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We determine the phase structure of an SUð2Þ gauge theory with an adjoint scalar on R3 � S1 using

semiclassical methods. There are two global symmetries: a Zð2ÞH symmetry associated with the Higgs

field and a Zð2ÞC center symmetry associated with the Polyakov loop in the compact direction. The order

of the deconfining phase transition can be either second-order or first-order for SUð2Þ, depending on the

deformation used. After finding order parameters for the global symmetries, we show that there are four

distinct phases: a deconfined phase, a confined phase, a Higgs phase, and a mixed confined phase. The

mixed confined phase occurs where one might expect a phase in which there is both confinement and the

Higgs mechanism, but the behavior of the order parameters distinguishes the two phases. In the mixed

confined phase, the Zð2ÞC � Zð2ÞH global symmetry breaks spontaneously to a Zð2Þ subgroup that acts

nontrivially on both the scalar field and the Polyakov loop. We find explicitly the BPS and KK monopole

solutions of the Euclidean field equations in the BPS limit; these monopoles are extensions of similar pure

gauge theory solutions, where they are constituents of instantons. In the mixed phase, a linear combination

of the Higgs field � and A4, the component of the gauge field in the compact direction, enters into the

monopole solutions. In all four phases, Wilson loops orthogonal to the compact direction are expected to

show area-law behavior. We show that this confining behavior can be attributed to a dilute monopole gas

in a broad region that includes portions of all four phases. The dilute monopole gas picture breaks down

when the action of a BPS monopole is zero. A duality argument similar to that applied recently [40] to the

Seiberg-Witten model on R3 � S1 shows that the monopole gas picture, arrived at using Euclidean

instanton methods, can be interpreted as a gas of finite-energy dyons.
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I. INTRODUCTION

One of the most fundamental questions we can ask about
a gauge theory is its phase diagram. In the standard model,
we have seen three fundamentally different types of be-
havior: the familiar Coulomb behavior associated with the
massless photon, the Higgs mechanism, and the confine-
ment of quarks and gluons. These properties are character-
istics of different phases: QCD is in a confined phase at
zero temperature and density, while the electroweak sector
of the standard model combines Coulomb and Higgs
phases.

As shown by ’t Hooft [1,2], there is a fundamental
conflict between the Higgs mechanism and confinement.
There is a simple picture of this conflict based on the dual
superconductor picture of confinement. In a type II super-
conductor, magnetic monopoles would be confined by
magnetic flux tubes, which we interpret as the Higgs
mechanism leading to the confinement of magnetic
charges. If the confined phase of a gauge theory can be
interpreted as a dual condensate of magnetic monopoles,
then confinement of non-Abelian electric charge would
follow.

We will study below the phase structure of an SUð2Þ
adjoint Higgs model on R3 � S1. Together with the scalar
potential, a deformation term added to the model will allow
us to explore what turns out to be a very rich phase
structure. The use of R3 � S1 with a small circumference,
as opposed to R4, makes the gauge coupling small. One-
loop perturbation theory shows that the deformation term
can be used to move between confined and deconfined
phases. This in turn allows the study of the interplay
between confinement and the Higgs mechanism using
semiclassical methods. This model extends recent work
on gauge theories that are confining on R3 � S1 for small
circumference L [3,4]. Typically, we associate this geome-
try with finite temperature, and L with the inverse tem-
perature �, and we would expect a high-temperature,
deconfined phase for small �. Recently, methods have
been found to change this result: gauge models have
been found where confinement can be understood analyti-
cally at small L using semiclassical methods. The starting
point is typically a gauge theory on R3 � S1; a small
circumference L for the compact direction implies a small
coupling constant gðLÞ provided L� � 1, where � is the
characteristic renormalization group-invariant mass scale
of the theory. Such a gauge theory is generally found in the
deconfined phase for small L, so it is necessary to modify
the gauge action in order to obtain a confined phase.
In previous work on deformed gauge theories without
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fundamental scalars, there has been good evidence that the
confined and deconfined phases on R3 � S1 for small L are
continuously connected to the same phases at large L [3].

The center symmetry associated with the gauge field,
which is a ZðNÞC symmetry for SUðNÞ, is crucial to our
modern understanding of confinement and deconfinement.
The Polyakov loop operator Pð ~xÞ will be central to our
analysis. It is defined as a Wilson loop traversing a topo-
logically nontrivial path in the compact direction given by

Pð ~xÞ ¼ P exp

�
ig

Z L

0
dx4A4ð ~x; x4Þ

�
; (1)

where P indicates path ordering and A� is the gauge field.

It transforms as Pð ~xÞ ! gð ~x; 0ÞPð ~xÞgyð ~x; 0Þ under a gauge
transformation gð ~x; x4Þ so that TrRP

nð ~xÞ is gauge-invariant
for any representation R and any integer n. The Polyakov
loop transforms nontrivially under center symmetry. For
SUðNÞ, this is a transformation that takes TrRP

nð ~xÞ into
znTrRP

nð ~xÞ where z 2 ZðNÞC. In a pure gauge theory at
small L, the one-loop effective potential for P is reliable,
and indicates that ZðNÞC symmetry is spontaneously bro-
ken: The deconfined phase is preferred in this region. In
order to restore the confined, ZðNÞC-symmetric phase at
small L, additional contributions to the effective potential
must be present. Two methods are known, one using ad-
joint fermions, and the other a deformation of the gauge
action. The addition of adjoint representation fermions to
SUðNÞ gauge theories preserves the global ZðNÞC symme-
try of the action. With normal antiperiodic boundary con-
ditions for the fermions, the perturbative effective action
for the Polyakov loop shows that the deconfined phase
remains favored at high temperature, as in the pure gauge
case. With periodic boundary conditions for the fermions,
however, this class of field theories can avoid the transition
to the deconfined phase found in the pure gauge theory for
sufficiently light fermion mass and small L [5–7]. If the
number of adjoint Dirac fermion flavors Nf is less than

11=2, these systems are asymptotically free at small L, and
therefore the effective potential for P is calculable using
perturbation theory. An alternative approach which is
closely related is to add to the gauge action deformation
terms which are local in the noncompact directions, but
nonlocal in the compact direction [3,8]. Because these
terms must respect center symmetry, they are often referred
to as double-trace deformations, reflecting the fact that
TrAP ¼ TrFP

yTrFP� 1. A minimal choice for the defor-
mation term Sd, which is adequate for SUð2Þ and SUð3Þ,
takes the form

Sd ¼ L
Z

d3x
h1
L4

jTrFPð ~xÞj2 (2)

which favors the confined phase with TrFP ¼ 0 for h1 > 0.
For N � 4, it is necessary to include additional terms to
avoid partially confined phases, as in the case of SUð4Þ

where Zð4Þ can break spontaneously to Zð2Þ. In this more
general case, the deformation may be taken to be

Sd ¼ L
Z

d3x
X½N2�
k¼1

hk
L4

jTrFPkð ~xÞj2 (3)

with the confined phase regained at small L if all the hk’s
are sufficiently positive.
The change of the action away from that of a pure gauge

theory restores center symmetry in the compact direction
in such a way that perturbation theory can be used to
calculate fundamental quantities associated with the
Polyakov loops such as string tensions. In contrast, the
maintenance of center symmetry in the noncompact direc-
tions, which holds for all values of L, is nonperturbative.
String tensions are measured by Wilson loops in planes
orthogonal to the compact direction. The mechanism by
which the Wilson loop string tension arises is monopole
condensation, via a mechanism first discussed by Polyakov
[9] in the context of a d ¼ 3 Higgs model. Once the center
symmetry is restored by either method discussed above,
the gauge field in the compact direction, A4 automatically
acquires a nonzero vacuum expectation value in an appro-
priately chosen gauge. A4 then behaves like a scalar field in
the usual Higgs mechanism, where SUðNÞ spontaneously
breaks down to Uð1ÞN�1. Unlike the case of conventional
scalar fields, there are N monopoles in this case; N � 1
BPS monopoles and one additional monopole, called the
Kaluza-Klein monopole due to the fact that the fourth
direction is compactified [10–12]. Following the work by
Polyakov, Unsal and Yaffe were able to analytically calcu-
late the string tension for the case of SUð2Þ using the dilute
gas approximation of monopoles [8]. A similar result holds
for SUð3Þ, although unfortunately the more general case of
SUðNÞ is not as tractable [7].
With confinement in the pure gauge theory on R3 � S1

under analytic control, we can now introduce an adjoint
Higgs field into this setting. The addition of an adjoint
scalar field to such a theory allows us to examine the
interplay of confinement and the Higgs mechanism. For a
quartic scalar field potential Vð�Þ, there is a Zð2ÞH global
symmetry given by � ! ��. Unlike the gauge coupling,
the quartic interaction � of such a scalar is not asymptoti-
cally free. However, we are free to set the running coupling
�ð�Þ so that it is small at the scale � ¼ 1=L, and semi-
classical methods, including perturbation theory, are valid.
An SUðNÞ adjoint scalar Higgs model on R3 � S1 has a
natural global symmetry group ZðNÞC � Zð2ÞH. We will
focus in what follows on the case N ¼ 2. Not only is it the
simplest case, but for N � 3, the gauge theory on R3 � S1

has additional phases intermediate between the confined
and deconfined phases, complicating the analysis [3].
The supersymmetric analog of this model is the Seiberg-

Witten model [13], which is an N ¼ 2 supersymmetric
gauge theory with gauge group SUð2Þ. Seiberg and Witten
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found that in this model the addition of an N ¼ 1 mass
perturbation leads to confinement by magnetic monopoles.
Recently, Poppitz and Unsal have examined the behavior
of this model on R3 � S1, and concluded that the confined
phase seen for small compactification circumference on
R3 � S1 is connected to the confining phase at infinite
compactification circumference. In their work, Euclidean
monopoles in which a linear combination of A4 and �
plays the role of the scalar field appear prominently, in a
very similar fashion to the nonsupersymmetric model [14].

The scalar field � is not gauge invariant, and cannot
serve as an order parameter for the breaking of the Zð2ÞH
symmetry associated with � when gauge interactions are
present. This is an old problem, a consequence of Elitzur’s
theorem [15]. Higgs models with scalar fields in the fun-
damental and adjoint representations behave differently.
For Higgs models with scalar fields in the fundamental
representation, the confined and Higgs phases are con-
nected [16] in a manner similar to the connection between
liquid and gas phases. In this case, the ZðNÞC center
symmetry is explicitly broken, and large Wilson loops do
not have area-law behavior due to screening by the scalars.
In the adjoint case, ZðNÞC center symmetry is preserved by
the action, and there is a distinct phase transition between
the confined and Higgs phases. In the R3 � S1 model we
consider, we will show that there are combinations of �
and P, such as TrF�P that can serve as gauge-invariant
order parameters for the symmetries of the model.

Section II describes in detail the effective potential for
the Polyakov loop and deformations added to it that restore
confinement at small L, focusing on the case of SUð2Þ. We
will discuss a number of possible deformation terms and
their effect on the order of the deconfining phase transition.
We will show that a particularly useful deformation can
be obtained by considering the embedding of two-
dimensional fermions into the four-dimensional theory.
This deformation leads to a simple treatment of the pertur-
batively determined phase diagram in Sec. III, although our
overall conclusions regarding the phase structure are gen-
eral. In Sec. III we determine the phase structure of the
SUð2Þmodel using the effective potentialUeff , evaluated at
one-loop. The evaluation at finite L of the functional
determinants representing one-loop contributions to Ueff

will be the same as those needed at finite temperature. With
the inclusion of a deformation term, we will show that
there are four different phases in perturbation theory, cor-
responding to different patterns of symmetry breaking: a
deconfined phase, a confined phase, a Higgs phase, and a
phase which appears to exhibit both the Higgs mechanism
and confinement. In Sec. IV we show that the phase
that apparently combines confinement and the Higgs
mechanism is in fact a mixed confined phase, where the
Zð2ÞC � Zð2ÞH global symmetry breaks spontaneously to
the Zð2Þ subgroup that acts nontrivially on both the scalar
field and the Polyakov loop. We show that three

gauge-invariant order parameters TrFP, TrF�P and
TrF�P2 are sufficient to resolve the phase structure, and
characterize all four phases in terms of their global sym-
metries. Section V finds in the BPS limit the classical
solutions of the Euclidean equations of motion that appear
as constituents of instantons in the pure gauge case. These
solutions are not identical to Minkowski-space monopoles,
which also occur in this model. The most interesting and
general case is the mixed confined phase, where both �
and A4 have expected values in an appropriately chosen
gauge. In the mixed confined phase, a linear combination
of � and A4 plays the same role that A4 plays in the
analysis of pure gauge theories on R3 � S1, in line with
the breaking Zð2ÞC � Zð2ÞH ! Zð2Þ. The behavior of the
monopole solutions in the other three phases appear as
special cases of the mixed confined phase. Section VI
discusses the effects of these Euclidean monopoles on
the dynamics of the model. In previous studies of the
confined phase in SUðNÞ gauge theories on R3 � S1, it
has been shown that Euclidean-space monopoles play a
key role in the area-law behavior of Wilson loops in planes
orthogonal to the compact direction [4,8,17]. It is therefore
no surprise to find that monopoles play an important
role when an adjoint scalar field is present. However,
there is great subtlety and variety in the analysis.
Nevertheless, we show that a dilute monopole gas gives
rise to confining behavior for Wilson loops over a broad
region that includes part of all four phases. A final section
gives our conclusions.

II. ROLE OF THE DEFORMATION

As explained in the introduction, the one-loop gauge
boson effective potential Vg favors the deconfined phase.

In the case of SUð2Þ, where the Polyakov loop can be
parametrized as TrFP ¼ 2 cosð�Þ, Vg can be written as

[18–21]

Vg ¼ � 2

�2L4

X1
n¼1

TrAP
n

n4
(4)

or equivalently

Vg ¼ � �2

15L4
þ 4

3�2L4
�2ð�� �Þ2 (5)

which is minimized at � ¼ 0 or � corresponding to
TrFP ¼ �2. In order to realize the confined phase for
small L, we will add a double-trace deformation term Sd
to the action. This term will be a ZðNÞC-invariant function
of P, and therefore will be nonlocal in the compact variable
x4. Many forms of Sd may be used, such that the confined
phase is favored for some range of parameters. In the case
of SUð2Þ, there is an interesting issue concerning the order
of the transition from the confined to the deconfined phase.
Although the pure gauge theory is clearly related to three-
dimensional Zð2Þ spin systems, this does not ensure a
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second-order transition in the Ising model universality
class because the transition may be first-order. This issue
can easily be understood from the point of view of Landau-
Ginzburg theory. Consider a general theory with a real
scalar order parameter � and a Landau-Ginzburg free
energy density f½�� which is Zð2Þ invariant. It may be
expanded as

f½�� ¼ 1

2
r�2 þ 1

4!
��4 þ 1

6!
��6 (6)

with � > 0 for global stability. As long as � > 0, the
transition will be second-order, occurring at r ¼ 0.
However, if � < 0, it is easy to see that the transition
may be first-order [22]. Because we have a high degree
of freedom in choosing our deformation in SUð2Þ, we can
also choose the order of the transition.

A minimal choice for Sd takes the form

Sd ¼ L
Z

d3x
h1
L4

jTrFPð ~xÞj2 (7)

which favors the confined phase with TrFP ¼ 0 for h1 > 0.
From a Landau-Ginzburg point of view, changing h1 is a
change to r. However, the transition between the confined
and deconfined phases is first-order when Sd is added to the
one-loop effective action of the gauge theory. It is instruc-
tive to consider a slightly generalized form

Vd ¼ h1L
�4ðTrFPÞ2 þ h2L

�4ðTrFPÞ4 (8)

where we define the potential Vd via

Sd ¼ L
Z

d3xVd: (9)

For sufficiently large h1 > 0, the symmetry will be re-
stored. Expanding the gluon potential with this deformed
potential around the symmetric point, � ¼ �=2, we get a
potential of Landau-Ginzburg type

Vg þ Vd ’ �2

60L4
þ 4

L4

�
h1 � 1

6

��
�� �

2

�
2

þ 4

3L4

�
�h1 þ 12h2 þ 1

�2

��
�� �

2

�
4

þ 8

45L4
ðh1 � 60h2Þ

�
�� �

2

�
6

(10)

displaying explicitly the variation of the low-order terms in
the expansion. If the phase transition is second-order, it
must occur at h1 ¼ 1=6. However, if the coefficient of the
quartic term is negative, the confined phase at � ¼ �=2
will be unstable when h1 ¼ 1=6. This tells us that the
transition is first-order for sufficiently small h2. On the
other hand, when h2 is large, we can ignore terms past
quartic because � is bounded, and the transition is second-
order. The tricritical point where the transition changes
from first- to second-order, lies somewhere on the line of
h1 ¼ 1=6, but it must be located numerically. We plot the
phase diagram of the deformed SUð2Þ as shown in Fig. 1.

Another possibility is to choose a form for Vd which is
proportional to the one-loop expression for the gauge
boson contribution to the effective action, but with oppo-
site sign [3]:

Vd ¼ 2h

�2L4

X1
n¼1

jTrFPnj2
n4

: (11)

The action will cancel the leading-order 1=L4 contribution
of the gauge bosons to the effective action when h ¼ 1, and
the confined phase will be favored at small L when h > 1.
This choice for Vd leads to a very strong first-order tran-
sition as h is varied between a confined phase where
TrFP ¼ 0 and a deconfined phase where TrFP ¼ �2, the
largest possible value. This form for the deformation can
be approximately implemented by a local addition to the
action, corresponding to Nf flavors of adjoint Dirac fermi-

ons of mass M with periodic boundary conditions in the
compact direction. In general, the potential for such adjoint
fermions in (dþ 1)-dimension is

4Nfs

�
M

2�L

�ðdþ1Þ=2 X1
n¼1

Kðdþ1Þ=2ðnMLÞTrAPn

nðdþ1Þ=2 ; (12)

where Kðdþ1Þ=2 is the modified Bessel function and s ac-

counts for spin degeneracy [21]. In the limit M ! 0 with
d ¼ 3 spatial dimensions, the adjoint fermions will make a
one-loop contribution to the effective potential of the form
given above with the identification h ¼ sNf, up to a term

independent of TrFP because TrAP
n ¼ jTrFPnj2 � 1. The

transition between phases is first-order for all M.
The most analytically tractable choice we have found

that yields a second-order transition is based on the one-
loop potential for Nf adjoint Dirac fermions with periodic

boundary conditions in two dimensions instead of four, i.e.,
d ¼ 1 in Eq. (12), yielding in two dimensions

2MLNf

�L2

X1
n¼1

K1ðnMLÞTrAPn

n
: (13)

ConfinedDeconfined

2nd order

1st order

0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.01

0.02

0.03

0.04

0.05

h1

h2

FIG. 1 (color online). Phase diagram of an SUð2Þ gauge theory
as a function of the h1 and h2 deformation parameters.
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These sheets of two-dimensional fermions can be
embedded in four dimensions with a density 1=a2 in the
plane orthogonal to the plane of the fermions. Then Vd is
given by

Vd ¼
2MLNf

�a2L2

X1
n¼1

K1ðnMLÞTrAPn

n
: (14)

In a lattice implementation, we would identify a as the
lattice spacing and an overall coefficient of order one
would depend on the lattice fermion implementation.
Using the relation L ¼ N4a, where N4 is the number of
lattice sites in the compact direction, we would have

Vd ¼
2MLNfN

2
4

�L4

X1
n¼1

K1ðnMLÞTrAPn

n
: (15)

The infinite series can be summed exactly in the limit when
the mass goes to zero,

lim
M!0

Vd ¼ 2NfN
2
4

�L4

X1
n¼1

TrAP
n

n2
¼ 4NfN

2
4

�L4
ð�� �=2Þ2; (16)

where 0 � � � �. This deformation leads to a second-
order phase transition at some Nf for sufficiently small

M. We stress that although the form of the deformation
term was motivated by the connection with adjoint fermi-
ons, it is in fact a deformation term with no additional
dynamical degrees of freedom. Because we treat this term
as a deformation, we can identify the compactification
circumference as an inverse temperature L ¼ �; this
would not be legitimate for periodic adjoint fermions,
because spectral positivity in the compact direction would
fail. We minimize the effective potential of gluons with this
deformation numerically by changing the two dimension-
less parameters, NfN

2
4 and ML, and construct the phase

diagram as shown in Fig. 2. As we increase ML, the
contribution from adjoint fermions is suppressed, so a
larger number of flavors is needed to retain confinement.

However, the transition becomes first-order for sufficiently
high ML as we change NfN

2
4 . The tricritical point lies on

ðML;NfN
2
4Þc ’ ð1:771; 0:955Þ. We will use the M ¼ 0

form in what follows, thereby obtaining a second-order
deconfinement transition.

III. THE EFFECTIVE POTENTIAL

The phase diagram of our SUð2Þ model will be calcu-
lated from an approximate form of the one-loop effective
potential, including the deformation term. The effective
potential will be calculated in background field gauge [23],
with the background fields consisting of a scalar expecta-
tion value for� and a constant value for A4; the latter gives
rise to a nontrivial Polyakov loop background. For a gen-
eral Higgs theory, the classical Euclidean action can be
written as

Sc ¼
Z

d4x

�
1

4
ðFa

�	Þ2 þ 1

2
ðD��ÞT �D��þ Vð�Þ

�
; (17)

where the field � is in an arbitrary real representation R of
the gauge group G of dimension n, in general reducible.
The index a runs over the number of generators of the
group, N2 � 1 for SUðNÞ.
The potential Vð�Þ we use is given by

Vð�Þ ¼ 1

2
m2�2 þ 1

4
�ð�2Þ2; (18)

where �2 ¼ �T�. The covariant derivative acts on � as

D�ðAÞ� ¼ @��� igA��; (19)

where the gauge field is written as an n� n matrix using
A� ¼ Aa

�T
a where the Ta are the generators of the group in

the representation R. The field strength tensor in a matrix
notation is

F�	 ¼ @�A	 � @	A� � ig½A�; A	� (20)

or

Fa
�	 ¼ @�A

a
	 � @	A

a
� þ gfabcAb

�A
c
	 (21)

in terms of components.
The classical contribution to the effective potential is the

sum of the scalar potential Vð�Þ and a contribution from
the kinetic term:

Vcð�Þ ¼ � 1

2
g2ðA��ÞT � A��þ Vð�Þ: (22)

The contribution from the kinetic term is positive-definite,
despite appearances. In a real representation, the Hermitian
generators Ta are purely imaginary, so Ta	 ¼ �Ta. This in
turn implies TaT ¼ �Ta, and thus AT

� ¼ �A�. In the case

of the adjoint representation, this term can be written in
matrix notation as

� g2TrF½A4; ��2; (23)

Confined

Deconfined

1st order

2nd order

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ML

Nf N4
2

FIG. 2 (color online). The phase diagram of an SUð2Þ gauge
theory with a deformation inspired by Nf two-dimensional

fermions of mass M as a function of ML and NfN
2
4 .
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where ½A4; �� is clearly anti-Hermitian. The positivity of
this term for the adjoint representation implies that the
effective potential will be minimized if ½A4; �� ¼ 0.

The calculation of the effective potential in the presence
of a background Polyakov loop is similar to the case of
finite temperature and density [24], because a chemical
potential is an imaginary Uð1Þ background A4 expected
value. The one-loop effective action � for the Higgs model
without the deformation term is given by the classical
action S plus contributions from the functional determi-
nants of the gauge, scalar and ghost fields. The computa-
tion is only simple in R
 gauge with 
 ¼ 1. For the adjoint
scalar model, the result is

� ¼ Sþ TrA log½ð� �D2
�Þac þ ðM2

gÞac�
þ 1

2
TrR log½ð� �D2

�Þ þM2
s �; (24)

where the functional traces are taken over space-time as
well as the internal symmetry group and �D� is the cova-

riant derivative with respect to the background field. We
denote the background fields by �� and �A�. The first trace

represents the net contribution of the gauge and ghost
fields, while the second term is the contribution of the
scalar field. The mass matrices depend on the background
field configuration and are given by

ðM2
gÞac ¼ g2 ��TTaTc �� (25)

for the gauge fields and

M2
s ¼ m2 þ � ��2 þ 2� �� ��T þ g2Ta �� ��TTa (26)

for the scalar fields. For static background fields we have

� ¼
Z

d4xUeff : (27)

The contribution to the effective potential from the func-
tional determinants may be separated into a contribution
independent of L, analogous to T ¼ 0, of the form

V1
1l ¼ 2

1

64�2
TrA½ðM2

gÞ2 logðM2
g=�

2Þ�

þ 1

64�2
TrR½ðM2

s Þ2 logðM2
s=�

2Þ�; (28)

where the traces are taken over representations of the
gauge group, with A denoting the adjoint representation.
� is the usual scale-setting parameter with dimensions of
mass required by renormalization. There is also an
L-dependent contribution, corresponding to T � 0, of the
form VL

1l ¼ VL
1lg þ VL

1l� where

VL
1lg ¼

2

L
TrA

Z d3p

ð2�Þ3 log½1� P expð�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

g

q
Þ�
(29)

and

VL
1l� ¼ 1

L
TrR

Z d3p

ð2�Þ3 log½1� P expð�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

s

q
Þ�;
(30)

where P is simply expðigL �A4Þ. We have assumed in these
expressions that the mass matrices are diagonal, and so
commute with the Polyakov loop, as is the case if � is in
the adjoint representation of SUðNÞ.
We now specialize to the case of adjoint SUð2Þwhere we

take �� ¼ ð0; 0; vÞ and P ¼ diag½expði�Þ; expð�i�Þ� in the
fundamental representation. It is easy to check that the
gauge boson mass matrix has the form

M2
g ¼

g2v2

g2v2

0

0
B@

1
CA (31)

and the scalar mass matrix M2
s is

M2
s ¼

m2þ�v2þg2v2

m2þ�v2þg2v2

m2þ3�v2

0
BB@

1
CCA:
(32)

The complete one-loop effective potential for the scalar-
gauge system is then

Veff ¼ 1

2
m2v2 þ 1

4
�v4 þ 2 � 2

64�2
g4v4 logðg2v2=�2Þ þ 2

64�2
ðm2 þ �v2 þ g2v2Þ2 log½ðm2 þ �v2 þ g2v2Þ=�2�

þ 1

64�2
ðm2 þ 3�v2Þ2 log½ðm2 þ 3�v2Þ=�2� þ 2

1

L

Z d3p

ð2�Þ3 log½1� e2i�e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þg2v2

p
�

þ 2
1

L

Z d3p

ð2�Þ3 log½1� e�2i�e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þg2v2

p
� þ 2

1

L

Z d3p

ð2�Þ3 log½1� e�Ljpj�

þ 1

L

Z d3p

ð2�Þ3 log½1� e2i�e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2þ�v2þg2v2

p
� þ 1

L

Z d3p

ð2�Þ3 log½1� e�2i�e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2þ�v2þg2v2

p
�

þ 1

L

Z d3p

ð2�Þ3 log½1� e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2þ3�v2

p
�: (33)
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As explained in the introduction, the extra term Sd
added to the action is used to offset one-loop terms in �
that favor the deconfined phase. These one-loop terms are
Oð1Þ in the loop expansion, whereas the classical action Sc
is Oðℏ�1Þ. It is thus consistent to take Sd to be Oð1Þ in the
loop expansion. This occurs naturally when the added term
Sd represents fermions in the adjoint representation, but in
the case of a deformation it is essentially a choice we make
in defining what our perturbation theory is. The total one-
loop effective potential is

Ueff ¼ Veff þ Vd (34)

which is a function of the expected values �� and �A4 and
depends on the parameters g, m2, �, and L, as well as any
additional parameters in Vd. We use the form of Vd given in
Sec. II:

Vd ¼ 4NfN
2
4

�L4
ð�� �=2Þ2: (35)

We now make use of an approximate form for the integrals
[21]

VB ¼ 1

L

Z d3p

ð2�Þ3 log½1� ei�e�L
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
�

þ 1

L

Z d3p

ð2�Þ3 log½1� e�i�e�L
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
�

’ � 2

�2L4

�
�4

90
� 1

48
�4þ þ �

12
�3þ � �2

12
�2þ

�

þ M2

2�2L2

�
1

4
�2þ � �

2
�þ þ �2

6

�

� M4

16�2

�
ln

�
LM

4�

�
þ �� 3

4

�
; (36)

where �þ means � made periodic over the range 0 to 2�
and M is a mass term. Because we work with particles in
the adjoint representation, we must make the replacements
�þ ! 2�, and the range of � must be taken as ½0; ��.
Applying this approximation to our complete expression
for Veff , we have

Ueff ¼ 1

2
m2v2 þ 1

4
�v4 � 4

�2L4

�
�4

90
� 1

48
ð2�Þ4þ þ �

12
ð2�Þ3þ � �2

12
ð2�Þ2þ

�
þ g2v2

�2L2

�
1

4
ð2�Þ2þ � �

2
ð2�Þþ þ �2

6

�

� g4v4

16�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�
� 2

�2L4

�
�4

90

�
� 2

�2L4

�
�4

90
� 1

48
ð2�Þ4þ þ �

12
ð2�Þ3þ � �2

12
ð2�Þ2þ

�

þ ðm2 þ �v2 þ g2v2Þ
2�2L2

�
1

4
ð2�Þ2þ � �

2
ð2�Þþ þ �2

6

�
� ðm2 þ �v2 þ g2v2Þ2

32�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�

� 1

�2L4

�
�4

90

�
þm2 þ 3�v2

4�2L2

�
�2

6

�
� ðm2 þ 3�v2Þ2

64�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�
þ 4NfN

2
4

�L4
ð�� �=2Þ2: (37)

Note that the logarithmic dependence on the mass matrix disappears in this small-L expansion. Rearranging the leading-
order terms, we have

Ueff ¼ 1

2
m2v2 þ 1

4
�v4 � 6

�2L4

�
�4

90
� 1

48
ð2�Þ4þ þ �

12
ð2�Þ3þ � �2

12
ð2�Þ2þ

�
� 3

�2L4

�
�4

90

�

þ ðm2 þ �v2 þ g2v2Þ
2�2L2

�
1

4
ð2�Þ2þ � �

2
ð2�Þþ þ �2

6

�
þ 2g2v2

2�2L2

�
1

4
ð2�Þ2þ � �

2
ð2�Þþ þ �2

6

�

þm2 þ 3�v2

4�2L2

�
�2

6

�
� ðm2 þ 3�v2Þ2

64�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�
� 2g4v4

32�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�

� ðm2 þ �v2 þ g2v2Þ2
32�2

�
ln

�
L2�2

16�2

�
þ 2�� 3

2

�
þ 4NfN

2
4

�L4
ð�� �=2Þ2: (38)

We now drop all the terms independent of v and � from Ueff .

1

2
m2ðLÞv2 (39)

and

1

L4

�
4NfN

2
4

�
� 1

��
�� �

2

�
2
: (40)

Additionally, we define running couplingsm2ðLÞ and �ðLÞ in such a way that all one-loop contributions are included in the
running couplings when � ¼ �=2
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Ueff ¼ 1

2
m2ðLÞv2 þ 1

4
�ðLÞv4 þ 1

�2L4

�
2

�
�� �

2

�
4

� �2

�
�� �

2

�
2
�
þ 4NfN

2
4

�L4
ð�� �=2Þ2

þ ðm2 þ �v2 þ g2v2Þ
2�2L2

ð�� �=2Þ2

þ 2g2v2

2�2L2
ð�� �=2Þ2: (41)

In order for us to take the phase diagram predicted by our
one-loop effective potential seriously, both the gauge cou-
pling gðLÞ and the scalar coupling �ðLÞmust be small. The
gauge coupling is naturally small at a scale where�L � 1
as a consequence of asymptotic freedom, but the scalar
coupling must be tuned to make �ðLÞ small.

Naively, the phase diagram is controlled in perturbation
theory by the two quadratic terms

1

2
m2ðLÞv2 (42)

and

1

L4

�
4NfN

2
4

�
� 1

��
�� �

2

�
2
: (43)

The potential also has a quartic coupling that couples
together the two order parameters in a way that generally
can produce either four second-order transition lines meet-
ing at a tetracritical point or two second-order lines and one
first-order line meeting at a bicritical point [22]. In the case
at hand, the tetracritical phase diagram is obtained, as we
now show. We define the parameter

a 
 4NfN
2
4

�
� 1: (44)

It is easy to see that there are at least two second-order
phase transition lines that meet at [a ¼ 0, m2ðLÞ ¼ 0]:
one line is along a ¼ 0 for m2ðLÞ> 0, and the other is
alongm2ðLÞ ¼ 0 for a > 0. Note that whenm2ðLÞ ¼ 0, the
Lagrangian parameter m2 is negative andOð�=L2; g2=L2Þ.
It is easy to see that the critical line for � is determined by
the Oð1=L4Þ terms in Ueff , implying the critical line is
given by a ¼ 0 up to a term which is of order m2ðLÞL2,
which is of order � or g2 or less in the vicinity of the
tetracritical point. Thus to leading order in perturbation,
the critical line associated with � is given by a ¼ 0. As a
moves from a ¼ 0 to negative values, � decreases from
�=2, reaching � ¼ 0 at a ¼ �1. A given value of a will
determine the value of �, which in turn determines the
coefficient of a contribution to Ueff of the form

ð�þ g2Þ
2�2L2

ð�� �=2Þ2v2: (45)

We can absorb this contribution into our definition of
m2ðLÞ. This has the effect of straightening out what would

have been a curved segment in the critical line associated
with � in the region �1< a< 0; the critical line is
straight in any case for a > 0, where � ¼ �=2, and for
a <�1, where � ¼ 0. Henceforth, we will write m2ðLÞ as
simply m2 for notational simplicity.
We now see that the one-loop effective potential predicts

two second-order phase transitions. They appear to be
essentially independent: when m2 < 0, the scalar expecta-
tion value v is nonzero; for m2 > 0, it is 0. If a > 0, the
angle � associated with the Polyakov loop has the value
�=2, and Zð2ÞC center symmetry holds. For a < 0, center
symmetry is broken. Thus there are four distinct phases. As
we have seen, the order of the deconfinement transition is
nonuniversal, depending on the deformation. The detailed
structure of the phase diagram will depend on the precise
model. For example, if four-dimensional adjoint fermions
are used, a coupling of the form Tr½ �c�c � must be con-
sidered. A large value for v gives rise to a large fermion
mass terms, which in turn reduces the ability of the adjoint
fermions to restore confinement [25]. However, the basic
phase structure will be the same for all models. Three of the
phases are familiar: a Higgs phase, a confined phase, and a
deconfined phase. However, the fourth phase, where center
symmetry is unbroken and v � 0 is novel, and appears to
have some of the properties of both the confined phase
(TrFP ¼ 0) and the Higgs phase (v � 0). In the next three
sections, we will explore this phenomenon, first in terms of
symmetries using the perturbative effective action, and
then nonperturbatively.

IV. SYMMETRIES AND ORDER PARAMETERS

An understanding of the overall phase structure can
be based on the global symmetries of this class of models.
The action is invariant under two global Zð2Þ symmetries.
The first symmetry, Zð2ÞH, is the invariance of the action
under a transformation of the scalar field � ! ��.
Because � transforms under SOð3Þ, the adjoint represen-
tation of SUð2Þ, this transformation is not a gauge trans-
formation, but a global symmetry. The other global
symmetry, Zð2ÞC, is associated with the center symmetry
of the SUð2Þ gauge group, and is present because all fields
have 0 N-ality. Under this global symmetry, the action is
invariant, but the Polyakov loop P transforms as P ! �P.
It is useful to consider three distinct gauge-invariant order
parameters associated with the Zð2ÞC � Zð2ÞH symmetry.
Although these order parameters are nonlocal in the com-
pact direction, they are local in the three noncompact
directions. The first of these is the trace in the fundamental
representation of the Polyakov loop P itself, hTrFPðxÞi,
which is independent of x4. It transforms nontrivially
under Zð2ÞC but is invariant under Zð2ÞH. The second
is hTrF½P2ðxÞ�ðxÞ�i which is invariant under Zð2ÞC, but
transforms nontrivially under Zð2ÞH. Finally, there is
hTrF½PðxÞ�ðxÞ�i, which transforms nontrivially under
both groups.
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In the deconfined phase, there is spontaneous breaking
of Zð2ÞC, indicated by hTrFPðxÞi � 0. The Higgs phase is
associated with the spontaneous breaking of Zð2ÞH,
indicated by hTrF½P2ðxÞ�ðxÞ�i � 0. It appears that five
distinct phases might be possible: a confined phase, where
Zð2ÞC � Zð2ÞH is unbroken; a deconfined phase, where
Zð2ÞC is spontaneously broken but Zð2ÞH is unbroken; a
Higgs phase, where both Zð2ÞC and Zð2ÞH are spontane-
ously broken; a phase where Zð2ÞH is broken but Zð2ÞC is
unbroken; and finally a phase where Zð2ÞC � Zð2ÞH spon-
taneously breaks to Zð2Þ. This last phase is only invariant
under a simultaneous transformation of P and �. We will
refer to this phase as the mixed confined phase. The mixed
confined phase in some sense takes the place of a phase
where Zð2ÞH is broken but Zð2ÞC is unbroken, which would
be a phase where both the Higgs mechanism and confine-
ment hold.

The minimum of the perturbative effective potential is
specified by the expected values � and v. They are not
themselves gauge-invariant, but they can be used reliably
to calculate gauge-invariant order parameters for small L.
We have simply

hTrFPðxÞi ¼ 2 cosð�Þ (46)

hTrF½P2ðxÞ�ðxÞ�i ¼ 2iv sinð2�Þ (47)

hTrF½PðxÞ�ðxÞ�i ¼ 2iv sinð�Þ: (48)

The second and third expectation values are imaginary, but
can be made real if desired by forming the appropriate
Hermitian operator. The key technical point is that
hTrF½P2ðxÞ�ðxÞ�i is a gauge-invariant proxy for � as
long as sinð2�Þ � 0. This restriction implies that the case
of maximal center symmetry breaking where � ! 0 or
� ! � must be treated as a limiting case. Although one-
loop perturbation theory does indicate maximal center
symmetry breaking at high temperatures, lattice simula-
tions suggest that such temperatures are not reached until
well beyond the deconfinement transition. We assume that
in each phase where center symmetry is broken there is a
region where it is not maximally broken. It is easy to check
that for our choice of deformation this is the case.

It is now easy to work out the phase diagram and the
properties of the phases, as shown in Fig. 3 and Table I.
Naively, the phase that is both a confined and a Higgs phase
occurs when a > 0 and m2 < 0. This would be a phase

where Zð2ÞH is broken but Zð2ÞC is unbroken, in the sense
that hTrFPðxÞi ¼ 0 and hTrF½PðxÞ�ðxÞ�i ¼ 0 due to unbro-
ken center symmetry, but hTrF½P2ðxÞ�ðxÞ�i � 0 as in the
Higgs phase. This behavior is not possible in perturbation
theory because hTrF½P2ðxÞ�ðxÞ�i ¼ 0 if hTrFPðxÞi ¼ 0.
The phase that replaces it is a confining phase because
the Polyakov loop is zero, but center symmetry has become
entwined with the global symmetry of the Higgs field. We
will show in the next section that the nonperturbative
dynamics of the model shows the effects of this mixing
in a direct and dramatic way.

V. CLASSICAL MONOPOLE SOLUTIONS

The nonperturbative dynamics of gauge theories on
R3 � S1 are all based on Polyakov’s analysis of the
Georgi-Glashow model in three dimensions [9]. This is
an SUð2Þ gauge model coupled to an adjoint Higgs scalar.
The model we are considering thus differs by the addition
of a fourth compact dimension and a suitable deformation
added to the action. The four-dimensional Georgi-Glashow
model is the standard example of a gauge theory with
classical monopole solutions when the Higgs expectation
value is nonzero. They are topologically stable because
�2ðSUð2Þ=Uð1ÞÞ ¼ �1ðUð1ÞÞ ¼ Z, and make a nonper-
turbative contribution to the partition function Z. In three
dimensions, these monopoles are instantons. Polyakov
showed that a gas of such three-dimensional monopoles
gives rise to nonperturbative confinement in three dimen-
sions, even though the theory appears to be in a Higgs
phase perturbatively.

FIG. 3 (color online). Phase diagram of SUð2Þ Higgs model as
a function of a and m2. The values of the order parameters are
shown in parenthesis as ðhTrFPi; hTrF½P2��i; hTrF½P��iÞ.

TABLE I. Properties of the four possible phases, along with the confined and Higgs phase, which does not occur.

Parameters hTrFPi hTrF½P2��i hTrF½P��i Phase Residual symmetry

a > 0, m2 > 0 0 0 0 Confined Zð2ÞC � Zð2ÞH
a < 0, m2 > 0 � 0 0 0 Deconfined Zð2ÞH
a < 0, m2 < 0 � 0 � 0 � 0 Higgs ;
a > 0, m2 < 0 0 0 � 0 Mixed confined Zð2Þ
Absent 0 � 0 0 Confined and Higgs Zð2ÞC
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Because L is small in our four-dimensional theory, the
three-dimensional effective theory describing the behavior
of Wilson loops in the noncompact directions will have
many features in common with the three-dimensional the-
ory first discussed by Polyakov. In the four-dimensional
theory, monopole solutions with short worldline trajecto-
ries in the compact direction exist, and behave as three-
dimensional instantons in the effective theory. It is useful
to recall the analysis of the small-L confined phase in the
case of a gauge theory without scalars [3,8]. In this theory,
the role of the three-dimensional scalar field is played by
the fourth component of the gauge field A4, which has a
vacuum expected value induced by the perturbative effec-
tive potential. However, there is another way to understand
the presence of monopoles in this phase, based on studies
of instantons in pure gauge theories at finite temperature
[10–12]. If the Polyakov loop has a nontrivial expectation
value, finite-temperature instantons in SUðNÞ may be
decomposed into N monopoles, and the locations of the
monopoles become parameters of the moduli space of
the instanton. In the case of SUð2Þ, an instanton may be
decomposed into a conventional BPS monopole and a so-
called KK (Kaluza-Klein) monopole. The presence of the
KK monopole solution differentiates the case of a gauge
field at finite temperature from the case of an adjoint scalar
breaking SUðNÞ toUð1ÞN�1, in which case there are N � 1
fundamental monopoles.

If a scalar field is added to the model, the coupling of A4

to the R3 gauge field ~A is identical to the coupling of � to
~A, and nonzero expectation values for either or both lead to
topologically nontrivial field configurations. For simplic-
ity, we will continue to refer to these solutions as mono-
poles, although they are instantons, in the sense that they
are solutions of the Euclidean field equations, and gener-
ally dyons in the sense that A4 has nontrivial behavior. In
the general case, both A4 and � play roles in the monopole
solutions. This behavior is similar to that found in Higgs
models with more than one scalar [26]. However, there is a
significant difference. When an adjoint Higgs model spon-
taneously breaks SUðNÞ down toUð1ÞN�1, there are N � 1
fundamental monopoles. When A4 is responsible for the
breaking of SUðNÞ down toUð1ÞN�1, there is an additional
monopole for a total of N fundamental monopoles. The
solutions for all these monopoles can be found explicitly in
the BPS limit; when A4 is nontrivial, the N � 1 BPS
monopoles are joined by a KK monopole [10–12]. In
what follows, it will be useful to differentiate between
solutions which saturate the Bogomolny bounds, versus
solutions with the same topological properties and reduce
to the solutions saturating the Bogomolny bounds in an
appropriate limit. Thus we will distinguish between BPS
solutions and monopoles of BPS type, meaning monopoles
that reduce to BPS solutions in the appropriate limit. We
will similarly distinguish between KK monopoles and KK
monopole solutions.

We will now show how the monopole solutions in the
general case are found. The monopole solutions in each of
the four phases may be obtained as special cases. We begin
with the BPS-type solution where all fields are independent
of x4. This construction is very similar to the case of
models with two Higgs fields [26]. The Euclidean
Lagrangian L is given by

L ¼ 1

4
ðF�	Þ2 þ 1

2
ðD��Þ2 þUeffð�;A4Þ (49)

which includes potential term for both � and A4. We
assume that A4 commutes with� so thatLmay be reduced
to

L ¼ 1

2
ðDjA4Þ2 þ 1

2
ðBjÞ2 þ 1

2
ðDj�Þ2 þUeffð�;A4Þ:

(50)

We can associate with L an energy defined by

E¼
Z
d3x

�
1

2
ðBjÞ2þ1

2
ðDjA4Þ2þ1

2
ðDj�Þ2þUeffð�;A4Þ

�

(51)

as well as an action S ¼ LE. We will concern ourselves for
now with the solutions in the BPS limit, in which the
effective potential Ueff is neglected, but the boundary
conditions on� and A4 at infinity imposed by the potential
are retained.
We introduce two new fields

b ¼ cos�A4 þ sin�� (52)

c ¼ � sin�A4 þ cos�� (53)

which are orthogonal linear combinations of � and A4,
depending on an arbitrary angle�. We can write the energy
as

E ¼
Z

d3x

�
1

2
B2
j þ

1

2
ðDjbÞ2 þ 1

2
ðDjcÞ2

�

¼
Z

d3x

�
1

2
ðBj �DjbÞ2 þ 1

2
ðDjcÞ2 � BjDjb

�
: (54)

This expression is a sum of squares plus a term which can
be converted to a surface integral, giving rise to the BPS
inequality

E � �
Z

dSjBjb: (55)

The BPS inequality is saturated if the following equalities
hold:

Bj ¼ �Djb Djc ¼ 0: (56)

For the case of a single monopole at the origin, we require
the fields at spatial infinity to behave as
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lim
r!1�

a ¼ v
xa

r

lim
r!1A

a
4 ¼ w

xa

r

lim
r!1A

a
i ¼ aij

xj

gr2
:

(57)

Note that w is related to the eigenvalues of P at large
distances by w ¼ 2�=gL. The first two terms are the usual
hedgehog fields. Aa

i is chosen such that covariant terms
vanish at infinity: ðDi�Þa ¼ 0 and ðDiA4Þa ¼ 0. With the ’t
Hooft-Polyakov ansatz, the general expressions for the
fields become

�a ¼ vfðrÞ x
a

r
Aa
4 ¼ whðrÞ x

a

r
Aa
i ¼ aðrÞaij xj

gr2
;

(58)

where we define v, w> 0 and require fð1Þ ¼ 1 or �1,
hð1Þ ¼ 1 or �1, and að1Þ ¼ 1 to obtain the correct
asymptotic behavior. We must also have f ¼ h ¼ a ¼ 0
at r ¼ 0 to have well-defined functions at the origin. The
equation Djc ¼ 0 gives f ¼ h everywhere. Substituting

the ansatz into the expression for the energy, we obtain

EBPS ¼ �
Z

dSjB
a
j ð�Þ

�
xa

r
w cos�þ xa

r
v sin�

�
; (59)

where the þ sign in parenthesis corresponds to the case
fð1Þ ¼ 1 and� corresponds to fð1Þ ¼ �1. We identify a
magnetic flux

� ¼ ð�Þ
Z

dSjB
a
j

xa

r
¼ ð�Þ 4�

g
(60)

and so the energy of the BPS monopole can be written as

EBPS ¼ ��ðw cos�þ v sin�Þ: (61)

Minimizing the energy as a function of �, we obtain

EBPS ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2

p
: (62)

By definition,� is negative for monopoles and positive for
antimonopoles. Thus the upper sign corresponds to mono-
poles with fð1Þ ¼ 1 and the lower sign to antimonopoles
with fð1Þ ¼ �1.

In addition to the BPS monopole, there is another,
topologically distinct monopole which occurs at finite
temperature when A4 is treated as a Higgs field. Starting
from a static monopole solution where jA4j ¼ w at spatial
infinity, we apply a special gauge transformation

Uspecial ¼ exp

�
� i�x4

L
�3
�
; (63)

where �i is the Pauli matrix. Although Uspecial is not

periodic in x4, it transforms the scalar field as

� ! exp

�
� i�x4

L
�3
�
� exp

�
þ i�x4

L
�3
�

(64)

so that � remains periodic: �ð ~x; x4 ¼ 0Þ ¼ �ð ~x; x4 ¼ LÞ.
However, A� transforms in such a way that the value of A4

at spatial infinity is shifted: w ! w� 2�=gL. If we in-
stead start from a static monopole solution such that A4 ¼
2�=gL� w at spatial infinity, then the action of Uspecial

gives a monopole solution with A4 ¼ �w at spatial infin-
ity. A final constant gauge transformation Uconst ¼
exp½i��2=2� yields a new monopole solution with A4 ¼
w at spatial infinity. The distinction between the BPS
solution, which is independent of x4, and the KK solution
is made clear by consideration of the topological charge.
The action of Uspecial followed by Uconst increases the

topological charge by 1 and changes the sign of the mono-
pole charge. Thus the KK solution is topologically distinct
from the BPS solution because it carries instanton
number 1. This is consistent with the KvBLL decomposi-
tion of instantons in the pure gauge theory with nontrivial
Polyakov loop behavior, where SUð2Þ instantons can be
decomposed into a BPS monopole and a KK monopole.
Our picture of the confined and mixed confined phases is
one where instantons and anti-instantons have ‘‘melted’’
into their constituent monopoles and antimonopoles, which
effectively form a three-dimensional gas of magnetic
monopoles. In the BPS limit, both the magnetic and scalar
interactions are long-ranged; this behavior appears prom-
inently, for example, in the construction of N-monopole
solutions in the BPS limit.
We thus find that the BPS solution has energy

EBPS ¼ 4�

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2

p
(65)

corresponding to an action

SBPS ¼ 4�

g
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2

p
¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ g2L2v2

q
: (66)

For the KK solution, we have instead

SKK ¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�� gLwÞ2 þ g2L2v2

q

¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�� 2�Þ2 þ g2L2v2

q
: (67)

Note that the action of a BPS monopole SBPS can be written
in the formML, withM independent of L. With L regarded
as the inverse temperature �, this might suggest an inter-
pretation as a finite-energy solution of the Minkowski-
space field equations. However, the explicit presence
of � has no obvious Minkowski-space interpretation.
Furthermore, SKK cannot be written in the form of a
mass times L in any case. This indicates that these mono-
pole solutions of the Euclidean field equations have no
obvious continuation to Minkowski, a point we shall re-
consider in Sec. VI.
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Although we used the BPS construction to exhibit the
existence and some properties of the monopole solutions of
our system, we must move away from the BPS limit to
ensure that magnetic interactions dominate at large dis-
tances, i.e., that the three-dimensional scalar interactions
associated with A4 and � are not long-ranged. This behav-
ior is natural in the confined and mixed confined phases,
where the characteristic scale of the Debye (electric)
screening mass associated with A4 is large, on the order
of g=L. It is well known that the BPS bound for the
monopole mass holds as an equality only when the scalar
potential is taken to zero. As mentioned above, in the case
under consideration the scalar coupling � must be very
small for perturbation theory to be valid, but the potential
for A4 is not small. However, the two combined potential
can be written together as a quartic potential in terms of the
rotated fields b and c with some quartic coupling �0 for b.
Numerical studies [27] have shown that the monopole
action is given in general for SUð2Þ as

LEBPSCðÞ; (68)

where  ¼ ffiffiffiffiffi
�0p
=g. The function CðÞ varies monotonically

from Cð0Þ ¼ 1 in the BPS limit to Cð1Þ ¼ 1:787 with the
limiting behaviors

C ¼ 1þ 

2
(69)

and

C ¼ 1:787� 2:228


þOð�2Þ (70)

for small and large , respectively. Thus corrections to the
BPS result for the monopole mass and action due to the
potential terms are less than a factor of two. We will
henceforth use the exact results for the actions in the
BPS limit, neglecting corrections from Ueff for the sake
of simplicity of notation. It is useful to note that the SUð2Þ
construction of the mixed phase monopoles extends to
SUðNÞ in the standard way, via the embedding of SUð2Þ
subgroups in SUðNÞ.

VI. TOPOLOGICAL EFFECTS IN THE
FOUR PHASES

We can now discuss the topological content of each of
the four phases we have found. It is important to under-
stand that in all four phases, Wilson loops in planes or-
thogonal to the compact direction should show area-law
behavior. This is an old observation about the deconfined
phase [28,29] which is very clearly observed in lattice
simulations of SUð2Þ and SUð3Þ at temperatures above
the deconfinement transition [30,31]. At first sight, this
seems to directly conflict with the association of deconfine-
ment with the loss of area-law behavior for Wilson loops.
However, the introduction of a compact direction, as in the
case of finite temperature, explicitly breaks space-time

symmetry. In the case of finite temperature, Wilson loops
measuring electric flux have perimeter behavior in the
deconfined phase; Wilson loops measuring magnetic flux
still obey an area law. This asymmetry in behavior can be
understood on the basis of center symmetry. The full center
symmetry of an SUðNÞ gauge theory on a d-dimensional
hypertorus Td is ZðNÞd. While the ZðNÞ symmetry may
break spontaneously in the short compact direction, the
other ZðNÞ symmetries are unbroken, and thus the associ-
ated Wilson loops obey an area law. Given the known role
of monopoles in the confined phase of R3 � S1 [8], it is in
some sense unsurprising that monopoles might play a role
in the area law for Wilson loops in all four phases.
In order to understand the effects of monopoles play in

the four phases we have identified, we must analyze their
interactions. We begin with a discussion of quantum fluc-
tuations around the monopole solutions. The contribution
to the partition function of a single BPS monopole at finite
temperature was considered by Zarembo [32], and is given
formally by

Za ¼
Z

d�a exp½�Sa� exp½�Sd�

� det0½� �D2
� þM2

g��1
a det0½� �D2

� þM2
s ��1=2

a ; (71)

where a denotes the type of monopoles, a ¼
fBPS;KK;BPS;KKg, and the determinants are written
with a prime to indicate that zero modes are omitted. The
measure factor d�a associated with the collective coordi-
nates (moduli) of the monopole solution, including the
Jacobians from the zero modes is given by [33]

Z
d�a ¼ �4

Z d3x

ð2�Þ3=2 Jx
Z 2�

0

d�

ð2�Þ1=2 J�; (72)

where x is the position and � the Uð1Þ phase of the
monopole and � is a Pauli-Villars regulator. The corre-
sponding Jacobians are

Jx ¼ S3=2a ; J� ¼ NLS1=2a : (73)

Each of the four zero modes contributes a factor of �. We
are interested in the behavior of the model in the case
where the eigenvalues of M2

s and M2
g are much smaller

than either�2 or L�2. For the functional determinants, this
limiting case is similar to the BPS limit, and the � depen-
dence of the functional determinant is given by [32]

det 0½� �D2
� þM2

s �a � det0½� �D2
��a  ðNL�Þ1=3 (74)

for the scalar determinant and similarly for the gauge field
determinant. Collecting all the terms, each monopole car-
ries a factor

Za ¼ c�7=2ðNLÞ1=2S2a exp½�Sa þOð1Þ�
Z

d3x

¼ 
a exp½�Sa�
Z

d3x (75)
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in its contribution to Z. The factor 
a is c�7=2ðNLÞ1=2S2a
where c is a numerical constant and the factor of d3x
represents the integration over the location of the mono-
pole. From the construction of the KK monopole, we see
that we have 
KKð�Þ ¼ 
BPSð�� �Þ.

A. The confined phase

The renormalization of the functional determinant aris-
ing from quantum fluctuations around the monopole solu-
tion is particularly simple in the confined phase, as first
observed by Davies et al. in the corresponding supersym-
metric model [34]. The dependence on the Pauli-Villars
regulator is removed, as usual, by coupling constant renor-
malization. We begin by reviewing the previously studied
cases of a pure gauge theory with a deformation or
with periodic adjoint fermions. The relation at one-loop
of the bare coupling and the regulator mass � to a
renormalization-group-invariant scale � is

�b0 ¼ �b0e�8�2=g2N; (76)

where b0 is the first coefficient of the � function divided
by N:

b0 ¼ 11

3
� 4

3
� nfCðRfÞ

N
� 1

6
� nbCðRbÞ

N
; (77)

where nf is the number of flavors of Dirac fermions in a

representation Rf, nb is the number of flavors of real

scalars in a representation Rb, and CðRÞ is obtained from
TrRðTaTbÞ ¼ CðRÞ�ab. For the case of a pure gauge theory
with a deformation, there are four collective coordinates
and this gives a factor of �4. The functional integral
over gauge degrees of freedom gives rise to a factor

det0½�D2��1 / ��1=3 and the action contributes a factor
expð�8�2=g2NÞ in the confined phase. Thus the contribu-
tion of a single monopole to the partition function gives a
factor

�4�ð1=3Þe�8�2=g2N ¼ �11=3e�8�2=g2N ¼ �11=3: (78)

A detailed calculation confirms what we know on

dimensional grounds: the contribution 
ae
�8�2=g2N /

L�3ð�LÞ11=3. Note that the eliminations of
renormalization-dependent quantities by renormalization-
independent quantities depends crucially on the coefficient
of 1=g2 in the action. For the case of nf Dirac fermions in

the adjoint representation, we have a factor of 4� 2nf
from the zero modes:

�ð4�2nfÞ�ð1=3Þþ2nfð1=3Þe�8�2=g2N ¼ �11=3�4nf=3e�8�2=g2N

¼ �11=3�4nf=3 (79)

for nf Dirac fermions which is again renormalization

group invariant.
For a gauge theory with nb adjoint scalars plus a defor-

mation, we have similarly that

�11=3�nb=6e�8�2=g2N ¼ �11=3�nb=6: (80)

This implies that for nb ¼ 1 the complete functional deter-

minant prefactor depends on � and L as L�3ð�LÞ7=2. As
we have seen, the action of both the BPS and the KK
monopole in the gauge plus scalar model will exactly equal
8�2=g2N only in the confined phase, so this result is
special to that phase.
The interaction of the monopoles is essentially the one

described by Polyakov in his original treatment of the
Georgi-Glashow model in three dimensions [9], slightly
generalized to include both the BPS and KK monopoles.
Let us consider, say, a BPS-type monopole and KK-type
monopole located at ~x1 and ~x2 in the noncompact direc-
tions, with static worldlines in the compact direction. The
interaction energy due to magnetic charge of such a pair is

EBPS-KK ¼ �
�
4�

g

�
2 1

4�j ~x1 � ~x2j (81)

and the associated action is approximately SBPS þ SKK þ
LEBPS-KK. As discussed above, this will be larger than the
value obtained from the Bogomolny bound, but of the same
order of magnitude. There is an elegant way to capture the
dynamics of the monopole plasma, using an Abelian scalar
field � dual to the magnetic field. Assuming that the
Abelian magnetic gauge field is three-dimensional for
small L, we may write

L
Z

d3x
1

2
B2
k ¼

Z
d3x

g2

32�2L
ð@k�Þ2; (82)

where the normalization of � is chosen to simplify the
form of the interaction terms. The three-dimensional ef-
fective action is given by

Leff ¼ g2

32�2L
ð@j�Þ2 �

X
a


ae
�Saþiqa�; (83)

where the sum is over the set fBPS;KK;BPS;KKg. Each
species of monopole has its own magnetic charge sign
qa ¼ � as well as its own action Sa. The coefficients 
a

represent the functional determinant associated with each
kind of monopole, but the combination 
a expð�SaÞ may
be usefully regarded as a monopole activity in terms of the
statistical mechanics of a gas of magnetic charges. The
generating functional

Z� ¼
Z
½d�� exp

�
�

Z
d3xLeff

�
(84)

is precisely equivalent to the generating function of the
monopole gas. This equivalence is a generalization of the
equivalence of a sine-Gordon model to a Coulomb gas, and
may be proved by expanding Z� in a power series in the

a’s, and doing the functional integral over� for each term
of the expansion.
It is well known that the magnetic monopole plasma

leads to confinement in three dimensions. For our effective
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three-dimensional theory, any Wilson loop in a hyperplane
of fixed x4, for example, a Wilson loop in the x1 � x2
plane, will show an area law. The original procedure of
Polyakov [9] may be used to calculate the string tension,
where the presence of a large planarWilson loop causes the
dual field � to have a discontinuity on the surface associ-
ated with the loop and a half-kink profile on both sides.
However, an alternative procedure is simpler where the
discontinuity in the gauge field strength induced by the
Wilson loop is moved to infinity so that the string tension is
obtained from the kink solution connecting the two vacua
of the dual field � [8].

In the confined phase, the action and functional deter-
minant factors for all four types of monopoles are the same,
so we denote them by SM and 
M. The potential term in the
mixed and confined phases then reduces to

�X
a


ae
�Saþiqa� ! 4
Me

�SM ½1� cosð�Þ� (85)

which has minima at � ¼ 0 and � ¼ 2�; we have added a
constant for convenience such that the potential is positive
everywhere and zero at the minima. A one-dimensional
soliton solution �sðzÞ connects the two vacua, and the
string tension �3d for Wilson loops in the three noncom-
pact directions is given by

�3d ¼
Z þ1

�1
dzLeffð�zðzÞÞ (86)

which can be calculated via yet another Bogomolny in-
equality to be

�3d ¼ 4g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

L
e�SM

s
: (87)

It is notable that in the confined phase�3d can be written in
a form independent of the renormalization group scale.

B. Generalization to other phases

The naive generalization of the above results for the
confined phase to the other three phases is straightforward.
Writing explicitly the � dependence, we have in general
that SBPSð�Þ is not the same as SKKð�Þ, and for arbitrary �,

BPSð�Þ � 
KKð�Þ. However, it is generally true that

BPSð�Þ ¼ 
BPSð�Þ and 
KKð�Þ ¼ 
KKð�Þ; furthermore,

the explicit construction of the KK monopole from the
BPS monopole shows that 
BPSð�Þ ¼ 
KKð�� �Þ. The
limiting cases of SBPS and SKK for � ¼ 0 and �=2 and
for v ¼ 0 and large v are shown in Fig. 4.

The construction of the sine-Gordon dual Lagrangian
proceeds in a familiar way. Essentially, we must make the
replacement


BPSð�=2Þe�SBPSð�=2Þ ! 1

2
ð
BPSð�Þe�SBPSð�Þ

þ 
KKð�Þe�SKKð�ÞÞ: (88)

Repeating the calculation of the string tension leads to

�3d ¼ 4g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2L
ð
BPSð�Þe�SBPSð�Þ þ 
KKð�Þe�SKKð�ÞÞ

s
: (89)

However, there are two issues raised by this generalization.
The first is the validity of the dilute monopole gas approxi-
mation. The assumption that the monopoles can be treated
as well-separated objects will hold when 
a expð�SaÞ � 1
for all monopole species. We will examine this point in
detail below for all three remaining phases.
The second issue is technical: the renormalization

group-dependence of the final result for �3d. As we have
seen, in the confined phase �3d can be written in terms of
L and �, with no dependence on the regulator �. When
� � �=2, the explicit cancellation of the � dependence
between 
a and expð�SaÞ does not occur: the � depen-
dence of 
að�Þ does not depend on �, but the coefficient of
1=g2ð�Þ in Sa is �-dependent. This issue is not new, and
not specific to Higgs models; it was discussed in the super-
symmetric case in [34] in the context of the effective
potential for �. However, the effective Lagrangian Leff

represents only the long-distance behavior of the model;
in fact, the cosine interaction is not even renormalizable in
three dimensions. The underlying gauge theory is of course
renormalizable, and the ultraviolet renormalization of in-
stanton effects is well understood. In the case of pure gauge
theory, the renormalizability of monopole gas effects has
been confirmed by detailed analysis of the relevant func-
tional determinants [35,36]. On the other hand, the effec-
tive Lagrangian represents only the long-ranged interaction
mediated by �. This interaction falls off very slowly with
distance, because it is induced by nonperturbative effects.
Interactions mediated by particles with masses obtained

FIG. 4 (color online). The phase diagram with the regions
where various limiting cases for SBPS and SKK hold; the shaded
region is a crossover region where 2> TrFP > 0. Crossover
effects are negligible for gLv � 1. The star marks the point
on the m2 ¼ 0 line where the deformation term is identically
zero.
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from perturbation theory must be integrated out to obtain
Leff [8]. This induces a dependence of the parameters of
Leff on some intermediate momentum scale on the order of
the lightest perturbative mass. In the case at hand, this will
be either the mass associated with A3

4 or �3, which are

obtained by minimizing the effective potential with respect
to � and v. Thus Leff is only valid up to the lightest
perturbative scale, and its finite parameters depend implic-
itly on that scale, which in turn depend on � and v. Thus
the monopole activities are not simple functional determi-
nants, but include the effects of integrating the instanton
gas down to a scale where only the � interaction remains.
For notational simplicity, we will continue to denote the
monopole activities by 
að�Þ expð�Sað�ÞÞ. We now turn
to consideration of the deconfined, mixed confined, and
Higgs phase in turn.

In the deconfined phase, we have v ¼ 0, but Zð2ÞC is
broken so � � �=2 and TrFP � 0. As we cross from the
confined to the deconfined phase, the second-order char-
acter of the deconfinement transition means that � will
move continuously from its Zð2ÞC -symmetric value of
�=2 towards 0 as a is decreased below 0. Throughout
this phase, v ¼ 0 and thus we have for the BPS action

SBPS ¼ 4�

g2
� 2� (90)

and for the KK solution, we have instead

SKK ¼ 4�

g2
ð2�� 2�Þ: (91)

There is a natural region in the deconfined phase where
the monopole dynamics is essentially identical to that in
the confined phase. We begin by expanding the monopole
actions around � ¼ �=2. The BPS action in this limit
becomes

SBPS ¼ 8�

g2
� ¼ 4�2

g2
þ 8�

g2
�; (92)

where we have made the substitution � ¼ �=2þ �. The
KK action becomes in the same limit

SKK ¼ 4�

g2
ð2�� 2�Þ ¼ 4�2

g2
� 8�

g2
�: (93)

In order to obtain monopole physics similar to that of the
confined phase we must require

SBPS ¼ SKK ¼ 4�2

g2
þOð1Þ (94)

which in turn implies that � is no larger than Oðg2Þ. From
the effective action we constructed in Sec. III, we have in
the deconfined phase

Ueff ¼ 2

�2L4
�4 þ a

L4
�2 (95)

we see that � will be nonzero only if a is negative. In that
case, we must have

jaj / �2 & g4: (96)

Thus the approximation that, SBPS ¼ SKK ¼ 4�2

g2
þOð1Þ, is

valid only in a very narrow region in the deconfined phase
where � ¼ �=2�Oðg2Þ and jaj & g4. We also expect that
the functional determinants of the BPS and KK monopoles
are approximately equal in this region. Thus, in this region
all of the monopole physics which we worked out for the
confined phase is valid: the monopole plasma is equivalent
to a sine-Gordon field theory, and the string tension is
obtained from the sine-Gordon kink solution.
In the region where a <�1, � is zero, and we know that

the interpretation of a finite-temperature instanton in terms
of monopole constituents is probably lost. In pure gauge
theories, the monopole constituent picture of the instanton
breaks down at the classical level when � ! 0. As shown
in [10,11], in the pure SUð2Þ gauge theory the instanton
action density is well localized into two separate lumps
when � ¼ �=2, but only one lump persists when � ! 0.
This is reflected in the behavior of the formula for SBPS as �
approaches zero. Nevertheless, the total action of a BPS-
KK pair stays exactly at Sinstanton ¼ SBPS þ SKK ¼ 8�2=g2

for all values of �. This suggests that the bulk of the
confined phase, where a <�1, might be best interpreted
in terms of an instanton gas rather than as a gas of mono-
poles. This region would then naturally extend to the right
of the line segment a ¼ �1 by a factor ofOðg2Þ. However,
it should be noted that the work of Rossi [37] showed that
for pure gauge theories with � ¼ 0, an infinite line of four-
dimensional instantons with spacing L and scale parameter
2�=L is exactly equivalent to a monopole solution of the
field equations. This solution was later realized to be
equivalent to the � ¼ 0 limit of the KK monopole. We
will return to the relation of the Euclidean and Minkowski
solutions below when we discuss a certain duality present
in the system. The region where 0< �<�=2, correspond-
ing to�1< a< 0, appears to be a crossover region where
the interpretation of the topological content is not yet clear,
as the system moves smoothly from a dilute monopole gas
near a ¼ 0 to a phase where SBPS ¼ 0 for a � �1.
In the mixed phase, � ¼ �=2 and v is nonzero. We have

SBPS ¼ SKK ¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ g2L2v2

q
(97)

as in the confined phase. The functional determinants

BPSð�=2Þ and 
KKð�=2Þ are equal as well. Because
v � 0, the handling of ultraviolet divergences is not as
simple as in the confined phase, but can be carried out in
principle [38,39]. The analysis of the string tension
performed for the confined phase carries over, and �3d is
given by
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�3d ¼ 4g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

L
e�SM

s
; (98)

where as before SM and 
M are the common monopoles in
this phase. There is a natural region next to the confined
phase where gLv < �. In that region, we again have SM ¼
4�2=g2 þOð1Þ and the renormalization group arguments
used in the confined phase work here as well. Although not
natural in the case gðLÞ � 1, there is a region far from the
confined region where gLv � 1, where SM � 4�Lv=g.
This is precisely the action of a Minkowski-space mono-
pole of mass 4�v=g with a worldline of length L; we
return to this point in the discussion of duality below.

In the Higgs phase, we have � � �=2 and v � 0 so both
Zð2Þ symmetries are broken. The action of a BPS mono-
pole solution is

SBPS ¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ g2L2v2

q
(99)

but for the KK solution, we have instead

SKK ¼ 4�

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�� 2�Þ2 þ g2L2v2

q
: (100)

There are several regions of interest with the Higgs phase.
Near the critical line where � is close to �=2, the behavior
is similar to that of the mixed confined phase; the argument
is exactly the same as for the deconfined phase when
� � �=2 in relation to the confined phase. We also expect
behavior similar to that of the mixed confined phase when
gLv � 1. The region gLv � 1 may be treated in a man-
ner very similar to Polyakov’s original treatment of the
three-dimensional Georgi-Glashow model, except that
there is an additional factor of 2 in the monopole fugacity,
and the three-dimensional instanton action S3d is replaced
by 4�Lv=g. In both these regions, we have the approxi-
mate equality SBPS � SKK, and we expect the dilute mono-
pole gas picture is valid. There is also a region where
gLv � Oðg2Þ and � ¼ 0 (for a <�1) which has the be-
havior of the � ¼ 0 region of the deconfined phase.

In Fig. 5, we show a final version of the phase diagram.
The figure shows the large region where the dilute
monopole gas description should be valid, and either
SBPS ¼ SKK or SBPS ’ SKK. Note that this region includes
all of the confined and mixed confined regions, a large part
of the Higgs phase, and a small part of the deconfined
phase. The region where the dilute gas approximation is
valid is somewhat larger. However, we have also indicated
the region where the dilute gas approximation breaks
down, because SBPS � 0 and SKK � 8�2=g2. For obvious
reasons, we have labeled this region as an instanton region,
although the correct treatment of topological excitations in
this region is no clearer in the Higgs system than in the pure
gauge case.

C. Duality

As we have seen, the regions where various approxima-
tions hold are not necessarily coincident with the phase
boundaries. Essentially, the mixed confined phase mediates
between the confined and Higgs phases, producing a broad
band where the confining behavior of Wilson loops can be
ascribed to a dilute monopole gas. Across each phase
boundary (except possibly for the Higgs-deconfined
boundary), the semiclassical expression for the string ten-
sion measured by Wilson loops varies smoothly. This
would not be expected if the phase transitions were first-
order, and singular corrections to the semiclassical picture
are possible for second-order transitions due to coupling
between the order parameters and the dual field �. This
sort of coupling of different order parameters is familiar in
the PNJL model [25]. More important than the smooth
behavior of the string tension, however, is the continuity
of the monopole confinement mechanism across the con-
fined, mixed, and Higgs phases.
We can understand the role of topological excitations

from a different point of view by invoking duality in a form
similar to that used by Poppitz and Unsal in their analysis
of the Seiberg-Witten model [40]; their work also serves
as an introduction to duality in this context. The general
issue in their work and here is the relation between
topologically-stable solutions of the classical field equa-
tions in Euclidean space and Minkowski space. These are,
respectively, solutions with finite action (instantons) and
finite energy (monopoles). Higgs models with adjoint sca-
lars have both, and two different approaches for computing
the partition function on R3 � S1 suggest themselves. We
have extensively discussed the use of instantons, but an-
other approach would be to consider the statistical me-
chanics of Minkowski-space solutions with finite energy,
which are monopoles or more generally Julia-Zee dyons
[41]. Such dyons will make contributions to the overall
partition function proportional to expð�LMÞP, whereM is

FIG. 5 (color online). The phase diagram showing the region
where the dilute monopole gas approximation is valid and
SBPS � SKK. The dilute gas region itself is somewhat larger
than the shaded region. The region labeled instanton is where
the dilute monopole picture does not hold.
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the monopole mass and P is a Polyakov loop factor. As we
will see below, there is evidence that summing over finite-
action instanton contributions to the partition function is
equivalent to summing over finite-energy dyon contribu-
tions, extending the ideas in [40] to the case of nonsuper-
symmetric Higgs models on R3 � S1.

Our approach is somewhat different from that of Poppitz
and Unsal, in that we relate a finite rather than infinite
sum over Euclidean monopoles to an infinite sum of
Minkowski-space dyons. We begin with an easy variant
of the Poisson summation formula associated with
ZðNÞC. Let fð�Þ be a function defined on the interval
��< �<�. We define the Fourier series in the usual
way:

fð�Þ ¼ X
n2Z

~fðnÞein� (101)

~fðnÞ ¼
Z �

��

d�

2�
fð�Þe�in�: (102)

Then we have that

XN�1

k¼0

f

�
�� 2�k

N

�
¼ X

n2Z

~fðnÞ XN�1

k¼0

einð��ð2�k=NÞÞ

¼ X
n2Z

~fðnÞein�N�ðn 
 0ðNÞÞ

¼ X
n2Z

N ~fðnNÞeinN� (103)

so that for N ¼ 2 only the even coefficients ~fð2nÞ contrib-
ute. Let us apply this identity to the combination


BPSð�Þe�SBPSð�Þ þ 
KKð�Þe�SKKð�Þ

¼ 
BPSð�Þe�SBPSð�Þ þ 
BPSð�� �Þe�SBPSð���Þ (104)

which occurs in the dual Lagrangian and in the formula for
�3d so we have

fð�Þ ¼ 
BPSð�Þe�SBPSð�Þ: (105)

For small g2, SBPSð�Þ is strongly peaked at � ¼ 0, so we
can make the approximation

~fðnÞ ’
Z 1

0

d�

�

BPSð0Þe�SBPSð�Þein�: (106)

Although this integral, with the limits taken to infinity, can
be evaluated in a saddle-point approximation, it can also be
evaluated exactly [40], giving

~fð2nÞ ’ 
BPSð0Þ gLv2�
�

4�
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4�
g2
Þ2 þ n2

q

� K1

�
gLv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4�

g2

�
2 þ n2

s �
: (107)

The Higgs phase represents the most general domain of
applicability of the duality transformation, because in the
Higgs phase v � 0 and 0 � � < �=2. It is natural to
introduce MðnÞ the mass of a Minkowski-space Julia-Zee
dyon [41] of magnetic charge 4�=g and electric charge ng

MðnÞ ¼ gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4�

g2

�
2 þ n2

s
(108)

so that we can write

~fð2nÞ ’ 
BPSð0ÞLMð0Þ
2�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�
g2
Þ2 þ n2

q K1½LMðnÞ�: (109)

The asymptotic expansion of the Bessel function for large
argument gives a factor of exp½�LMðnÞ�:

~fð2nÞ ’ 
BPSð0ÞLMð0Þ
2�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�
g2
Þ2 þ n2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2LMðnÞ
r

exp½�LMðnÞ�: (110)

Thus each term in the sum carries a factor of
exp½�LMðnÞ þ i2n��. This suggests an obvious interpre-
tation of the finite sum over BPS and KK monopoles,
which are constituents of instantons, as being equivalent
to a gas of Julia-Zee dyons, each carrying a Polyakov loop
factor appropriate to its charge. This interpretation is valid
throughout most of the Higgs and mixed confined phases,
except in the region near m2 ¼ 0 where the mass of the
lightest dyonMð0Þ ¼ 4�v=g, which is a Minkowski-space
monopole, becomes light. Within this framework, the only
significant difference between the mixed confined and
Higgs phases is that in the mixed confined phase, � is
restricted to �=2.
When we cross the phase boundary m2 ¼ 0, we move

into a region where v ¼ 0. As long as we stay away from
the region where � is zero or Oðg2Þ, the approximate form
of the Fourier coefficients is valid, and we have

~fð2nÞ ’ 2g2

16�2 þ g4n2
(111)

which tells us that

exp

�
� 8�

g2
�

�
þ exp

�
� 8�

g2
ð�� �Þ

�

� X
n2Z

4g2

16�2 þ g4n2
ei2n�: (112)

Although the right-hand side is a good approximation to
the left-hand side as � varies, it is striking how different the

two forms are. However, an exact evaluation of ~fð2nÞ in the
limit v ¼ 0 gives

~fð2nÞ ¼ 1

�

Z �

0
d� exp

�
�
�
8�

g2
þ i2n

�
�

�

¼ 1
8�
g2
þ i2n

ð1� e�8�2=g2Þ (113)
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showing that the nonperturbative behavior has not totally
disappeared.

VII. CONCLUSIONS

We have shown that the phase structure of the de-
formed SUð2Þ adjoint Higgs model on R3 � S1 is rich,
with four different phases distinguished by the behavior
of the three gauge-invariant order parameters associated
with the global symmetries of the model. We have used a
particular deformation which makes the phase diagram
simple, but the appearance of four distinct phases is
general. Despite the Zð2ÞC � Zð2ÞH global symmetry,
the phase transitions separating the different phases may
be of second order or of first order. In addition to the
known confined, deconfined, and Higgs phases, we have
found a fourth phase, the mixed confined phase, which
takes the place of what would be a confining phase with a
Higgs mechanism. In the mixed confined phase, the be-
havior of A4 and � become entwined in such a way that
the global symmetry group Zð2ÞC � Zð2ÞH breaks sponta-
neously to a Zð2Þ symmetry which acts nontrivially on
both A4 and �. This behavior, found using perturbation
theory, extends to the topological properties of the model,
where the BPS and KK monopole solutions are con-
structed using a linear combination of A4 and �. The
area-law behavior of Wilson loops orthogonal to the
compact S1 direction can be attributed to a dilute mag-
netic monopole gas in at least part of all four phases.
There are several unresolved issues. The correct treatment

of topology in the deconfined phase when � ¼ 0,
corresponding to the high-temperature limit T � � in
the case of finite temperature, remains elusive. A detailed
calculation of the monopole activities in the effective
Lagrangian which determines �3d would be useful in
comparing with lattice results. The correct interpretation
of the duality between Euclidean-space monopoles, which
are constituents of monopoles, and Minkowski-space
dyons is compelling, but incomplete. There is also the
question of generalizing our SUð2Þ results to SUðNÞ
adjoint Higgs models on R3 � S1. For SUðNÞ gauge
theories on R3 � S1, the natural set of order parameters
is TrFP

k, and the ZðNÞ center symmetry can break to a
subgroup ZðpÞ [3,6]. With the addition of an adjoint
scalar, there is the additional set of order parameters of
the form TrFP

k� available. This suggests a very rich
phase structure is possible. Finally, we note that many
of the predictions we have made may be difficult to test,
because lattice simulations of the three-dimensional
Higgs model are consistent with Polyakov’s semiclassical
results only over ad narrow region [42]. However, the
overall phase structure we have predicted in our four-
dimensional model should be relatively easy to test with
lattice simulations.
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