
the free parameters.

In order to define a perturbative expansion one has to
split the classical action (1) into a free part and an interact-
ing part. Since the Lorentz-breaking terms are supposed to
be small on physical grounds, it appears reasonable to
consider all of them, including the ones which are qua-
dratic in the quantum fields, as interactions. We shall also
limit the degree in these external fields to a fixed finite
number, for the same physical reason. The practical con-
sequence of the latter assumption is that it avoids the
occurrence of an infinite number of Feynman graphs hav-
ing the same number of loops. We can therefore define as
usual the expansion order as the number of loops, equiva-
lent to the power in the Planck constant ℏ.

Another most important consequence of the Lorentz
invariance of the free action, hence of the free propagators,
is that it is an essential assumption in the proofs of the
quantum action principle (QAP) available in the literature
[13–15], which are given for Poincaré-invariant theories.
The presence of Lorentz-breaking interaction vertices
does not spoil these proofs, thus we can apply the QAP
to the present case. We have of course to suppose we are
using a subtraction scheme of the UV singularities, such
as Bogoliubov-Parasiuk-Hepp-Zimmermann, dimensional
regularization or Epstein-Glaser renormalization, for
which the QAP has been proved [13–15].

A. Wess-Zumino consistency condition

The loop or ℏ expansion of the vertex functional �, the
generating functional of the 1-particle irreducible graphs,

� ¼ X
n�0

ℏn�ðnÞ ¼ S þOðℏÞ; (11)

is such that it coincides with the classical action (1) in the

classical limit: �ð0Þ ¼ S.
The vertex functional � of the quantum theory we want

to define should obey the Ward identity (10)—with �
instead of S. If not, it is called anomalous. The construc-
tion begins by considering a vertex functional � expanded
as in (11). Its variation under the local Ward operator (7)
yields, according to the QAP,

wgðxÞ�þ
�
hþ ��2

�

�
@�A

�ðxÞ ¼ �gðxÞ � �
¼ �gðxÞ þOðℏ�gÞ; (12)

where �gðxÞ is a local polynomial of the fields with UV

dimension bounded by dUV � 4.
Applying to � the commutation rule satisfied by the

local gauge Ward operator,

½wgðxÞ; wgðyÞ� ¼ 0; (13)

we obtain the Wess-Zumino consistency condition,

wgðxÞ�gðyÞ � wgðyÞ�gðxÞ ¼ 0: (14)

A ‘‘trivial’’ solution for �gðxÞ reads
�gðxÞ ¼ wgðxÞ�̂g; (15)

where �̂g is an integrated (gauge noninvariant) field poly-

nomial. With �gðxÞ written as (15), the counterterms can

be chosen recursively in such a way that the Ward identity
is satisfied at any order and the theory is free of anomalies.
Otherwise, if there is any nontrivial term composing�gðxÞ,
i.e., it cannot be written as (15), it represents a potential
gauge anomaly.
The search for possible anomalies now reduces to

the task of listing all polynomials composing �gðxÞ,
with the restriction of dUV � 4. These are of the form,
symbolically,

A4;@A3;@2A2;@3A;A3;@A2;@2A;A2;@A;A;@ð �c c Þ;
A �c c ; �c c ; (16)

(considering all possible contractions among indexes, pos-
sibly using �-matrices, Levi-Civita symbols " and/or the
background fields)—and verifying if they (or combinations
among them) can or cannot all be written in the form (15).
Concomitantly, some polynomials may also be excluded
from �gðxÞ due other specific demands (e.g., discrete

symmetries).
Investigation of all terms in (16) reveals that polynomials

involving derivatives can be cast in the form of (15) as long
as there are no antisymmetric contractions with @�A�;

also, A4, A3, "A@A, A2, A and A �c c do not satisfy the
Wess-Zumino condition (14) and are immediately excluded
from the list (16). Therefore, �gðxÞ is given by

�gðxÞ ¼ f �c c ; "@A@A; "@Ag (17)
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(where the "’s are reminders of antisymmetric contrac-
tions with @A). If no extra conditions are imposed to
remove these polynomials, they represent potential
anomalies.

In the standard QED, discrete symmetries play a crucial
role, ruling out all polynomials that cannot be of the trivial
form (15).3 Here we have no discrete symmetries and the
terms of (17) can not be written as (15), being candidates
for anomalies, so the (quantum) Ward identity reads,
writing (17) more explicitly,

wgðxÞ�¼�
�
hþ�0�02

�0

�
@�A

�þ�ð1Þ �c c þ i�ð2Þ �c�5c

þ�ð3Þ
� �c��c þ�ð4Þ

� �c���5c þ�ð5Þ
��

�c���c

þ�ð6Þ
��
�F��F
�þ�ð7Þ

��F��þOðℏ�Þ; (18)

where the coefficients �0 and �0 are possible renormaliza-

tions of � and �, and the anomaly coefficients �ðiÞ are
functions of the parameters of the theory defined in
the action (1). Note that the first term in the right-hand
side satisfies the consistency condition (14). The Adler-
Bardeen-Bell-Jackiw anomaly is a special case of the sixth

anomaly term, with �ð6Þ
��
� proportional to the Levi-Civita

tensor "��
�.

Discrete symmetries—e.g., C—usually eliminate
anomalous terms. Here, in the absence of any discrete
symmetry, we are left with all these new kinds of possible

anomalies, whose coefficients �ðiÞ may be calculated via,
for instance, explicit evaluation of the associated Feynman

diagrams4: determination of �ð1Þ to �ð5Þ hinges on the
computation of 	3�=ð	 �c	c	A�Þ (‘‘vertex correction’’

diagram); �ð6Þ depends on 	3�=ð	A�	A�	A
Þ (‘‘triangle’’
diagram); and �ð7Þ is determined by 	2�=ð	A�	A�Þ
(‘‘photon self-energy’’ diagram). Some of these coeffi-
cients could be vanishing, as is the case for the Adler-
Bardeen-Bell-Jackiw anomaly in the standard model due to
special cancellations. However, in the present case, there is
no nonrenormalization theorem available (analogous to the
Adler-Bardeen theorem [8]), which could control the
anomalies out of one-loop order calculations.

B. Discrete symmetries C and/or PT

Now we turn our attention to the possibility of removing
these potential anomalies by requiring (separately) C and/
or PT symmetry of the action (1). For definiteness, hence-
forth we choose PT symmetry—the other two cases go

analogously. As can be checked in Table I, imposing this
invariance requires the absence of the coefficients b�, d��,
g���, H��, and ðkAFÞ�. In more details: if these back-
ground fields are not present, the action recovers PT
invariance and, along with the fact the gauge Ward opera-
tor (7) is PT-odd, from (12) it is clear that �gðxÞ must

also be PT-odd. This requirement removes all candidate
anomalies (18) from �gðxÞ, and therefore the PT-invariant
model is guaranteed to be anomaly-free (all coefficients at
the right-hand side of (18) now vanish).
As a side note, it is important to deal with care the require-

ment of discrete symmetries even if the gaugeWard identity
(18) turns out to be truly anomalous: when considering the
full QEDextension,with all fermion families, the possibility
of anomaly cancellations may emerge (see first reference
of [2]) and this may avoid the necessity of requiring the
vanishing of the individual fermion contributions to the
coefficients. As already mentioned, this would also require
the existence of a nonrenormalization theorem.

C. Stability

In the present context, once gauge invariance is proven
to hold to all orders—e.g., thanks to one of the discrete
symmetries already mentioned—‘‘stability’’ means that
radiative corrections can all be reabsorbed by a redefinition
of the parameters of the theory. We keep on with the PT
symmetry as above. It is well-known that the stability of
the quantum perturbative theory is guaranteed if the clas-
sical theory (the classical action together with the classical
Ward identity) itself is stable [7] under small perturbations
of dimension less or equal to 4. We therefore perform such

a perturbation, �~Sð� � 1Þ on the (PT-invariant) action,

S ! S þ �~S, and by requiring this perturbed action to
satisfy the classical gauge Ward identity (10),

wgðxÞðSþ�~SÞ¼wgðxÞSþ�wgðxÞ~S��
�
hþ��2

�

�
@�A

�;

(19)

we conclude that all possible counterterms must be gauge-

invariant, Wg
~S � 0, and PT even (so we guarantee the

absence of anomalies). This selects precisely the
PT-invariant terms P i of the classical action (1)

P 1 ¼ i �c��D�c ; P 2 ¼ i �c c����D�c ;

P 3 ¼ i �c e�D�c ; P 4 ¼ �c f��5D�c ;

P 5 ¼ �c c ; P 6 ¼ �c a���c ; P 7 ¼ F��F��;

P 8 ¼ ðkFÞ����F��F��; P 9 ¼ i �c�5c :

Finally, the most general integrated local function ~S
which is gauge- and PT-invariant is given by

3For example, the gauge Ward operator (7) is odd under charge
conjugation, implying in this case, from (12), that �gðxÞ must
also be. This removes all C-invariant terms from�gðxÞ. For more
details, see Section 5 of [12].

4We know Wg, therefore by applying functional derivatives in
(18) (and setting the fields to zero) we are able to find the
diagrams that contribute to each anomaly coefficient.
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~S ¼
Z

d4x
X9
i¼1

aiP iðxÞ; (20)

where a1; . . . ; a9 represent renormalizations of the
coefficients of the gauge- and PT-invariant action.
Note that these coefficients remain arbitrary. They may
be fixed by normalization conditions at the classical
order, and by induction, order by order in perturbation
theory. This ends the proof of the renormalizability
of this theory. A quite similar proof holds for the
C-invariant theory.

We thus saw that if the (minimal) single-fermion QED
extension of the SME is C- and/or PT-invariant, then it is
renormalizable. Choosing C symmetry rules out a�, d��,

e�, f�, and H�� from the original action (1). If PT

symmetry is chosen, b�, d��, g���, H��, and ðkAFÞ�
need to be absent. With both C- and PT-invariance, there
only remain c�� and ðkFÞ����.

IV. CONCLUSIONS AND PROSPECTS

In summary, by means of the algebraic method,
we identified all possible candidate anomalies in the
(minimal) single-fermion QED extension—these would
come from the ‘‘vertex correction,’’ triangle and ‘‘photon
self-energy’’ diagrams. Explicit evaluation of the anomaly
coefficients are left for future works but in practice may
demand new nonrenormalization theorems. The theory
was proved to be renormalizable at all orders in perturba-
tion theory under the hypothesis of the existence of a
discrete symmetry, namely C and/or PT.
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[15] F. Brennecke and M. Dütsch, Rev. Math. Phys. 20, 119
(2008); F. Brennecke and M. Dütsch, in Quantum Field
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