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Holographic description of three-dimensional Godel black hole
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Three-dimensional Godel black hole is a solution to Einstein-Maxwell-Chern-Simons theory with a

negative cosmological constant. We have studied the hidden conformal symmetry for massive scalar field
without any additional condition in the background of three-dimensional nonextremal and extremal Godel
black holes. This conformal symmetry is uncovered by the observation that the radial wave equations in
both cases can all be rewritten in the form of SL(2, R) Casimir operators through introducing two sets of
conformal coordinates to write the SL(2, R) generators. At last, we give the holographic dual descriptions

of Bekenstein-Hawking entropies of nonextremal and extremal black holes from Cardy formula of

conformal field theory.
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I. INTRODUCTION

In recent years, the proposal of Kerr/conformal field
theories (CFT) dual reveals the intriguing connection be-
tween the rotating black holes and two-dimensional con-
formal field theory. It was initiated by Guica, Hartman,
Song, and Strominger [1], who analyzed the asymptotic
symmetry property of near horizon geometry of an ex-
tremal Kerr black hole [2] by using the approach of
Brown and Henneaux [3]. Imposing the appropriate bound-
ary condition at spatial infinity of near horizon extremal
Kerr geometry, the conserved charges associated with the
asymptotic symmetry group were found to constitute a
copy of Virasoro algebra with central charge proportional
to angular momentum of a black hole. So, it was conjec-
tured that an extremal Kerr black hole is holographically
dual to two-dimensional chiral conformal field theory. For
more works on generalizations and other realizations of the
proposal of extremal Kerr/CFT dual, one can refer to [4,5].

Recently, Castro, Maloney, and Strominger [6] found a
hidden SL; (2, R) X SLz(2, R) conformal symmetry for a
nonextremal Kerr black hole through studying a massless
scalar field propagating in the near-region, which gives the
evidence that a nonextremal Kerr black hole may also be
described by two-dimensional conformal field theory. The
essential observation is that the radial wave equation for
the scalar field in a near-region can be reproduced by the
SL;(2,R) X SLg(2, R) Casimir operator. However, this
hidden SL;(2, R) X SLx(2, R) symmetry is only locally
defined and is spontaneously broken to U (1) X Ug(1)
symmetry due to the periodic identification of angular
coordinates, from which one can read off the left and the
right temperatures of conjectured dual conformal field
theory. Then, the dual assumption is supported by exactly
matching the macroscopic Bekenstein-Hawking entropy
and the microscopic entropy computed by the Cardy for-
mula. More recently, Chen, Long, and Zhang [7] have
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studied the hidden conformal symmetry of an extremal
black hole. By introducing a new set of conformal coor-
dinates to write the SL(2, R) generators, they are able to
reproduce the Laplacian of scalar field in many extremal
black holes from the SL(2, R) quadratic Casimir. Some
related works on the hidden conformal symmetry are listed
in [8,9]. One can also refer to [10] for a comprehensive
review on the Kerr/CFT dual.

In fact, it was noticed earlier in [11] that the wave
equation for a massless scalar field probing a general
black hole background can be sufficiently simplified
when certain terms are removed; meanwhile an
SL(2,R)> symmetry emerges. Recently, Cvetic and
Larsen [12] have found the geometrical counterpart to
the omission of terms violating conformal symmetry in
the wave equation and constructed the subtracted ge-
ometry corresponding to the wave equation exhibiting
conformal symmetry. However, the geometrical interpre-
tation of this symmetry remains obscure. In other words,
the precise meaning of hidden conformal symmetry is
not fully understood. So it may be worth proving
whether the hidden conformal symmetry is captured by
the more general black hole spacetimes.

In this paper, we will investigate the hidden conformal
symmetry for three-dimensional nonextremal and extremal
Godel black holes along the lines of [6,7], respectively.
Three-dimensional Godel spacetime [13] is an exact solu-
tion to the Einstein-Maxwell theory with a negative cos-
mological constant and a Chern-Simons term. This theory
can be viewed as a lower dimensional toy model for the
bosonic part of five-dimensional supergravity theory.
Three-dimensional Godel black holes display the same
peculiar properties as their higher dimensional counter-
parts [13]. The rotating black hole solutions on the Godel
background in the context of five-dimensional supergravity
theory have attracted a lot of attention [ 14]. More recently,
the quasinormal modes and stability of five-dimensional
rotating Godel black holes are investigated by Konoplya
et al. [15].
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This paper is arranged as follows. In Sec. II, we give a
brief review of the three-dimensional Godel black hole and
its asymptotic symmetry algebra previously investigated
by Compere and Detournay [16]. In Sec. III, we consider
the hidden conformal symmetry of a massive scalar field in
the nonextremal black hole case. First, it is shown that the
radial wave equation can be explicitly solved by the hyper-
geometric function. Second, after introducing a set of
conformal coordinates, the radial wave equation can be
rewritten in the form of SL(2, R) Casimir. At last, the black
hole entropy can be reproduced by combining the central
charge and the left and right temperature of dual conformal
field theory. In Sec. IV, the hidden conformal symmetry of
the extremal case is considered. The conclusion and dis-
cussion are given in Sec. V.

II. THREE-DIMENSIONAL GODEL BLACK HOLE

In this section, we give a brief review of geometric and
thermodynamic properties of the three-dimensional Godel
black hole. The action of Einstein-Maxwell-Chern-Simons
theory in 2 + 1 dimensions with a negative cosmological
constant is given by

( 2
2

" 16w G]ds[

-3 W ] (1)

1

The three-dimensional Godel black hole [13] is an exact
solution to the equations of motion derived from the action.
The metric and gauge potential are given by

dr?

= (dt —2arde)* — A(r)de* + — AG) 2)
A, = 4GQ \/712 = 3)

with the metric function

4GJ
— 8Gvr + 2 4)

A(r) = (1 + a&?P) 21
The two parameters » and J are two integral constants in
the metric function, which may be related to mass and
angular momentum of the black hole. Note that because of
the presence of a nontrivial gauge field, the asymptotic
geometry of the three-dimensional Godel black hole does
not behave as neither de Sitter nor anti-de Sitter.
The black hole has two horizons, i.e. the inner and the
outer event horizons r., which are determined by the
equation

4GJ

2 2
(1 +a?P) - = 8Gwr + == =0, 5)

The solutions give the locations of event horizons
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2 2GJ (1 + a?1?
re = 722[2G1/ * \/4G21/2 - (720[)]
1+ a“l o [
(6)

The outer and the inner event horizons are the coordinate
singularities of the metric, which can be eliminated by a
proper coordinates transformation.

Now, let us discuss the thermodynamics of the black
hole. The Hawking temperature Ty, the angular momen-
tum of the event horizon )y, and the Bekenstein-Hawking
entropy Sgy can be computed by using the standard pro-
cedures, which are given as

1+ a2l —r_ 1
pa U@ =r) 1
4l ry 2ary 7
Tar,
S = .
BH G

The asymptotic symmetry algebra of this spacetime has
been studied in [16], which turns out to be the semidirect
sum of the diffeomorphisms on the circle with two loop
algebras. The covariant Poisson bracket of the conserved
charges associated with the generators of the asymptotic
symmetry group is shown to be centrally extended to the
semidirect sum of a Virasoro algebra and two u(1) affine
algebras. The central charge of the Virasoro algebra is
given by

2
L ®)

1+ a??)G

However, the black hole entropy has not been com-
pletely explained from the conformal field theory side
[16]. In the following two sections, we will try to give a
conformal field theory description of the three-dimensional
Godel black hole and reproduce the Bekenstein-Hawking
entropies of the extremal and nonextremal Godel black
holes by combining the central charge (8) and the left
and right temperatures obtained via studying the hidden
conformal symmetry of the probed massive scalar field.

II1. HIDDEN CONFORMAL SYMMETRY: THE
NONEXTREMAL CASE

In this section, we will study the hidden conformal
symmetry of the massive scalar field in the background
of the three-dimensional nonextremal Godel black hole.
We consider the equation of motion for scalar field pertur-
bation, which is given by the Klein-Gordon equation

1
—3,(/~88""9,®) — u*® = 0.
N n(V—88"79,®) — u ©)

By expanding the scalar field ®(z, r, ¢) = e “ITim¢R(r),
one can get the radial wave equation after some algebra
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d d
AE(AER(r)> + (0X(da2r? — A)

—4omar + m* — u?A)R(r) = 0, (10)

where, for latter convenience, we can rewrite the function
A(r) = Ar — ry)(r — r_) with A = 2(1 + a21%)/ 2.
First, we try to show that the radial equation can be
analytically solved by the hypergeometric function. For
this aim, it is convenient to introduce the variable z as

r_r+

1D

= .
r—r_

Then, the radial wave equation can be rewritten in the form
of the hypergeometric equation

d’R dR C
2(1-2) (Z)+(1 2) d(Z) ( +B+1—)R(z) 0,
(12)
where the parameters A, B, and C are given by
A=(2ar+w—m)2, B=_(2ar,w—m)2,
X(ry =P X(ry =)
(13)
4o’w?®  w*+ u?
C — —
A2 A

Then, the solution of radial wave equation with the
ingoing boundary condition is given explicitly by the hy-
pergeometric function

R(Z) = Za‘\.(] - Z)BSF(aSJ bs’ Cs, Z)’ (]4)
where
ay = —iVA  B—i-t-c (15)
s ’ 2 4 ’
and
c, =2a, + 1, a, = a, + B, +iv—B8,
(16)

b, = a, + B, — iV—B.

So, we have shown that the equation of motion for the
massive scalar field perturbation in the background of the
three-dimensional Godel black hole can be exactly solved
in terms of hypergeometric function after the partial wave
decomposition. As hypergeometric functions transform in
representations of SL(2, R), this implies the existence of a
hidden conformal symmetry. Now we will show that the
radial equation can also be obtained by using of the
SL(2, R) Casimir operator.

Generally, in order to investigate the hidden conformal
symmetry of a wave equation, the near-region limit should
be considered. In most of the previous papers, it is gen-
erally believed that the near region is where the conformal
structure appears. Two particular cases were reported in
Refs. [17,18], where the low frequency limit for the warped
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AdS; black hole and the small angular limit for the
self-dual warped AdS; black hole were found to probe
the hidden conformal symmetry. However, it is pointed
out in [7] that the low frequency limit and the small angular
limit are redundant. Moreover, for the warped AdS; black
holes, the hidden conformal symmetry exists in the whole
spacetime, which gives support to the warped AdS/CFT
correspondence. For the three-dimensional Godel black
hole, we find that the hidden conformal symmetry can be
probed by the scalar field without any additional condition.
The radial equation (10) can be transformed as

Qwar, —m)?

)\2(’"_”+)(”+_r )
Quwar_ —m)? 4ol w?

_)tz(r—r,)(m —r)]R(r):<MTZ+wTZ A?

o =ra=r)3,)+

)R(:»)
(17

We will observe that this radial wave equation can be
rewritten in the form of SL(2, R) Casimir. It should be
noted that the right-hand side is closely related to the
conformal weights of scalar field.

We find the appropriate conformal coordinates are
given by

W+ — r— r+e27rTRgoy
\Ir —r_
w- = r— r+e27rTL<p+2nLt (18)
\Ir —r_
y = I+ m(TL+Tr)p+npt
r—r_
with the parameters
A A
TR:_(F+_F—): TL:_(r++r—):
4 4
(19)
A
np=——.
L 4o
Then we can locally define the vector fields
H =io,, Hy=iw"a, +1ya,),
+ + 22 Y%y (20)
H_y =iw*, + whya, —y?9.),
and
H,=i_, Hy=iw o_ +1y9,),
] e
H_y=i(w?0_ +wyd, —y*a,).
These vector fields obey the SL(2, R) Lie algebra
[HO’Hil]: —T—l-Hil, [Hfl’Hl]: _ZiHo, (22)

and similarly for (Hy, H.,). The SL(2,R) quadratic
Casimir operator is
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(23)

In terms of the (7, r, ¢) coordinates, the SL(2, R) generators are given by

L (=) tG=r),

H, = ieiQ”TWI:\/(r —ry)(r—r_)o, + 2

I 1
H():l[ J

a0 TL ]
d, )
27TTR ¢

A Tk

e Jr=rdr=r) °

L (r=r)t=r),

2a Ty, (r(ry +r_) —2ryr.) 5 :I
ATr (r++r Wor—r))r—r2) g

n 2a Ty, (r(re +r_) —2ryr)

H_ | = iez”TR“’I:—\/(r —r)(r—r_)a, + T,

Vir=r)(r—ro)

Y TR (r++r )Jr—ro)(r—ro) t],

(24)
and
_ 1 (rp —r2) 2a r
H, = ie_(zﬁTL‘P_(’\/za)’)I: (r=r)(r—r_)o, — s - 9 ]
1 V= drlp Jor—rr—r) © A Nr—rr—r)
FIO = —irOB,, (25)
- 1 (ry —r2) 2a r
H_ | = iezWTL“’*()‘/za)’l:— (r—r)r—r2)a, — L - = d :|,
| i e Jr=r=r0) © A==
and the SL(2, R) quadratic Casimir operator becomes
2ar, 0, +d,)* 2ar_9;, + d,)*
T - 26)
(=) =) V=) — )
So, for the scalar field without any additional condition, the wave equation can be rewritten as
_ 2 2 40202
5{2q>=5{2q>=(i+‘i—7)¢, 27
A A A? @7)
which gives the conformal weights of scalar field as
1 w? 0 4d’0* 1
hy =hg=4-+—+——————. 28
LR \/4 A 22 (28)
|
Until now, we have uncovered the hidden SL, (2, R) X symmetry of spacetime geometry and the hidden

SLk(2, R) symmetry of the three-dimensional nonextremal
Godel black hole. Moreover, this symmetry exists in the
whole Godel spacetime, rather than just the near-region in
the Kerr black hole case. So, it is reasonable to conjecture
that the three-dimensional nonextremal Godel black hole is
holographically dual to a conformal field theory.

It is worth noting that hidden conformal symmetry is the
symmetry of solution space for scalar field wave equation
but not the one of spacetime geometry. However, by study-
ing the scalar field wave equation, we can learn about the
underlying conformal field theory conjectured to provide a
holographic description of the three-dimensional Godel
black hole.

Recently, for the five-dimensional asymptotically flat
black hole, the subtracted geometry where the conformal
symmetry emerges has been found in [12]. As we have
shown for the three-dimensional Gddel black hole, the
subtracted geometry is just the spacetime geometry itself,
which has an asymptotic SL(2, R) symmetry. This provides
clues to a connection between the asymptotic SL(2, R)

conformal structure of the scalar field. However, the pre-
cise meaning of subtracted geometry is not fully under-
stood. One can refer to [19] for recent progresses in this
aspect.

As a check of the conjecture, we want to calculate the
microscopic entropy of the dual conformal field theory, and
compare it with the Bekenstein-Hawking entropy of the
nonextremal Godel black hole. First, it should be noted that
this hidden conformal symmetry is only locally defined
and is spontaneously broken to U, (1) X Ug(1) symmetry
because of the periodic identification in the ¢ coordinate.
The broken conformal symmetry leads to the left tempera-
ture 7, and the right temperature 7’3 of the dual conformal
field. Second, we can observe that this conformal symme-
try is a Virasoro algebra without central charge. We con-
jecture that the central charge (8) of Virasoro algebra in the
asymptotic symmetry will keep valid when studying the
hidden conformal symmetry. So, the microscopic entropy
of the dual conformal field theory can be computed by the
Cardy formula
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2 Tar, IV. HIDDEN CONFORMAL SYMMETRY: THE
Scrr = ?C(TL + Tg) = = Sgu» (29) EXTREMAL CASE

In this section, we will study the hidden conformal
symmetry of the extremal Godel black hole. For the ex-
which shows the precise matching of the macroscopic  tremal case, the radial wave equation (10) of the massive
Bekenstein-Hawking entropy and the microscopic confor- scalar field without any additional condition can be rewrit-
mal field theory entropy. ten in the form of
|

Qar,w —m)? 4dawRar,w — m) uw?  w? 4d’w
o

” 47
A2(V - ’”+)2 )lz(r —ry)

2

I:B,(r —ry)?9, + )R(r). (30)

A A A2

When studying the hidden conformal symmetry of the extremal black hole case, the conformal coordinates trans-
formation (18) does not make sense because the coordinate y is simply zero and not well defined. Following [7], we
introduce the conformal coordinates

1 Vi 1 - 2 Y1 -
+ _— - _ — [ 20T o—(A2a)t _ = — 7T o—(A/da)t 31
va(me ) (e BN s B
with
A
L=, Py (32)
™ Y1

Then, the previously defined SL(2, R) generators in Egs. (20) and (21) are given by

da A
Hl = l—<27TTL6, +—8¢ ,

2B, 2a
2 A
Hy = i[—(r— r)a, +ﬂ(2wTLat +—a¢,>], (33)
A 2a
. 2ay, a ( Vi A
H_ =il - —r)a, + 9, + 207 + : )(2 Ta+—a)],
1 l[ B]QD(" r+) r )\(I”— r+) t )lﬁ] B]qo (r_r+)2 TLy t 2a @
and
_ 2a 2a A
— N, 2 A2 _ — _
Hl = Dje 7T e+(A/ a)t[(r r+)ar T(), m(ZWTL('), + 594,)],
I:IO — l[_ 3672777“04»()\/200[(’, _ r+)a _ 276'((1 _ £e72777’,‘gp+()\/2a)t)a[ + 4a 6727T1‘¢+(/\/2a)t(27TTLat + i 9 )]’
Y1 ' A Y1 ABi 2a ¢
T s 4 a ) 4 4
H—l _ — — [ 27TLe (A 2a)t _ — e 27T o+ (A/2a)t (r _ r+)a _ 6277'TL<P A 2a)t _ & + ¢ 27T o+ (A/2a)t )
2 2 " AB 2 '
Yi 1 Y "N
_ ﬁ 27T o —(A/2a)t + i —27TTL<p+()\/2a)t)(2 T 0. + i 9 )] 34
/\2 (6 ')/% e ey 2a ) . ( )

The Casimir operator is given by

Qaryd, + 8¢)2 B daar,d, + 9,)9,
)12(” - r+)2 )\2(” —ry) .

=0, =), - )

Actually, there exists one degree of freedom to define the conformal coordinates (31) without affecting the form of the
Casimir operator, i.e. such degree of freedom does not change the underlying physics.

So, once again, the radial wave equation for the scalar field without any additional condition in the background of
extremal Godel black hole can be rewritten as

— 2 2 2.2
H2D = H’d = (“T+“’T—4“A2‘" )CI). (36)
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This result indicates that there exists the hidden confor-
mal symmetry for the three-dimensional extremal Godel
black hole. Similar to the hidden conformal symmetry of
nonextremal black holes, the vector fields are not globally
defined. The periodic identification along the ¢ coordinate
breaks this symmetry. If we conjecture that the extremal
Godel black hole is dual to the two-dimensional conformal
field theory, the breaking of the hidden conformal symme-
try leads to the nonvanishing left temperature 7; and the
vanishing right temperature T of the dual conformal field
theory. In other words, for the case of the extremal black
hole, only the left sector in the dual conformal field theory
is excited. This result agrees with the one of the nonex-
tremal case in the extremal limit [see Eq. (19) in Sec. III].

Now, we are in a position to check the dual conjecture by
matching the macroscopic entropy from the gravity side
and the microscopic entropy from the conformal theory
side. For the extremal case, the microscopic entropy comes
entirely from the left sector and takes the form

2

T Tar,
Seer = — T, =

CFT 3 ¢ G

= Spu, (37

which gives the microscopic explanation of Bekenstein-
Hawking entropy.

V. CONCLUSION AND DISCUSSION

In this paper, we have studied the hidden conformal
symmetry of the massive scalar field for the three-
dimensional nonextremal and extremal black holes. The
conformal symmetries are uncovered by the observations
that the radial wave equations for the nonextremal case and
the extremal case can be rewritten in the form of SL(2, R)
Casimir through introducing two sets of conformal coor-
dinates transformations to write the SL(2, R) generators,
respectively. This conformal symmetry implies a dual
connection between the Godel black hole and conformal
field theory. At last, the dual conjectures are checked by
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reproducing the black hole Bekenstein-Hawking entropy
from the Cardy formula via combining the central charge
and the left and right temperatures of dual conformal field
theory.

Generally, the dual conjecture implied by the hidden
conformal symmetry can also be checked by matching
the two-point correlation function or the absorption proba-
bility from the gravity side and conformal field theory side.
However, the examination is hard to perform for the
present case due to the difficulties in defining the con-
served quantities for the three-dimensional Godel black
hole. As can be seen from the metric function (4), the
black hole has three parameters v, J, and Q. It has been
shown in [13] that, via the rigorous definition of conserved
charges and tensor calculation, the parameter v is the
conserved quantity associated with the killing vector 9,.
However, it is observed in [16] that, under the change of
coordinates r — —r, ¢ — —¢, the solutions with the
parameters (v, J, Q) can be changed to the solutions with
the parameters (—v, J, —Q). So the conserved quantity v
does not provide a satisfactory definition of the black hole
mass. The first law of thermodynamics for the three-
dimensional Godel black hole is still missing in the litera-
ture. So, in the case of lacking the satisfactory definition of
conserved quantities and the first law of thermodynamics,
one is unable to deduce the conjugate charges associated
with the left and right temperatures in the conformal field
theory side, i.e. one cannot obtain the absorption probabil-
ity from the conformal field theory side, which makes the
comparison from the two sides nonsensical. This aspect
can be explored in the future.
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