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We calculate the critical exponent � of the OðNÞ symmetric ’4 model within the 1=N expansion of the

two-particle-irreducible effective action, which provides us with a self-consistent approximation scheme

for the correlation function. The exponent � controls the behavior of a two-point function h’’i near the
critical point T � Tc through the correlation length �� jT � Tcj��, but we notice that it appears also in

the scaling form of the three-point vertex function �ð2;1Þ � h’’’2i at the critical point T ¼ Tc; in the

momentum space, �ð2;1Þ � k2���1=�. We derive a self-consistent equation for �ð2;1Þ from the two-particle-

irreducible effective action including the skeleton diagrams up to the next-leading-order in the 1=N

expansion, and solve it to the leading-log accuracy (i.e., keeping the leading lnk terms) to obtain �. Our

results turn out to improve those obtained in the standard one-particle-irreducible calculation at the next-

leading-order.

DOI: 10.1103/PhysRevD.85.065019 PACS numbers: 11.15.Pg, 11.10.Wx

I. INTRODUCTION

Understanding equilibrium and nonequilibrium phe-
nomena associated with phase transitions has become
more and more important in various fields in physics,
such as early-time universe, ultrarelativistic heavy-ion
collisions, ultracold atoms, and so on [1,2]. In a
second-order phase transition, characteristic long-range
fluctuations appear in the order parameter field, and for a
quantitative study of static and dynamic critical phe-
nomena [3,4], one needs a field-theoretical method which
can describe both static and dynamical processes involving
strong fluctuations. Emergence of long-range fluctuations
makes naive perturbation theory break down and requires
some sort of resummation, such as the method of the
renormalization group or the two-particle-irreducible
(2PI) effective action [5,6].

Recently, the method of the 2PI effective action has
received much attention since it can be applied to the
phenomena in and out of equilibrium on an equal footing
[7–9]. In this method, all the self-energy contributions for

the two-point correlation function are first summed up and
then the perturbative expansion is carried out in terms of
the full two-point correlation function. This is in contrast to
the standard method of the one-particle-irreducible (1PI)
effective action in which the perturbative expansion of the
diagrams is done in terms of the free two-point correlation
function. The method of the 2PI effective action system-
atically resums higher-order terms in powers of coupling
constants, so that it is expected to take into account effi-
ciently the large fluctuations near the critical point.
In the present paper we restrict ourselves to static critical

phenomena and leave dynamic critical phenomena for
future study. As is well-known, the most prominent feature
of static critical phenomena is universality. In other words,
several critical exponents which characterize the singular-
ities in the vicinity of the critical point are solely deter-
mined by symmetry of the system, irrespective of
microscopic details. In fact, only two of them are indepen-
dent, and we take � and � to be studied in this paper. They
can be read off from the two-point correlation function
Gðx; 0Þ ¼ h’ðxÞ’ð0Þi of the order parameter field as

Gðx; 0Þ � 1

jxjd�2þ�
ðT ¼ TcÞ; (1)*Corresponding author.
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Gðx; 0Þ � e�jxj=�; �� jT � Tcj�� ðT > TcÞ; (2)

where d is the number of space dimensions (now d ¼ 3), �
is the correlation length, and Tc is the critical temperature.
Namely, � and � govern the behavior of two-point func-
tions on and off the critical point, respectively. In the
momentum space, the Fourier transform of Eq. (1) gives

the scaling form ~GðkÞ � jkj��2.
Recently, Alford, Berges, and Cheyne employed the

1=N expansion of the 2PI effective action to compute the
exponent � of an OðNÞ-symmetric ’4 theory in three
dimensions [7]. They solved the 2PI Schwinger-Dyson
equation (Kadanoff-Baym equation) [10–12] at the critical

point, substituting the scaling form to ~GðkÞ. It was shown
that at the next-to-leading order (NLO) in the 1=N expan-
sion this approach remedies the spurious divergence of� at
small N, which is seen in the 1PI 1=N expansion, and leads
to an improved estimate already for moderate values of N.
This success strongly motivated us to compute another
exponent � within the 2PI effective action. The exponent
� is also associated with the critical behavior of the two-
point functions.

It is not straightforward, however, to apply this method
to the evaluation of �. Given two nonzero parameters, p

and T � Tc, one needs to fix the form of ~Gðp;TÞ in the
scaling region, which introduces a technical complication
to the problem. Fortunately, we notice that the exponent �
can be determined from the three-point vertex function

�ð2;1Þðx; y; zÞ � h’ðxÞ’ðyÞ’2ðzÞi with two elementary
fields, ’, and one composite operator, ’2 evaluated at
T ¼ Tc [13]. In fact, its Fourier transform (see Eq. (6)
for definition) at the critical point behaves as

~� ð2;1Þ
�
k

2
;
k

2
;k

�
� jkj2���1=� ðT ¼ TcÞ: (3)

Therefore, if one finds the equation for �ð2;1Þ in the 2PI
formalism, one should be able to compute � at the critical
point, similarly to the case of �.

In this paper we develop the 2PI formalism for the three-

point vertex function �ð2;1Þ, and apply the 1=N expansion to

compute the exponent �. We calculate �ð2;1Þ at the next-to-
leading order in the 2PI 1=N expansion assuming the
scaling form of the correlation function at the critical point.
We then extract the exponent � according to Eq. (3) and
examine whether an improvement similar to the calcula-
tion of � is achieved.

Computation of the critical exponents has been chal-
lenged since 70’s, in the �-expansion [14] and
1=N-expansion [15–18] approaches in the 1PI effective
action formalism. Furthermore, the four-particle-
irreducible effective action has also been applied in
Ref. [19] to estimate the higher-order terms in the 1=N
expansion. These methods are utilized to obtain a strict
1=N expansion series eventually. In contrast, our motiva-
tion here is to examine a possible improvement due to the

self-consistent approximation provided in the 2PI
formalism.
This paper is organized as follows. In Sec. II, we first

define our model and then explain how �ð2;1Þ is related to
the critical exponent �. The formalism with the 2PI effec-
tive action is introduced in Sec. III, where we also derive a

self-consistent equation for �ð2;1Þ. Then, in Sec. IV, we
calculate � in the 2PI effective action and compare it
with the 1PI result, where some complications in the
calculations are deferred to the Appendix. Section V is
devoted to a summary of our results and discussions.

II. THREE-POINT VERTEX FUNCTION �ð2;1Þ
AND CRITICAL EXPONENT �

We consider an OðNÞ symmetric ’4 model (’a ¼
’1; . . . ; ’N) in the three-dimensional Euclidean space.
The action is given by

S½’� ¼
Z

d3x

�
1

2
@i’aðxÞ@i’aðxÞ þ �

4!N
ð’aðxÞ’aðxÞÞ2

þ 1

2
t’aðxÞ’aðxÞ

�
; (4)

where t can be identified as either the mass squared or
T � Tc, up to renormalization. This can be regarded as an
effective action obtained after the dimensional reduction
for the OðNÞ symmetric ’4 quantum field theory at finite
temperature [20], or simply a classical statistical model. In
the former context, the dimensional reduction, which ap-
plies here because the critical behavior is determined by
long-distance modes, should bring temperature depen-
dence into the mass term proportional to T � Tc. As is
well-known, the high-temperature QCD phase transition
with two light flavors is effectively described by this model
for N ¼ 4 and the superfluid transition of 4He corresponds
to N ¼ 2.
Roughly speaking, the ground state described by the

action Eq. (4) is in a symmetric (broken) phase when
t > 0 (< 0), and the transition at t ¼ 0 is of the second
order. Although the exponents are symmetrical about
t ¼ 0, we compute the critical exponents by approaching
the critical point from the symmetric phase (t > 0) because
the vanishing expectation value � ¼ h’i ¼ 0 makes the
computation technically less involved.
The two-point correlation function, Gab, and its Fourier

transform, ~Gab, are defined as

Gabðx; yÞ � h’aðxÞ’bðyÞi ¼
Z d3k

ð2�Þ3 e�ik�ðx-yÞ ~GabðkÞ;
(5)

where translational invariance in the equilibrium state is
assumed. Being in the symmetric phase, we treat Gab as
diagonal and we write Gab ¼ G�ab unless otherwise
stated. Similarly the three-point vertex function with two
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elementary fields and one composite field, �ð2;1Þ, and its
Fourier transform are defined as

�ð2;1Þ
ab ðx; y; zÞ �

Z
d3x1d

3y1h’a0 ðx1Þ’b0 ðy1Þ 12’
2
cðzÞi

�G�1
aa0 ðx; x1ÞG�1

bb0 ðy; y1Þ

¼
Z d3k

ð2�Þ3
d3p

ð2�Þ3 e
ik�ðx�yÞe�ip�ðz�yÞ

� ~�ð2;1Þ
ab ðk;p� k;pÞ; (6)

where summation over the indices a0; b0 and c is implied
and we have assumed translational invariance of an equi-
librium state.

Notice that there is a relationship between the two-point

function G and the three-point vertex function �ð2;1Þ. If one
regards t as the external field coupled to 1

2’
2, then the

differentiation of G with respect to tðzÞ gives [13,21]
�Gabðx; yÞ

�tðzÞ ¼ �h’aðxÞ’bðyÞ 12’
2
cðzÞi: (7)

Using �G�1=�t ¼ �G�1ð�G=�tÞG�1 which follows from
the identity G�1G ¼ 1, one finds that the definition of

�ð2;1Þ yields

�ð2;1Þ
ab ðx; y; zÞ ¼ �G�1

ab ðx; yÞ
�tðzÞ : (8)

The corresponding equation holds in the momentum space.
In particular, in the zero momentum limit, one has

~� ð2;1Þð0; 0; 0Þ ¼ @ ~G�1ð0Þ
@t

: (9)

At the critical point, t ¼ 0, the exponent � is determined
from the low-momentum behavior of the two-point corre-

lation function ~GðkÞ � jkj�2þ�, while the exponent � can

be obtained from ~�ð2;1Þðk;p� k;pÞ as shown in Eq. (3)
[15]. This can be explained with the help of the scaling

hypothesis applied to ~�ð2;1Þðk;p� k;pÞ. Near the critical

point, the susceptibility, 	, behaves as ~Gð0Þ ¼ 	� t�


with the critical exponent 
, which immediately implies
that

~� ð2;1Þð0; 0; 0Þ � t
�1: (10)

In the scaling hypothesis we assume the existence of a
function f and a constant y such that (k ¼ jkj)

~� ð2;1Þ
�
k

2
;
k

2
; k

�
� fðk�Þ�y: (11)

When t � 0, the limit k ! 0 is regular and so is fð0Þ,
which yields

~� ð2;1Þð0; 0; 0Þ � fð0Þ�y � t��y; (12)

where the use has been made of � ¼ t�� [see Eq. (2)].
Comparing Eqs. (10) and (12), one finds

y ¼ 1� 


�
: (13)

As we approach the critical point t ! 0, the correlation

length � diverges, while ~�ð2;1Þðk=2; k=2; kÞ is still finite as
long as k is kept nonzero. Therefore, we must have
fðk�Þ � ðk�Þ�y to find the scaling form at the critical point

~�ð2;1Þ
�
k

2
;
k

2
; k

�
� k�y � kð
�1Þ=�: (14)

This is equivalent to Eq. (3) with the aid of the scaling law

 ¼ �ð2� �Þ. Diagramatically, it is shown as

where a blob, a wiggly line and a simple line represent
~�ð2;1Þ, ’2 and ~G, respectively. A slash on a simple line
indicates the amputation.

III. 2PI EFFECTIVE ACTION

We give here a minimal review on the 2PI effective
action, together with the 1PI effective action for compari-
son. The generating functional or the partition function
Z½J� with an external field J is

Z½J� �
Z

D’ exp

�
�S½’� þ

Z
d3xJaðxÞ’aðxÞ

�

� e�W½J�; (16)

where W½J� is the generating functional for the connected
Green’s functions. The averaged field is given by

�aðxÞ � h’aðxÞi ¼ �W½J�
�JaðxÞ : (17)

The 1PI effective action �1PI as a function of� is obtained
by the Legendre transformation of the generating func-
tional W½J�,

� 1PI½�� � W½J� �
Z

d3xJaðxÞ�W½J�
�JaðxÞ : (18)

Diagramatically, �1PI consists of the vacuum diagrams
written in terms of the lines representing the free two-point
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function G0ð�Þ in the presence of the classical field, �.
Each of the 1PI diagrams does not split into two by cutting
only one line.

The ground state is determined by the condition
��1PI½��=��aðxÞ ¼ JaðxÞ ¼ 0, which has a useful form
for variational analysis.

In order to obtain the 2PI effective action, we introduce
two external fields J and K and define the generating
functional Z½J; K� as

Z½J; K� �
Z

D’ exp

�
�S½’� þ

Z
d3xJaðxÞ’aðxÞ

þ
Z

d3xd3y’aðxÞKabðx; yÞ’bðyÞ
�

� e�W½J;K�: (19)

Here the generating functional W½J; K� is defined by the
last equality. The averaged field �aðxÞ ¼ h’aðxÞi and the
full propagator (or the correlation function) Gabðx; yÞ ¼
h’aðxÞ’bðyÞiconnected are, respectively, given by

�W½J; K�
�JaðxÞ

¼ �aðxÞ;
�W½J;K�
�Kabðx; yÞ ¼

1

2
½Gabðx; yÞ þ�aðxÞ�bðyÞ�:

(20)

Performing the Legendre transformation of W½J; K� with
respect to J and K, we obtain the 2PI effective action
�2PI½�;G� as a function of � and G

� 2PI½�;G� � W½J; K� �
Z

d3xJaðxÞ�W½J; K�
�JaðxÞ

�
Z

d3xd3yKbaðy; xÞ �W½J; K�
�Kabðx; yÞ : (21)

One can explicitly extract the one-loop contributions
from the 2PI effective action in the same manner as in
the 1PI effective action (but now using the full propagator),
yielding the most general and useful form (for derivation,
see Ref. [9])

�2PI½�;G� ¼ S½��þ 1

2
Tr lnG�1þ 1

2
TrG�1

0 Gþ ��2½�;G�;
(22)

where Tr should be understood as integration over the
space coordinates and summation over the field compo-

nents. The last term ��2 represents contributions from 2PI
vacuum diagrams in terms of the full propagator G, not of
the free propagator G0.

The ground state is determined by the stationary con-
ditions with respect to � and G at vanishing external fields
J ¼ K ¼ 0, and turns out to be the same as in the 1PI
effective action, as it should.

A. Self-consistent equation for G:
Kadanoff-Baym equation

Performing the functional derivative of Eq. (22) with
respect to G and setting K ¼ 0, we obtain

0 ¼ � 1

2
G�1

ab ðx; yÞ þ
1

2
G�1

0;abðx; yÞ þ
� ��2½�;G�
�Gbaðy; xÞ :

Comparing this with the Schwinger-Dyson equation,
G�1 ¼ G�1

0 �� with the proper self-energy �, we find

that

�ab½�;Gðx; yÞ� ¼ �2
� ��2½�;G�
�Gbaðy; xÞ : (23)

Namely, the functional derivative of ��2 is identified with

the proper self-energy, which must be 1PI, and therefore ��2

is 2PI in terms of the full propagator G, as we mentioned
above. Thus, we arrive at a self-consistent equation for G,
the Kadanoff-Baym (KB) equation [10–12]

G�1
ab ðx; yÞ ¼ G�1

0;abðx; yÞ � �ab½�;Gðx; yÞ�: (24)

We remark here the following: if one eliminates G in
favor of � from �2PI½�;G� using Eq. (24) to obtain
�2PI½�;Gð�Þ� as the functional of �, one should formally
recover the 1PI effective action �1PI½��, and therefore the
ground states in both approaches must be the same. In
practice, however, these effective actions are different in
approximation level because resummation has been done
in �2PI½�;Gð�Þ� [22]. Introduction of the full propagator
G satisfying the self-consistent equation, Eq. (24) provides
us with a way to reorganize the expansion series in a
perturbation theory.

B. Self-consistent equation for �ð2;1Þ

Now one can derive the self-consistent equation for

�ð2;1Þ from the KB equation, Eq. (24) for G. By differ-
entiating
Eq. (24) with respect to tðxÞ and using the relation (8), one
obtains

�ð2;1Þ
ab ðx; y; zÞ ¼ �0;abðx; y; zÞ � ��ab½Gðx; yÞ�

�tðzÞ ; (25)

where �0;abðx; y; zÞ ¼ �ðx� zÞ�ðy� zÞ�ab. Because we

are in the symmetric phase � ¼ h’i ¼ 0, we have Gab ¼
G�ab, �ab ¼ ��ab, and �ð2;1Þ

ab ¼ �ð2;1Þ�ab, and thus we

deal with the scalar functions without indices, hereafter.
Applying the chain rule for � ¼ �½� ¼ 0; G�, we can
rewrite the second term as
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��ðx;yÞ
�tðzÞ ¼

Z
d3x1d

3y1
�Gðx1;y1Þ

�tðzÞ
��ðx;yÞ
�Gðx1;y1Þ

¼�
Z
d3x1d

3y1d
3x0d3y0Gðx1;x0Þ�G

�1ðx0;y0Þ
�tðzÞ

�Gðy0;y1Þ ��ðx;yÞ
�Gðx1;y1Þ

��
Z
d3x0d3y0Dðx;y;x0;y0Þ�ð2;1Þðx0;y0;zÞ; (26)

where we have used �
�t G ¼ �Gð��t G�1ÞG, similar to the

one used for Eq. (8), and defined the kernel D as

Dðx; y; x0; y0Þ �
Z

d3x1d
3y1Gðx1; x0Þ ��ðx; yÞ

�Gðx1; y1ÞGðy
0; y1Þ:
(27)

Thus, we write the self-consistent equation for �ð2;1Þ as

�ð2;1Þðx; y; zÞ ¼ �0ðx; y; zÞ þ
Z

d3x0d3y0Dðx; y; x0; y0Þ
� �ð2;1Þðx0; y0; zÞ: (28)

In the momentum space, we have

~�ð2;1Þðp;q;pþqÞ

¼ 1þ
Z d3p0

ð2�Þ3
d3q0

ð2�Þ3
~Dðp;q;p0;q0Þ~�ð2;1Þðp0;q0;p0 þq0Þ;

(29)

where the Fourier transform of the kernel is defined by

~Dðp;q;p0;q0Þ¼
Z
d3xd3yd3x0d3y0

�eið�x�p�y�qþx0�p0þy0�q0ÞDðx;y;x0;y0Þ: (30)

The kernel ~Dðp; q;p0; q0Þ contains the momentum conser-
vation condition ð2�Þ3�ðpþ q� p0 � q0Þ. We evaluate

the Eq. (29) to calculate the vertex function ~�ð2;1Þ with a
given kernel ~D at the critical point t ¼ 0, and determine the
exponent �.

IV. CRITICAL EXPONENTS FROM 2PI
EFFECTIVE ACTION

As we explained in the previous sections, the exponents
� and � are, respectively, associated with the two-point

function G and the three-point vertex function �ð2;1Þ at the
critical point. To determine the long-distance behavior of
these functions, one needs to solve the self-consistent
equations (i.e., Eqs. (24) and (29)), both of which are

derived from the 2PI effective action ��2.

Let us first evaluate ��2½G� (22) up to the NLO accuracy
in the 1=N expansion. The LO and NLO contributions are
respectively

where a gray blob indicates a vertex �=N and a line corresponds toGab ¼ G�ab. Summation over the repeated indices a, b,
etc. should be understood. Then a closed loop gives the number of the field components N, and thus the first diagram
amounts toOðN2=NÞ ¼ OðNÞ, while the secondOðN0Þ. One obtains the self-energy at the NLO by cutting one propagator
in these diagrams, which yields in the momentum space

where the dashed line corresponds to the sum of bubble chain diagrams, which is denoted by ~I:
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with the one-loop polarization function

~�ðpÞ �
Z d3q

ð2�Þ3
~Gðp� qÞ ~GðqÞ: (35)

One should keep in mind that the vertex ~I is an Oð1=NÞ
quantity. With the NLO self-energy (33), the KB equation
for ~G�1

ab ðpÞ ¼ ~G�1ðpÞ�ab reads

~G�1ðpÞ ¼ ~G�1
0 ðpÞ þ �

6

Z d3q

ð2�Þ3
~GðqÞ

þ
Z d3q

ð2�Þ3
~IðqÞ ~Gðp� qÞ: (36)

A. Calculation of �

In Ref. [7] the critical exponent � was calculated from
the KB equation, Eq. (36) at the critical point. Let us briefly
review here how to obtain �, which is also necessary for
the calculation of �.

Recall that ~GðpÞ should become massless at the critical

point: ~G�1ð0Þ ¼ 0. We can make this condition explicit for
the KB equation, Eq. (36) by subtracting the corresponding
equation evaluated at p ¼ 0. Then, the KB equation at the
critical point reads

~G�1ðpÞ ¼ pþ
Z d3q

ð2�Þ3
~IðqÞ½ ~Gðp� qÞ � ~GðqÞ�: (37)

As one approaches the critical point, the polarization ~�
dominates in the denominator in the scaling region, and
therefore we can ignore ‘‘1’’ in the denominator of ~IðpÞ on
the right-hand side of Eq. (34)

~IðpÞ � 2

N
~��1ðpÞ: (38)

Indeed, in order to investigate the asymptotic behavior of
Eq. (37) in the small momentum region, we can use the

scaling form for ~GðpÞ
~GðpÞ ¼ 1

p2

�
p

�

�
�

(39)

with p ¼ jpj and a cutoff scale �, and find that ~�ðpÞ is
infrared singular as long as �< 1=2:

~�ðpÞ ¼ Að�Þ 1
p

�
p

�

�
2�
; (40)

where

A ð�Þ ¼ 1

8�3=2

�ð12 � �Þ½�ð1þ�
2 Þ�2

½�ð1� �
2Þ�2�ð1þ �Þ : (41)

After performing the remaining integral with the use of the
scaling form (39) and rescaling with � of the scaling
region, the KB equation, Eq. (37) reduces to

p2�� ¼ p2 þBð�Þp2�� þ F�ðp2Þ; (42)

where

B ð�Þ ¼ 4�ð1� 2�Þ cosð��Þ
ð3� �Þð2� �Þsin2ð��=2ÞN

and

F� ¼ �ð1� �Þð2� �Þ
6�2�Að�ÞN p2 þOðp4Þ:

In Eq. (42), terms with p2�� are dominant at small mo-
mentum, p� 0, and determine the long-distance behavior.
Equating the coefficients of p2��, one observes that � has
to satisfy

1 ¼ Bð�Þ: (43)

This gives the NLO result of � in the 2PI 1=N expansion.
In Fig. 1 we show the exponent � fixed by Eq. (43) as a
function of N in a solid line, and compare it with the 1PI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7  8  9  10

η

N

1PI
2PI
MC
Exp

FIG. 1 (color online). The critical exponent � as a function of
N. The 2PI (1PI) result is shown in a solid (dashed) curve.
Experimental data for N ¼ 1 together with the Monte-Carlo
results for N ¼ 1; . . . ; 4 is also shown for comparison (see
Ref. [23] for details and other theoretical approaches).
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result written in a dashed line. It is evident that the diver-
gence of � atN ¼ 0, which is seen in the 1PI result, is now
resolved in the 2PI result, and that the 2PI result is closer to
the experimental values [23].

B. Calculation of �

1. Leading-log solution to the equation for �ð2;1Þ

Now, we proceed to the calculation of � in the 2PI
formalism up to the NLO in the 1=N expansion. As we

explained in Sec. II, we will compute � from the three-

point vertex function ~�ð2;1Þðk=2; k=2; kÞ, which satisfies the
self-consistent equation, Eq. (29). Thus, the first thing to do
is to determine the NLO form of the kernel D in Eq. (29).
According to the definition of D in Eq. (27), it is obtained
by differentiation of the self-energy � with respect to G in
the NLO approximation and is written explicitly as

The first term is of Oð1Þ, which is obtained from the first
diagram in Eq. (33) by cutting the loop. The second and
third diagrams are of Oð1=NÞ [recall that ~I is of Oð1=NÞ],
which are obtained from the second diagram in Eq. (33) by
cutting the solid and dashed lines in the loop, respectively.
We introduced by the last equality the shorthand notations
D0 and 1

N D1, respectively, for Oð1Þ and Oð1=NÞ
contributions.

When this decomposition is substituted, the self-

consistent equation, Eq. (29) for ~�ð2;1Þ is now expressed
symbolically as

�ð2;1Þ ¼ 1þ
�
D0 þ 1

N
D1

�
�ð2;1Þ; (45)

which is diagrammatically represented as

Here, the first and second terms are of Oð1Þ, while the third and fourth terms are of Oð1=NÞ.
Let us first examine the LO equation, �ð2;1Þ ¼ 1þD0�

ð2;1Þ, which is immediately solved by �ð2;1Þ
LO ¼ 1=ð1�D0Þ with

D0ðpÞ ¼ �ð�=6Þ ~�ðpÞ and is nothing but the sum of bubble chain diagrams proportional to ~IðpÞ in Eq. (34). This is easily
understood from the Oð1Þ diagrams shown in Eq. (46). We will denote 1=ð1�D0Þ with the same dashed line as ~I in the

diagrams. From the low-momentum behavior of ~�ð2;1Þ
LO ðk=2; k=2;kÞ ¼ 1=ð1�D0ðkÞÞ, one should be able to obtain the

critical exponent � at the LO. Indeed, it gives rise to

~�
ð2;1Þ
LO ðk=2; k=2; kÞ ¼ 1=ð1�D0ðkÞÞ � 6

�
~��1ðkÞ ¼ 6

�Að�Þ k
�
k

�

��2�
; (47)

where the polarization ~� is evaluated with the scaling form for ~GðpÞ. There is no lnk dependence in this result, but rather it
directly gives the exponent � at the LO. Comparing this with the scaling behavior ~�ð2;1Þ � k2���1=� and using the LO result
for �, i.e., �LO ¼ 0, we find that � at the LO is

�LO ¼ 1: (48)

This coincides with the well-known result in the 1PI 1=N expansion analysis. Nontrivial correction for � should be
obtained at the NLO.
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With �ð2;1Þ
LO ¼ 1=ð1�D0Þ, we can rewrite Eq. (45) in a form which is more suitable for the 1=N expansion

�ð2;1Þ ¼ �ð2;1Þ
LO þ 1

1�D0

1

N
D1�

ð2;1Þ ¼ �ð2;1Þ
LO þ

�
1þ 1

1�D0

D0

�
1

N
D1�

ð2;1Þ: (49)

In the present paper, we will solve Eq. (49) to the leading-log accuracy as discussed in Ref. [15], rather than solving it fully
self-consistently. Namely, we first solve Eq. (49) iteratively as

�ð2;1Þ ¼
�
1þ

�
1þ 1

1�D0

D0

�
1

N
D1 þ � � �

�
�ð2;1Þ
LO ; (50)

where only the LO and NLO contributions are explicitly shown. Then, we extract leading contributions logarithmically
divergent at small momentum in the square bracket, which will give the critical exponent � when resummed.1

Diagramatically this iterative solution is represented as

The diagrams (b) and (c) correspond to the contributions
from 1, and the last two (d) and (e) correspond to the
contributions from 1

1�D0
D0 in the parenthesis of Eq. (50).

We note that 1
2’

2 operator is first attached to �ð2;1Þ
LO ¼

1=ð1�D0Þ in all the diagrams.

2. Evaluation of each diagram

We now evaluate the Oð1=NÞ contributions to �ð2;1Þ as
shown in Eq. (51) by using the scaling form (39) for ~GðpÞ.
One should note here that the use of the scaling form is a

nonperturbative prescription. We will substitute in ~GðpÞ
the exponent � obtained by the self-consistent KB equa-
tion at the NLO.

Let us examine the four NLO diagrams (b), (c), (d) and
(e) in Eq. (51) one by one, seeking for the lnk dependence.

We note that the common factor �ð2;1Þ
LO attached to 1

2’
2

operator in all the four diagrams gives 1=ð1�D0Þ �
ð6=�Að�ÞÞk1�2�. The remaining part in each diagram
will result in the lnk dependence to modify the exponent
�. In this subsection we deal with only diagrams (b) and (d)
because the contributions from other diagrams (c) and (e)
are negligibly small as explained in Appendix A.
First, together with the asymptotic form for ~I (38),

diagram (b) is evaluated as

ðbÞ � 6

�Að�Þ k
1�2�

Z d3p

ð2�Þ3
~Gðpþ k=2Þ ~Gðp� k=2Þ

�
� 2

N
~��1ðpÞ

�

� 6

�Að�Þ k
1�2�

�
� 2

N

Z � d3p

ð2�Þ3 jpþ k=2j�2þ�jp� k=2j�2þ�p1�2�Að�Þ�1

�
: (52)

See Fig. 2, for the assignment of each momentum. The minus sign in �2
N

~��1ðpÞ � �~IðpÞ originates from that of the
second term in Eq. (44). We have introduced an upper cutoff� of the scaling momentum region, while we have omitted��

factors, which can be easily restored. Notice that this integral is logarithmically divergent when k ¼ 0, which indicates the
infrared dominance in the p-integration and justifies the use of the scaling form for ~GðpÞ. Indeed, the integral yields the lnk
contribution as

1The Oð1=NÞ contribution for 1=� can be determined to the leading-log accuracy by �ð2;1Þ
NLO [the second term in Eq. (50)]. One can

easily understand this by expanding the scaling form of �ð2;1Þ in 1=N as

~�ð2;1Þ
�
k

2
;
k

2
;k

�
� k2���1=� ¼ k

c0þ1
Nc1þ 1

N2c2þ��� ¼ kc0
�
1þ 1

Nc1 lnkþ 1
N2

�
1
2ðc1 lnkÞ2 þ c2 lnk

�
þ � � �

�
;

where 2� �� 1=� is also expanded in 1=N as c0 þ c1=N þ c2=N
2 þ � � � . Therefore, in order to obtain the Oð1=NÞ contribution c1

for 1=�, it is sufficient to pick up the term proportional to 1
n! ðc1 lnkÞn that is the most divergent at small momentum at the Oð1=NnÞ.
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ðbÞ � 6

�Að�Þ k
1�2�

�
� 2

NAð�Þ
Z �

k

d3p

ð2�Þ3 p
�2þ�p�2þ�p1�2�

�
� 6

�Að�Þ k
1�2�

�
1

�2NAð�Þ lnk
�
; (53)

where we have picked up only the most singular part in k ! 0.
Secondly, diagram (d) (see Fig. 2 for momentum assignment) is evaluated in a similar way as

ðdÞ �
�

6

�Að�Þ k
1�2�

�
2
�
��

6

�Z d3pd3q

ð2�Þ6
~GðpÞ ~Gðpþ kÞ

�
� 2

N
~��1ðqÞ

�
~Gðpþ qÞ ~Gðpþ qþ kÞ

� 6

�Að�Þ k
1�2�

�
k1�2�

A2ð�Þ
2

N

Z � d3pd3q

ð2�Þ6 p�2þ�jpþ kj�2þ�jpþ qj�2þ�jpþ qþ kj�2þ�q1�2�

�

¼ 6

�Að�Þ k
1�2�

�
2

NAð�Þ2
Z �=k d3ud3v

ð2�Þ6 u�2þ�juþ k̂j�2þ�juþ vj�2þ�juþ vþ k̂j�2þ�v1�2�

�
;

where we have rescaled the variables u ¼ p=jkj, v ¼ q=jkj and k̂ ¼ k=jkj. The lnk dependence comes from two regions
of the above integral: (I) jvj ��=k, juj � jvj and (II) juj � jvj ��=k, juþ vj � juj; jvj. One notices that the change of
the variables, u ¼ uþ v0 and v ¼ �v0, maps region II to region I and vice versa while keeping the integral the same,
which means that these two regions give the same lnk contributions. Therefore, the lnk contribution in the above integral
coincides with twice that from region I

ðdÞ � 6

�Að�Þ k
1�2�

�
2

NAð�Þ2 2�
Z
I

d3ud3v

ð2�Þ6 u�2þ�juþ k̂j�2þ�juþ vj�2þ�juþ vþ k̂j�2þ�v1�2�

�

� 6

�Að�Þ k
1�2�

�
4

NAð�Þ2
Z �=k d3ud3v

ð2�Þ6 u�2þ�juþ k̂j�2þ�v�3

�

¼ 6

�Að�Þ k
1�2�

�
4

NAð�Þ2 Að�Þ
Z �=k d3v

ð2�Þ3 v
�3

�
� 6

�Að�Þ k
1�2�

� �2

�2NAð�Þ lnk
�
: (54)

Finally, we checked that both the coefficients in the
diagrams (c) and (e) in Eq. (51) are consistent with zero
in a numerical integration. Therefore, we do not include
these two diagrams as alluded before. Details of the
calculation are shown in Appendix A. Notice that these
two diagrams do not contribute to � in the 1PI 1=N
expansion [15].

3. Result

We collect the NLO corrections Eqs. (53) and (54)
together with the LO result Eq. (47). As we noticed before,
these NLO contributions Eqs. (53) and (54) have the same

prefactor �ð2;1Þ
LO , and the leading-log terms can be resummed

by exponentiation

~�ð2;1Þ
�
k

2
;
k

2
;k

�
� ~�ð2;1Þ

LO

�
k

2
;
k

2
;k

��
1þ

� �lnk

�2NAð�Þ
�
þ���

�

¼ ~�ð2;1Þ
LO

�
k

2
;
k

2
;k

�X
n¼0

1

n!

� �lnk

�2NAð�Þ
�
n

¼ 6

�Að�Þk
1�2��ð1=�2NAð�ÞÞ; (55)

In Appendix B, we confirm this exponentiation of the
leading-log terms at Oð1=N2Þ by explicit calculation and
moreover at all orders Oð1=NnÞ by induction.
Then, comparing this with Eq. (15), one finally obtains

the exponent � of the 2PI NLO calculation

�ð2PIÞ
NLO ¼ 1

1þ �þ 1
�2NAð�Þ

; (56)

where � should be the 2PI critical exponent Eq. (43) for
consistency. This is our main result. In the limit N ! 1,
this result of course recovers the LO result Eq. (48) to-
gether with limN!1�ðNÞ ¼ 0. We plot � as a function ofN
in Fig. 3, where � from the standard 1PI action at the
NLO [15]

�ð1PIÞ
NLO ¼ 1� 32

3�2N
; (57)

and other theoretical and experimental results are also
shown for comparison.

FIG. 2. NLO diagrams (b) and (d) contributing to the exponent
�, with explicit momentum assignment.
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At largeN the difference between the 1PI and 2PI results
diminishes and both converge to the LO result �LO ¼ 1. At
small N the 2PI result stays positive, while the 1PI result
can become negative. We see that the result of the 2PI NLO
calculation gives larger values for the exponent � than the
1PI NLO result, and shows a preferable tendency towards
the experimental values at N ¼ 1, 2. One should, however,
keep in mind that such small values of N are, in a strict
sense, outside the validity region of the 1=N expansion,

which is also indicated as the fact that the difference
between the 1PI and 2PI results becomes large at small
values of N.

V. SUMMARYAND DISCUSSION

In the present paper we have developed a method to
compute the critical exponent � using the 2PI effective
action. Although � is associated with the diverging behav-
ior of the correlation length � near the critical point, one
can compute it on the critical point by analyzing the

three-point vertex function �ð2;1Þ. Roughly speaking, this

is possible because �ð2;1Þ is a derivative of the correlation
function with respect to the temperature, and thus includes
certain information on the deviation from the critical point.
In the 2PI formalism we can write down a self-consistent

equation for �ð2;1Þ, which is easily derived from the KB
equation for the two-point function. The explicit form of
the equation was obtained to the NLO in the 1=N expan-
sion. We solved this equation by iteration to the NLO in the

1=N expansion, and identified from the resultant �ð2;1Þ the
exponent �, Eq. (56), as shown in Fig. 3.
The difference between the 2PI NLO result (56) and the

1PI NLO result (57) comes from two points as follows:
Firstly, in the 2PI formalism, we deal with the full propa-
gator in contrast to the free propagator in the 1PI formal-

ism. Secondly, the sets of the NLO diagrams for �ð2;1Þ are
different between the 1PI and 2PI formalisms, while there
is only one LO diagram which is common in both. Namely,
the 1PI NLO calculation involves the following five
diagrams [15] which should be compared with four 2PI
diagrams shown in Eq. (51):

There is no self-energy insertion in the 2PI diagrams
because it is already resummed in the full propagator. In
fact, the first 1PI diagram contains one self-energy inser-
tion, and is already included in the 2PI LO diagram
Eq. (51) (a). This resummation of the self-energy diagrams
in the 2PI formalism enables us to take account of impor-
tant higher-order contributions into the form of the full
propagator, which is the origin of the improvement of the
2PI result over the 1PI result in the calculation of the
critical exponent.

Notice that the 1PI NLO result (57) has an apparent flaw
at small N. The exponent � must be positive � > 0 as it
describes the diverging behavior of the correlation length �
near the critical point [cf. Equation (2)]. However, the 1PI

NLO result becomes negative at small N, although such a
small value of N is outside the validity region of the 1=N
expansion in a strict sense. In contrast, the exponent � in
the 2PI NLO result remains positive for all N, and it is
closer to the experimental data [23].
Expanding � of Eq. (56) in N, we see that the 2PI result

reproduces Ma’s 1PI result (57) [15], and includes a part of
higher-order terms. It shows that the 2PI effective action
resums not only the leading-log terms which are resummed
in the 1PI calculation but also a certain class of the higher-
log terms.
In the present paper, we did not require the self-

consistency for �ð2;1Þ, but rather solved the equation to
the leading-log accuracy. Using conformal invariance in

 0

 0.2

 0.4

 0.6

 0.8
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 0  1  2  3  4  5  6  7  8  9  10

ν

N

1PI
2PI
MC
Exp

FIG. 3 (color online). The exponent � from the 2PI NLO
calculation as a function of N (solid line) is compared with
the result from the 1PI NLO calculation (dashed line). We also
show experimental data at N ¼ 1, 2 and Monte-Carlo results at
N ¼ 0; � � � ; 5. See Ref. [23] for more details and other theoreti-
cal estimates.

SAITO et al. PHYSICAL REVIEW D 85, 065019 (2012)

065019-10



the coordinate space [19,24,25] in (28) at the critical point,

one may analyze the self-consistent solution for �ð2;1Þ to
find a better estimate for �. However, one should keep in
mind that the higher-order calculation of the exponent � in
the standard 1PI formalism up toOð1=N2Þ [18,21] tends to
deviate from the experimental values. Inclusion of higher-

order terms by requiring the self-consistency for �ð2;1Þ is an
open issue.
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APPENDIX A: EVALUATION OF
DIAGRAMS (C) AND (E)

Here we show details of the calculation of diagrams (c)
and (e) in Eq. (51). We closely follow Ref. [15] for iden-
tification and evaluation of the lnk contributions. With the
momentum assingment shown in Fig. 4, each diagram is
calculated as follows:

ðcÞ � 6

�Að�Þ k
1�2�

�
4

N

Z d3q

ð2�Þ3
~��1ðqÞ ~��1ðqþ kÞ ~Gðqþ k=2ÞTðk; qÞ

�
; (A1)

ðeÞ � 6

�Að�Þ k
1�2�

�
4

N

Z d3q

ð2�Þ3
~��1ðqÞ ~��1ðqþ kÞT2ðk; qÞ

���

6
� 6
�
~��1ðkÞ

��

¼ 6

�Að�Þ k
1�2�

��4

N

k1�2�

Að�Þ
Z d3q

ð2�Þ3
~��1ðqÞ ~��1ðqþ kÞT2ðk; qÞ

�
; (A2)

where Tðk; qÞ represents the triangle part and is defined by

Here we have again introduced dimensionless variables u ¼ p=jkj, v ¼ q=jkj, and k̂ ¼ k=jkj. Then two diagrams become

ðcÞ � 6

�Að�Þ k
1�2�

�
4

N

Z d3v

ð2�Þ3 v
1�2�jvþ k̂j1�2�jvþ k̂=2j�2þ�T0ðk̂;vÞ

�
; (A4)

ðeÞ � 6

�Að�Þ k
1�2�

� �4

NAð�Þ
Z d3v

ð2�Þ3 v
1�2�jvþ k̂j1�2�T2

0ðk̂;vÞ
�
: (A5)

As we discuss in the text, we are interested in the lnk contribution when k is small. We first note that the lnk contribution
appears not from the integration over u in T0, but from the integration over v in T0. Instead, it will appear from the
integration over v. However, it is not straightforward to see the power of v from the above two expressions. If T0ðk̂;vÞ
generates v�3þ3�, then lnk terms appear in Eq. (A4)

T0ðk̂;vÞ � v�3þ3� ! ðcÞ �
Z �=k

dvv�1 � lnk: (A6)

Similarly, in Eq. (A5), if T2
0ðk̂;vÞ yields v�5þ4�, then lnk terms appear
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T2
0ðk̂;vÞ � v�5þ4� ! ðeÞ �

Z �=k
dvv�1 � lnk: (A7)

Below we examine whether these powers indeed appear in
T. The definition of T0 in Eq. (A3) can be explicitly written
as (� and � are the angles between two vectors ðu; k̂Þ and
ðu;vÞ, respectively)

T0ðk̂;vÞ ¼ 1

8�3

Z
u2du

Z
d�u�2þ�ðu2 þ 2u cos�

þ 1Þ�1þ�=2ðu2 þ 2uv cos�þ v2Þ�1þ�=2:

(A8)

To see the power of v in this quantity, it is convenient to
perform the Mellin transformation defined by

gðsÞ ¼
Z 1

0
dxfðxÞxs�1; (A9)

fðxÞ ¼ 1

2�i

Z cþi1

c�i1
dsx�sgðsÞ: (A10)

The v-dependent part of Eq. (A8) can be Mellin-
transformed as follows:

Z 1

0
dvðu2 þ 2uv cos�þ v2Þ�1þ�=2vs�1

¼ 21=2��=2ðsin�Þ�=2�1=2 �ðsÞ�ð2��� sÞ
�ð2��Þ

�
1þ cos�

1� cos�

�
�=4�1=4

2F1

�
�s��

2
þ 3

2
; sþ�

2
� 1

2
;��

2
þ 3

2
;
1� cos�

2

�
usþ��2

� Fðs;�;�Þusþ��2; ð0<Re½s�< 2��Þ; (A11)

where 2F1 is the hypergeometric function. To obtain this result, we have used the formula [26] (0< Re½s�< 2�;��<
�< �)

Z 1

0
ðx2 þ 2ax cos�þ a2Þ��xs�1dx

¼ 2��1=2ðsin�Þ1=2���

�
�þ 1

2

�
Bðs; 2�� sÞP1=2��

s���1=2ðcos�Þas�2�

¼ 2��1=2ðsin�Þ1=2�� �ðsÞ�ð2�� sÞ
�ð2�Þ

�
1þ cos�

1� cos�

�
1=4��=2

2F1

�
�sþ�þ 1

2
; s��þ 1

2
; �þ 1

2
;
1� cos�

2

�
as�2�; (A12)

where B is the beta function and P�
� is the associated Legendre function. Therefore, Mellin transform of

Eq. (A8) is given as

T0ðk̂; sÞ ¼
Z 1

0
dvT0ðk̂;vÞvs�1

¼ 1

8�3

Z 1

0
u2du

Z
d�u�2þ�ðu2 þ 2u cos�þ 1Þ�1þ�=2Fðs; �;�Þusþ��2

¼ 1

8�3

Z
d�Fðs; �;�Þ

Z 1

0
duusþ2��2ðu2 þ 2u cos�þ 1Þ�1þ�=2: (A13)

If we use the formula (A12) again, then Eq. (A11) becomes

Z 1

0
duusþ2��2ðu2þ2ucos�þ1Þ�1þ�=2

¼21=2��=2ðsin�Þ�=2�1=2�ðsþ2��1Þ�ð3�3��sÞ
�ð2��Þ

�
1þcos�

1�cos�

�
�=4�1=4

2F1

�
�s�5�

2
þ5

2
;sþ5�

2
�3

2
;��

2
þ3

2
;
1�cos�

2

�

�F0ðs;�;�Þ; ð1�2�<Re½s�<3�3�Þ: (A14)

Therefore, Eq. (A8) can be written as

FIG. 4. NLO diagrams (c) and (e).
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T0ðk̂; sÞ ¼ 1

8�3

Z
d�Fðs; �;�ÞF0ðs; �; �Þ;

ð1� 2�< Re½s�< 2� �Þ: (A15)

Performing the inverse Mellin transformation, we obtain

T0ðk̂;vÞ ¼ 1

2�i

Z cþi1

c�i1
dsT0ðk̂; sÞv�s

¼ 1

2�i

Z cþi1

c�i1
ds

1

8�3

�
Z

d�Fðs; �;�ÞF0ðs; �; �Þv�s; (A16)

where 1� 2�< c < 2� �. For the integration over s, we
close the integration path in the right semicircle. Then, the
poles of Fðs; �;�Þ and F0ðs; �; �Þ are, respectively, at

s ¼ 2� �; 3� �; . . . ; (A17)

s ¼ 3� 3�; 4� 3�; . . . : (A18)

Poles we are now interested in are s ¼ 2� � for diagram
(c), and s ¼ 3� 3� for diagram (e) which yield the lnk
contributions (see Eqs. (A6) and (A7)). Below we evaluate
T0ðk̂;vÞ only at these poles.
First consider the pole s ¼ 2� �. Since the residue of

the gamma function at z ¼ �n is

lim
z!�n

ðzþ nÞ�ðzÞ ¼ ð�1Þn
n!

; (A19)

residues of F and F0 at s ¼ 2� � can be evaluated as

lim
s!2��

ðs� 2þ �ÞFðs; �;�Þ

¼ 21=2��=2 1
2

�
cos�2

��1��ð1þ cos�Þ1=2þ�=2 ¼ 1;

(A20)

lim
s!2��

ðs� 2þ �ÞF0ðs; �; �Þ ¼ 21=2��=2ð1þ cos�Þ�=2�1=2 �ð1þ �Þ�ð1� 2�Þ
�ð2� �Þ 2F1

�
1� 3�

2
;
1þ 3�

2
;
3� �

2
;
1� cos�

2

�
:

(A21)

Substituting these into Eq. (A16), we read

1

8�3

Z
d�Fðs; �;�ÞF0ðs; �; �Þv�2þ� ¼ 1

4�2

Z 1

�1
d cos�21=2��=2ð1þ cos�Þ�=2�1=2 �ð1þ �Þ�ð1� 2�Þ

�ð2� �Þ
� 2F1

�
1� 3�

2
;
1þ 3�

2
;
3� �

2
;
1� cos�

2

�
v�2þ�

� L1v
�2þ�: (A22)

Next, consider the other pole at s ¼ 3� 3�. Then

lim
s!2��

ðs� 3þ 3�ÞFðs; �;�Þ ¼ 21=2��=2ð1þ cos�Þ�=2�1=2 �ð3� 3�Þ�ð�1þ 2�Þ
�ð2� �Þ

� 2F1

�
5� 5�

2
;
�3þ 5�

2
;
3� �

2
;
1� cos�

2

�
; (A23)

lim
s!2��

ðs� 3þ 3�ÞF0ðs; �; �Þ ¼ 1: (A24)

Therefore, Eq. (A16) becomes

1

8�3

Z
d�Fðs; �;�ÞF0ðs; �; �Þv�3þ3� ¼ 1

4�2

Z 1

�1
d cos�21=2��=2ð1þ cos�Þ�=2�1=2 �ð3� 3�Þ�ð�1þ 2�Þ

�ð2� �Þ
� 2F1

�
5� 5�

2
;
�3þ 5�

2
;
3� �

2
;
1� cos�

2

�
v�3þ3� � L2v

�3þ3�: (A25)

As a result, T0 becomes

T0ðk̂;vÞ ¼ L1v
�2þ� þ L2v

�3þ3� þ ðhigher orderÞ; (A26)

and the contribution of diagram (c) is
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ðcÞ � 6

�Að�Þ k
1�2�

�
4

N

Z d3v

8�3
v1�2�jvþ k̂j1�2�jvþ k̂=2j�2þ�T0ðk̂;vÞ

�

� 6

�Að�Þ k
1�2�

�
4

N

Z �=k d3v

8�3
v1�2�jvþ k̂j1�2�jvþ k̂=2j�2þ�L2v

�3þ3�

�

� 6

�Að�Þ k
1�2�

�
4L2

N

1

2�2
ln
�

k

�
: (A27)

Similarly, diagram (e) is

ðeÞ � 6

�Að�Þ k
1�2�

� �4

NAð�Þ
Z d3v

8�3
v1�2�jvþ k̂j1�2�T2

0ðk̂;vÞ
�

� 6

�Að�Þ k
1�2�

� �4

NAð�Þ
Z d3v

8�3
v1�2�jvþ k̂j1�2�L1L2v

�5þ4�

�

¼ 6

�Að�Þ k
1�2�

��4L1L2

NAð�Þ
1

2�2
ln
�

k

�
: (A28)

Notice that both diagrams (c) and (e) have a structure similar to those of diagrams (b) and (d). What remains is the
estimation of the coefficients L1 and L2. We evaluated L1 and L2 numerically, and found that L1 �Oð1Þ while L2 is
consistent with zero. Therefore, we conclude that diagrams (c) and (e) could have the lnk contributions, but are numerically
very small, and can be ignored in our calculation.

APPENDIX B: LEADING-LOG TERMS BEYOND NLO

In this appendix, we show that the leading-log contributions of each order of iterative solution to Eq. (49) can be
summed into an exponential form, which then yields the exponent 1=� at the NLO. Indeed, for each order of the iterative

solution ~�ð2;1Þ
NnLO, one can show that the dominant contribution for small k is given as

~�ð2;1Þ
NnLO

�
k

2
;
k

2
; k

�
¼

��
1þ 1

1�D0

D0

�
1

N
D1

�
n 1

1�D0

� 6k1�2�

�Að�Þ
1

n!

� � lnk

�2NAð�Þ
�
n
; (B1)

where n ¼ 0 and 1, respectively, correspond to ~�ð2;1Þ
LO and ~�ð2;1Þ

NLO that we already obtained in the main text. Thus,

~�ð2;1Þ
�
k

2
;
k

2
; k

�
¼ X1

n¼0

~�ð2;1Þ
NnLO

�
k

2
;
k

2
; k

�
� 6k1�2�

�Að�Þ
X
n¼0

1

n!

� � lnk

�2NAð�Þ
�
n

¼ 6

�Að�Þ k
1�2��ð1=�2NAð�ÞÞ: (B2)

Below we compute the NNLO diagrams [ofOð1=N2Þ] and show that the leading-log contribution indeed has the expression
for n ¼ 2 in Eq. (B1), and then verify it at arbitrary order Oð1=NnÞ by induction. The following relation between ~�ð2;1Þ

Nnþ1LO
and ~�ð2;1Þ

NnLO suggests that we can use induction

~�ð2;1Þ
Nnþ1LO

�
k

2
;
k

2
; k

�
¼

��
1þ 1

1�D0

D0

�
1

N
D1

�
~�ð2;1Þ
NnLO

�
k

2
;
k

2
;k

�
: (B3)

Consider the Oð1=N2Þ terms of �ð2;1Þ in Eq. (50):

~�ð2;1Þ
NNLO ¼

�
1þ 1

1�D0

D0

�
1

N
D1

�
1þ 1

1�D0

D0

�
1

N
D1

1

1�D0

; (B4)

which are diagramatically represented as
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Here we did not show diagrams which include (c) and (e)
as subdiagrams because they do not contribute to
the leading-log terms as we already discussed in
Appendix A.

Recall that, at Oð1=NÞ, two diagrams (b) and (d) in
Eq. (52) have lnk terms, which we denote as �b;d

�ð2;1Þ
NLO=�

ð2;1Þ
LO � �b þ �d: (B6)

We showed in the text that the ratio �b:�d ¼ 1: � 2, and

thus �ð2;1Þ
NLO=�

ð2;1Þ
LO ���b. At Oð1=N2Þ, the leading-log

terms come from four diagrams (f) � (i), which are
generated by the repetitions of two diagrams (b) and (d)
and symbolically denoted (with appropriate momentum
integration understood) as

�ð2;1Þ
NNLO=�

ð2;1Þ
LO � ð�b þ �dÞ2 ¼ �2

b þ �b�d þ �d�b þ �2
d

¼ �f þ �g þ �h þ �i: (B7)

We can confirm by explicit calculation that all these four
terms have ln2k contributions and that the coefficients of
the leading-log contributions become �f:�g:�h:�i ¼
1: � 2: � 2: 4, which might be easily inferred from the
Oð1=NÞ relation, �b:�d ¼ 1: � 2. Thus at the Oð1=N2Þ
only the leading-log contribution of the diagram (f) re-

mains after the cancellation, i.e., �ð2;1Þ
NNLO=�

ð2;1Þ
LO � �f � �2

b.

Now let us focus on the diagram (f). The rest of the
diagrams can be similarly evaluated. The diagram (f)
consists of a twice nested triangle and we define the
elementary triangle in (f) as

�1ðk;pÞ ¼
Z d3q

ð2�Þ3
~Gðpþ qÞ ~Gðpþ q� kÞ

�
�
� 2

N
~��1ðqÞ

�
: (B8)

Then, (f) becomes

ðfÞ ¼ 6k1�2�

�Að�Þ
Z d3p

ð2�Þ3
~Gðpþ k=2Þ ~Gðp� k=2Þ

�
� 2

N
~��1ðpÞ

�
�1ðk;pÞ

¼ � 2

N

6k1�2�

�Að�Þ
Z d3p

ð2�Þ3
p1�2�

Að�Þ jpþ k=2j�2þ�jp� k=2j�2þ��1ðk;pÞ

¼ � 2

N

6k1�2�

�A2ð�Þ
Z �=k d3u

ð2�Þ3 u
1�2�juþ k̂=2j�2þ�ju� k̂=2j�2þ��1ðk̂; uÞ; (B9)

where u � p=jkj; k̂ � k̂=jkj. As explained in the evaluation of (b) in the text, the lnk contribution appears in the upper
limit of u integral, where �1 behaves as

�1ðk̂;uÞ � � 1

�2NAð�Þ lnu: (B10)

Therefore, we obtain

ðfÞ � � 2

N

6k1�2�

�A2ð�Þ
Z �=k d3u

ð2�Þ3 u
1�2�u�2þ�u�2þ�

�
� 1

�2NAð�Þ lnu
�

¼ 6k1�2�

�Að�Þ
�

1

N�2Að�Þ
�
2 Z �=k

duu�1 lnu

¼ 6k1�2�

�Að�Þ
�

1

N�2Að�Þ
�
2 1

2
ðln�=kÞ2; (B11)
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from which we confirm that �ð2;1Þ
NNLO has a form of Eq. (B1)

with n ¼ 2

~�
ð2;1Þ
NNLO

�
k

2
;
k

2
;k

�
� 6k1�2�

�Að�Þ
1

2

� � lnk

�2NAð�Þ
�
2
: (B12)

Now let us turn to the evaluation of the leading-log terms

of �ð2;1Þ atOð1=NnÞ. It can be expressed as the n repetitions
of the diagrams (b) and (d) with appropriate momentum
integrations

�ð2;1Þ
NnLO=�

ð2;1Þ
LO � ð�b þ �dÞn � ð�1Þn�n

b; (B13)

where the use has been made of the fact �b:�d ¼ 1: � 2.
Now, ð�1Þn�n

b is diagrammatically represented as an

n-times nested triangle diagram. Therefore, ~�ð2;1Þ
NnLO has a

structure similar to ~�ð2;1Þ
NNLO

~�ð2;1Þ
NnLO

�
k

2
;
k

2
;k

�
¼ 6k1�2�

�Að�Þ
Z d3p

ð2�Þ3
~Gðpþk=2Þ ~Gðp�k=2Þ

�
�
� 2

N
~��1ðpÞ

�
�n�1ðk;pÞ; (B14)

where �n�1 represents an (n� 1)-times nested triangle.
We notice that �n satisfies the recursion relation

�nþ1ðk;pÞ ¼
Z d3q

ð2�Þ3
~Gðqþ k=2Þ ~Gðp� k=2Þ

�
�
� 2

N
~��1ðq� pÞ

�
�nðk; qÞ: (B15)

The structure of the integral is the same as Eq. (B9) and one

can show inductively that �n is evaluated as �nðk̂; uÞ �
1
n! ð� 1

�2NAð�Þ lnuÞn at large u ¼ jpj=jkj. That is, when one
substitutes this �n into Eq. (B15), one encounters the same
integral as in Eq. (B11), in which � 1

�2NAð�Þ lnu is re-

placed by 1
n! ð� 1

�2NAð�Þ lnuÞn. By using the formulaR
duu�1ðlnuÞn ¼ 1

nþ1 ðlnuÞnþ1, we can show that

�nþ1ðk̂; uÞ � 1
ðnþ1Þ! ð� 1

�2NAð�Þ lnuÞnþ1. Finally, after we

substitute the form of �n�1 into Eq. (B14) and use the
above integral formula again, we conclude that the leading-

log contribution of ~�ð2;1Þ
NnLO is given by Eq. (B1).
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