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We construct some examples of D =3, N =4 GW theory and N =5 superconformal Chern-
Simons matter theory by using the covariantly constant curvature of a quaternionic-Kahler manifold to
construct the symplectic 3-algebra in the theories. Comparing with the previous theories, the N =4, 5
theories constructed in this way possess a local Sp(2n) symmetry and a diffeomorphism symmetry
associated with the quaternionic-Kahler manifold. We also construct a generalized N' = 8 BLG theory
by utilizing the dual curvature operator of a maximally symmetric space of dimension 4 to construct the
Nambu 3-algebra. Comparing with the previous N = 8 BLG theory, the theory has a diffeomorphism
invariance and a local SO(4) invariance associated with the symmetric space.
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I. INTRODUCTION AND SUMMARY

In the last three years, the extended (N = 4) super-
symmetric Chern-Simons-matter (CSM) theories in 3D
have been constructed by using both ordinary Lie algebras
and 3-algebras [1-15]. In particular, symlectic 3-algebra
provides a unified framework for constructing all N = 4
CSM theories [12]. Using superalgebra to realize the
3-algebra, one can recover all known examples of the
extended N = 4 CSM theories [9,11,12] and construct
several new classes of N = 4 theories as well [13].

A 3-algebra is a triple system. Since a covariantly con-
stant curvature tensor also defines a triple system, it is
natural to ask whether it can be used to construct the
3-algebras in the extended CSM theories. In this paper,
we demonstrate that at least some special curvature tensor
can be used to construct the structure constants of the
3-algebra. Specifically, we use the covariantly constant
curvature tensor of a manifold admitting a quaternion
structure to construct the symplectic 3-algebra in the
N =4 GW theory and N = 5 theory; the symmetry
generated by the curvature tensor is partially gauged, and
the resulting gauge group is Sp(2n). Comparing to the
original N' = 4, 5 theories [3,7], the theories constructed
in this way have a local Sp(2n) symmetry and a diffeo-
morphism symmetry related to the (quaternionic-Kahler)
manifold.

We demonstrate that the dual curvature tensor of a
4D (internal) manifold also defines a triple system, pro-
viding that the curvature tensor is covariantly constant.
Furthermore, if the dual curvature tensor is totally anti-
symmetric, we can use the triple system constructed by the
dual curvature operator to realize the Nambu 3-algebra in
the N = 8 BLG theory. The N = 8 BLG theory con-
structed in this way is a generalization of the previous
theory in Ref. [1,2], in that it has a diffeomorphism
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invariance and a local SO(4) symmetry associated with
the 4D internal space. The gauge group generated by the
dual curvature 3-algebra is still SO(4). It would be nice to
analyze this generalized JN" = 8 BLG theory further.

The paper is organized as follows. In Sec. II, we briefly
review the symplectic 3-algebra, and utilize the covariantly
constant curvature tensor of a quaternionic-Kahler mani-
fold to construct the symplectic 3-algebra in the N = 4
GW theory and N = 5 theory [12]. In Sec. III, we use the
dual curvature tensor of a maximally symmetric 4D space
to construct the Nambu 3-algebra in the N = 8 theory.
In Appendix A, we briefly review the N = 4, 5, 8 CSM
theories. Our conventions are summarized in Appendix B.

II. CURVATURE TENSOR AND SYMPLECTIC
3-ALGEBRA

A. A review of symplectic 3-algebra

In this section, we will review the symplectic 3-algebra
[9,11]. A symplectic 3-algebra is a complex vector space,
equipped with the 3-bracket

[Ta’ Tb; Tc] = fabchd’

where T, (a = 1,...,2L) is a set of basis generators. We
assume that the structure constants are symmetric in the
first two indices, i.e.

d — d
fabc _fbac .

The structure constants are required to satisfy the funda-
mental identity

fabggfgfcd + fabfgfegcd - fefdgfabcg - fefcgfabdg =0.
2.3)

The transformation of a 3-algebra valued field X = X“T, is
defined as

2.1

(2.2)

5/‘\Xd — Aah d

abc

(2.4)
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where A is a set of parameters, satisfying the reality
condition

Af, = A = pabip , (2.5)

To define a symplectic 3-algebra, we require the trans-
form (2.4) to preserve both the antisymmetric form
o(X,Y) = 0,,X*Y"? and the Hermitian form h(X,Y) =
X*2Y" simultaneously:

diw(X,Y) =65h(X,Y)=0. (2.6)

Together with (2.2), (2.5), and (2.9) below, Egs. (2.6) imply
that the structure constants satisfy the symmetry conditions

fabcd = fbacd = fabdc = fcdab’ (27)
and obey the reality condition
f:bcd = fade = waewawcgwdhfefgh- (2.8)

We have used the invariant antisymmetric tensor w,, to
lower a 3-algebra index, i.e. f pcqd = @ 4o f .- The inverse
of w,, is denoted as w”¢, satisfying w " = §,°. Also,
to close the N = 4, 5 superalgebras, the structure con-
stants must satisfy the linear constraint equation

f(abc)d = 0. (29)

B. Curvature tensor and structure constants
of 3-algebra

In this section, we will demonstrate that the covariantly
constant curvature tensor of a quaternionic-Kahler mani-
fold can be used to construct the structure constants of
the symplectic 3-algebra. Let (M, g) be a 4n-dimensional
manifold, which will be called an internal space. Assume
that the metric g is nondegenerate and positive definite.
Suppose that the curvature tensor is covariantly constant,
i.e. ViR ki = 0, with the index I running over 1, ..., 4n.
Then the integrability condition [V, VR yn = O gives

) 0 0
R% g jRoLmn T RY [ 1jRkomn T R” yyRkron

+R0NIJRKLM0:O' (210)

On the other hand, it is well known that the curvature
operator maps three vectors into one vector, that is,

R(es, ej)ex = RIJKLeL’ (2.11)
where ¢; is a set of basis vectors satisfying
glen e)) = g (2.12)

Equations (2.10) and (2.11) actually define a triple system:
using the curvature operator to construct the 3-bracket
ler, essex] = R(ey, e))ex = Ry it ey, (2.13)

we see that Eq. (2.10) is equivalent the equation
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les, es:[em ens ex]]
= [[en, esien] ensex] + [em, [ef egien]s ex]

+ [en, enilep egsex]l, (2.14)

which plays the role of fundamental identity (FI). We call
the Lie triple system defined by (2.12), (2.13), and (2.14) a
curvature 3-algebra. The curvature 3-algebra can generate
an SO(4n) symmetry; the corresponding symmetry group
is of course the holonomy group. Writing Rz as (R;7)kr»
we can think of that (R;;) are a set of matrices, with
(R;;) k. the matrix elements. Then the matrices (R,;) are
indeed a set of SO(4n) generators, since they preserve the
symmetric and nondegenerate inner product gg; in the
sense that [V, V,]gxr = R;;xMgmr + Ry Mgxm = 0,
i.e. the matric elements (R;;)g; are antisymmetric in KL.
The structure constants of the algebra can be read off
from (2.10).

Assume that the manifold admits the quaternion struc-
ture or the triplet of complex structures

), = —ief*(a’)Belp, (2.15)

where (¢7),8 (i = 1,2, 3; A = 1, 2) are the pauli matrices.
The vielbein e¢* satisfies

e?AeJaA =g €?A€IbB — a)ab GAB, (216)

where e/? = gV ¢bB Here €5 is the antisymmetric tensor

of Sp(2) = SU(2), and the antisymmetric tensor w® will
be identified as the symplectic form of Sp(2n). We denote
the inverse of €' as epc: €'Pege = §2. The inverse
of 0 is w,, satisfying o w,, = 8¢. Since g, is real,
the vielbein must obey the reality condition e;,, =
€30 4,¢?B. The quaternion algebra reads J'J/ = e'/kJ* —
&Y. The triplet of complex structures, vielbein and
antisymmetric tensors must be covariant constants,

V,(Ji)JK = Vle‘J’A = VIEAB = V,w“b = 0. (217)

The integrability condition
(Vi Ve = Ryyxhef® + Ry e + Ry pei = 0
(2.18)

suggests that the curvature tensor Rz’ can be decom-
posed into two parts®:

I ,J K L
€ua€hpececCipRikL

=RuabBccdp = @ap @ cqRapep + €ap€cpRapeq-  (2.19)

The Symmetry properties of RIJKL (R[JKL = _RJIKL =
_RIJLK = RKLI./) lmply that Rabcd and RABCD Obey the
symmetry conditions

Rubcd = Rhacd = Rabdc = Rcdahy (220)

"Here (R;;) is not the Ricci tensor R;;.
For a general discussion of the curvature of quaternionic-
Kahler manifolds, see Ref. [16].
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Rapep = Rpacp = Rappe = Repap- (2.21)
The integrability condition
[V, V,]w”b = R”“de’ + R””Cw“ =0 (2.22)

implies that the matrix R;;*. (for fixed / and J) is an
Sp(2n) matrix. Similarly, for fixed I and J, the matrix
R,y is a generator of the Lie algebra of Sp(2). Later
we will see, only the symmetry generated by R, ,“. will be
gauged, meaning that we will gauge part of the full sym-
metry generated by R, jKL. By Egs. (2.17) and (2.15), we
learn that the pauli matrices must be covariantly constant
as well, i.e. V,4(c")gr = 0. Defining

(Tcp)er = OepTpp = €cp€pr + €crépe (2.23)

the integrability condition w®*[V 4, V,51(7cp)gr = 0 gives

RABCG(TGD)EF + RABDG(TCG)EF + RABEG(TCD)GF

+ Rypr%(7cp)pg = 0. (2.24)

In accordance with the decomposition (2.19), Eq. (2.10)
is decomposed into two equations

Rpe*Ropea T Rypr*Regea = Ropa® Raveg = Reopc* Rapag =0,

(2.25)

abe

G G _ G
RABE RGFCD+RABF REGCD REFD RABCG

— Rprc“Rappc =0. (2.26)

It can be see that (2.20) and (2.25) take exactly the same
forms as that of (2.3) and (2.7), respectively. However,
if we want to identify the structure constants f,,., with
R ,pcq>» Wwe must make sure that R, also obeys the linear
constraint Eq. (2.9) and satisfies the reality condition (2.8).
We will see that at least in some special case, these two
requirements can be fulfilled. To see this, let us consider
the algebraic property of the Riemann curvature tensor

Raapecap + Rppecanap T Recaappap = 0. (2.27)

Using the decomposition (2.19), Eq. (2.27) can be con-
verted into

Rupca€a€cp t Rpcaa€pc€ap T Reava€ca€pp
+ Rapep@ap®ca+ Rpcap@pe@aa + Reapp @ cq@pa = 0.
(2.28)

Let us solve for R, pcp first; comparing (2.26) with (2.24),
we find an obvious solution to these two equations:

Rugcp = kK(7ap)cp = k(€acepp + €ap€pc),  (2.29)

where k is proportional to the (constant) curvature scalar
R = g!/R,;. It can be seen that right hand side of (2.29)
satisfies the symmetry conditions (2.21) and (2.26).
Substituting Eq. (2.29) above into (2.28), we obtain
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[Rubea = Rpcaa — k@ pe 04 = 20,0 0py + 0 4p04)1€45€CD
+ [Rcabd - Rhcad + k(whcwad - Zwahwcd

+ ©cq0pg)]€ca€pp =0, (2.30)

where we have used the identity € z€cp = €4c€pp —
€pc€sp- We observe that if the first line vanishes, then
the second line vanishes automatically, and vice versa. We
therefore need only to consider the equation

Rabcd - Rbcad - k(wbcwad - 2wcawbd - wabwcd) = 0.
(2.31)

Under the condition R, = 0, the solution is given by

Rupea = k@4e0pg + 0 4q0p,), (2.32)

which is nothing but an Sp(2n) matrix (for fixed a and b).
Now it is straightforward to check that (2.32) obeys
the linear constraint Eq. (2.9) and satisfies the reality
condition (2.8): namely, R,y = 0 and R}, ., = R*¢! =
0w’ 0w ™R, ;.. Hence R,p.q can be used to con-
struct the structure constants of the symplectic 3-algebra.
Substituting (2.29) and (2.32) into (2.19) determines k =
gty - Also by (2.29) and (2.32), we learn that our solu-
tion R,4pp.ccap 1S consisted of entirely by covariantly
constant quantities such as w,;, and €45, so it must be
also a covariantly constant tensor, i.e. V;R 4 p.cc.ap = 0.
Setting f,pca = Rapeq and substituting (2.32) into Eq. (A1)
[Eq. (A5)] gives the N =4 GW (N = 5) theory with
Sp(2n) gauge group.

It can be seen that the N° = 4 action constructed here
has the symmetries associated with the quaternionic-
Kahler manifold:

(i) Diffeomorphism invariance’:

Ripeald) =Rapealq),  Z3(q")=Z(q),
(g = ilq), Alb(q) =A% (q)
with ¢’ a set of local coordinates, and ¢’ — ¢/ an

arbitrary coordinate transformation.
(ii) Local Sp(2n) symmetry:

Z4(q) =L (@)Z5(q).  §%(q)=L" (9P’ (g),
A (q)=L" (9L’ (9)AL (q),
fahcd(l]) = Rabcd(Q)
=L, (q)L," ()L 4(q)L " (@)R.fe1(q)
=Rupea(q), (2.34)

(2.33)

where L,°(q) = @,.0°L° (), and L (g) satisfies

Lca(Q)th(Q)wcd = Wgp- (235)

3The indices a = 1, 2 and @ = 1, 2 below denote the bifun-
damental representation of the R-symmetry group SU(2) X
SU(2) (see Sec. Al).
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In the last equation of (2.34), we have used (2.32)
and (2.35).

Similarly, the N =5 theory also possesses the diffeo-
morphism symmetry and the local Sp(2n) symmetry asso-
ciated with the internal space.

However, we emphasis that the N =4 GW theory
constructed here is not a conventional nonlinear sigma
model like the one in Ref. [3]: in our construction,
the scalar fields Z% are a set of complex vectors of the
quaternionic-Kahler manifold, while in the original
N = 4 GW nonlinear sigma model, the scalar fields are
a set of local coordinates of the target space being a
4n-dimensional hyper-Kahler manifold. Also, the gauge
symmetry of the N = 4 GW theory constructed here is
generated by the curvature 3-algebra or the holonomy
algebra of the internal space, while in the N =4 GW
nonlinear sigma model, the gauge symmetry is generated
by the Killing vectors of the target space.

III. DUAL CURVATURE TENSOR AND
GENERALIZED N =8 BLG THEORY

In this section, we will demonstrate that the Nambu
3-algebra can be realized by utilizing the dual curvature
operator of a 4D maximally symmetric space. We call this
symmetric space an internal space. A generalized N = 8
BLG theory possessing a diffeomorphism invariance and a
local SO(4) symmetry related to the internal space can be
constructed by virtue of the dual curvature tensor.

In 4D, the dual curvature tensor is defined as

abcd \/—SabefR

where g = det(g,), and \/ge,p, s is the totally antisym-
metric tensor.* (We assume that the metric is nondegener-
ate and positive definite.) If the curvature tensor R, s,
satisfies VR, r.q = 0, we must have V Rabcd 0 on ac-
count of that \/ge,.¢ is always a covariant constant. To
prove that V,(,/g&4.¢) = 0, we introduce a set of vielbein
fields e¢ (i=1,...,4) satisfying Bije?ej? = g% and
ga,,e?ej? = 0;;. Now the totally antisymmetric tensor can
be converted into a constant g;;; = ef e’ Jeres \/_sabcd (our
convention is that g/Kl = §im §in gko Blpsmnop &%), and
its covariant derivative is given by

3.1

J— a — n - n
vmsijkl = em(aasijkl Wy i€njkl — Wa j€inkl

©," 18} jkn)- (3.2)
The spin connection can be written as @,"; = 3 wg’ (0,,)";,
with (7,,)"; = 646 ,; — 6,67 the SO(4) matrlces Since

oYpi oiYp

= (), the right hand side of (3.2) becomes

_ n _
w, ksijnl

94€ijul

“Here a = 1,...,4 is a tangent vector index, not an Sp(2n)
fundamental index of the last section. We hope this will not
cause any confusion.
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1
- Ee wap[(Top) i€njkl + (Top) iEinkt T (Top) kEijnl

+ (Top)nlsijkn]'
The quantity in the bracket is nothing but the variation
of &, under the transformation generated by (7,,); it
vanishes due to the fact that g, is SO(4)-invariant.

Alternatively, one can write the first term in the bracket of
(3.3) as

(3.3)

(Top ni€njkl = (% smsopsmsni)snjkl- (34)
Substituting &,,,,,;"* = 5l 5%,6% 69 into the right hand
side of (3.4) proves that (3.3) is zero. This completes the
proof that V,, &, 4, = 0, meaning that the tensor \/g& . is a
covariant constant. Assuming that VR4, ;= = 0, and multi-
plying the integrability condition[V¢, V'R 4., = Oby 3 X
J€Eapgn» WE Obtain

Rgbggkgfcd+Rabngegcd_ _RgfchabngO'
3.5)

On the other hand, we can construct a 3-bracket in terms of
the dual curvature operator'

Refdgkabcg

{ew ep et = \/_SabefR(e eNe. =R, s (3.6)
with e, a set of basis vectors satisfying
g(ea’ eb) = 8ab (37)

We now see that taking account of the inner product (3.7),
Eq. (3.5) is equivalent to the fundamental identity

{ear €p, {ec’ €aq ee}} = {{ea’ €p, ec}r €y, ee} + {ecr {ear €p, ed}’ ee}

+ {ec’ €d {ea’ €h, ee}}- (38)
We call the triple system defined by Egs. (3.6), (3.7), and
(3.8) a dual curvature 3-algebra. In Sec. 1B, we
have demonstrated that the curvature tensor of the
4n-dimensional manifold can generate an SO(4n) symme-
try. Based on the same reason, the dual curvature 3-algebra
can generate an SO(4) symmetry.

If R4 is completely antisymmetric in all indices, the
dual curvature 3-algebra is an obvious realization of the
Nambu 3-algebra.” We now assume that R is totally anti-
symmetric. Since in 4D the totally antisymmetric tensor is
essentially unique, we must have R,,., = k\/g€apca-
Using Eq. (3.1), one can determine that
gedgfc)' (39)

R
Refcd = E(gecgfd -

Namely, the manifold is maximally symmetric and k is
given by k = &, with R the curvature scalar, which must
be a constant. Therefore our final result is

5If the inner product is Lorentzian in the sense that g?¢! e’b =

1%, then it is a realization of the Lorentzian 3-algebra. But we do
not consider this case in the current paper.
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fahcd abcd (3 10)

12 \/ggabcd'
R,,.4 being totally antisymmetric is a necessary condition
for closing the N = 8 superalgebra. We now present an
alternative derivation of (3.10). Since R, p.y = Rbacd

—Rpaer Rupeq Will be totally antisymmetric if R,,.; =
—R,.pq- Multiplying both sides of the equation by
ﬁgsef“b and using (3.1), we obtain

1 1
Refea = (ﬁ-g-sef b)(‘ E\EsacghRghbd) (3.11)

A short calculation gives

1
Refcd + g(gfcRed - gechd) = 0. (3.12)

In order that R,y = —R,.fqc, We must require that
gfcRed - gechd = _(gdeec - gedec)~ Mlﬂtlplylng both
sides by g/ determines the Ricci tensor R,, uniquely:
R, = gged. Substituting it into (3.12) gives (3.9).
Combining (3.1) and (3.9), we obtain (3.10) again.

We see that the curvature tensor (3.9) indeed obeys the
crucial equation V,R, /., = 0. The dual curvature tensor
satisfies Eq. (3.5), and has the desired symmetry properties
as well. So (3.6) and (3.8), as well as the inner product
(3.7), are indeed a realization of the Nambu 3-algebra. In
this realization, we must use the metric g, and its inverse
g"¢ to lower and raise indices, respectively. Plugging (3.10)
into Eq. (A8) and (A9) gives the N' = 8 BLG theory with
SO(4) gauge group. The matter fields are in the vector
representation of SO(4). The N = 8, SO(4) theory has
been conjectured to be the dual gauge theory of two
M2-branes [4].

Comparing with the original N = 8 BLG theory in
Ref. [1,2], our theory has a diffeomorphism invariance
and a local SO(4) symmetry related to the 4D (internal)
symmetric space. Specifically, the theory is invariant under
the transformations

ZMo ’)—a ,aZA( ), Phalo ’)—a ,awAb(a)

do'* 9ot

ML) =57 S, o),

doc dod

gab(o-/) /a a /bgcd(a-)
(3.13)

Fupeald') = ubcd(o-/)

do¢ dol 9o doh -

1d efgh(a-)

T 9090 00 0

— /
- Vg Eabed
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where ¢ and ¢'® are two sets of coordinates of the 4D
internal space. The N = 8 action is also invariant under
the local SO(4) transformations:

7o) = L (0)Z}(0),
&Ai(a) = Lij(U)l/’Aj(U'),

A,Lij((f) = L' (o)L (o)A, (o)
Lki(O')Llj(U')5k1 = 0;j,

Fin(@) = Riju(0) = &4 = Riju(o), (3.14)

and L/(o) = 8;.8/'L* (o). Hence our theory is sort of

generalized N = 8 BLG theory.
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APPENDIX A: A REVIEW THE N =
THEORIES

In this section, we review the N =4, 5, 8 CSM
theories.

4,5,8

1. N = 4 GW Theory

The N = 4 GW theory was first constructed in Ref. [3],
using an ordinary Lie algebra approach. In Ref. [12], the
N = 4 GW theory was constructed in terms of the sym-
plectic 3-algebra. (The symplectic 3-algebra is reviewed in
Sec. I A.) The action reads

1 7 a R a
L= 5(_D/LZ¢1D'MZ01 + l‘/’a?’”DM%)

i .
- EfacbdZZZ“blﬁ;;lﬁBd

1 2
+ 2 GW)‘<fabchf¢bavAf\d + gf

abc

ngdAﬁA#Aﬁ)

1
Efabcgfgd(,fZ“"ZZZﬁ(CZ‘;)ZWZ{;. (A1)
Here @« = 1, 2 and & = 1, 2 are the undotted and dotted
indices of the SU(2) X SU(2) R-symmetry group, respec-
tively; a = 1,...,2n a symplectic 3-algebra index. The
covariant derivative is defined as

D75 =0,72% — A, 28 A,

B = AUf e, (A2)

The matter fields obey the natural reality conditions Z% =
W, €*PZY, and ¢ = a)abe‘j‘BZZ. Here €*# and €% are
invariant antisymmetric tensors of the R-symmetry group
SU(2) X SU(2), satisfying €*Peg, = 65 and e€*Pey, =
05. The supersymmetry transformations are given by

065017-5



FA-MIN CHEN PHYSICAL REVIEW D 85, 065017 (2012)
. . 1 X T c . af a c
874 =ie, W4, Syh=—y"D,Z4el’ - 3 FedZbZPZ8ely, 84, =iePy, WO Zaf 0 (A3)

where the parameter satisfies the reality condition

el = —eﬁyedﬁeg (A4)

2. N = 5 Theory
The N = 5 action reads [11]

1 _ . i a )
= S (D, ZIDRZE + iPED, Y ) — 30 B0 0uf 1 (ZAZGUL U — 2Z8Z5 1Y)

1 2
+ z EMV)‘(wdEfubceA‘lll«baVAjd + 5 wfhfubcgfgdehAsz’idAif)
1 :
- @ (2fabcgfgdfe - 9fcdagfgfbe + 2fabdg gcfe)Z‘];ZaaZ%Zﬁczzzz’ (AS)
|
Here a =1,...,4 (i)s a fundamental index of the Sp(4) Zza=waﬂwab2%’ ¢Z“=w“ﬁwab¢l/’3. (A6)
R-symmetry group;” a = 1, ..., 2n a symplectic 3-algebra
index. The covariant derivative is defined as D,Zj = Here w,gz is the invariant antisymmetric tensor of § p(4),
0,25 — A, 42, where A, = A;‘L” fapq- The matter  satisfying w,, Ba)ﬁy = 8. The supersymmetry transforma-
fields obey the reality conditions tions are given by

. 1 : 2 : P e :
8Z4=ie, Py, SYL=vy"D, Z4eP  + gfcdb“wBVZ%Z‘nge‘sa - gfa,b“wﬁﬁz’;zgzgi €y SAZEPY W RZaS wnds
(AT)
where the parameter €*# is antisymmetric in a3, satisfying
w,pe*? =0, €rp = 0V 0P

3. N = 8 BLG Theory

Here we will follow the convention of Ref. [15]. The action is given by

- - - _ - - i -
L= =D, Z4DAZ} = iBA Y Dy = if g U aaZEZy + 2f W ZEZs — e anenf o YPIZE L]
i - oy 1 , 2
_ 5 SABCchdab l;bAc ldezcéZIb) + 5 SMW\(fabch,ucbavA/\da + gfa dgfgefbA;LbaAvch/\fe)
2 | o
-3 (f"bcdf“’fg - 5febcdf“"fg)zgzézgzgzgzg’. (A8)

Here A = 1, ...,4 is a fundamental index of the SU(4) R-symmetry group.” And a=1,..., L is a Hermitian 3-algebra
index. The covariant derivative is defined as D, Zy = 9,74 — A,“,Z4, where A%, = A, f*,,. The SUSY trans-
formation law reads

825 = —ie"Byp,, Sthpa = Y'D Zheap + [0 JZEZ0 2 €pp + [ ZEZD ZG €,

8AL g = —i8apY W ZaWP [y + 1Py ZG g [ g (A9)

°In the N =4 theory (see Appendix Al), @ = 1, 2 transforms in the fundamental representation of one factor of the SU(2) X
SU(2) R-symmetry group. We hope this will not cause any confusion.

"In Sec. IIB, A = 1, 2 denotes the S p(2) index of the curvature tensor of the quarternionic-Kahler manifold; in this section, A =
1,..., 4 refers to the fundamental index of the SU(4) R-symmetry of the BLG theory. We hope this will not cause any confusion.
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Here the SUSY transformation parameters €,p
satisfy
— o _ aB_) _asco
€EAB = T €pA,  €Epp = € —58 €cp- (AlO)

In the action and the supersymmetry transformation
law, only SU(4) R-symmetry is manifest. However, in
Ref. [14], it was demonstrated explicitly that theory
actually has an N =8 R-symmetry, if the structure
constants  f9>d  are totally antisymmetric or the
Hermitian 3-algebra becomes the Nambu 3-algebra.

PHYSICAL REVIEW D 85, 065017 (2012)
APPENDIX B: CONVENTIONS

In 1 + 2 dimensions, the gamma matrices are defined as
(Y)a”(V)yP + (7)o" (vu), P =2m,,6,F.  (BI)

For the metric we use the (—, +, +) convention. We also
define the totally antisymmetric tensor e*"* = —g uvre SO
€&l A= —-26 /- We raise and lower spinor indices with
an antisymmetric matrix €,z = —€B, with €, =—1. For
example, y* = €*P ) 5 and ygﬁ = €5,(v"),", where g
is a Majorana spinor. We use the following spinor summa-
tion convention: Y x =X, YV X= wo‘(yﬂ)aﬁ/\/ﬁ,
where ¢ and y are anticommuting Majorana spinors.
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