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We construct some examples of D ¼ 3, N ¼ 4 GW theory and N ¼ 5 superconformal Chern-

Simons matter theory by using the covariantly constant curvature of a quaternionic-Kahler manifold to

construct the symplectic 3-algebra in the theories. Comparing with the previous theories, the N ¼ 4, 5

theories constructed in this way possess a local Spð2nÞ symmetry and a diffeomorphism symmetry

associated with the quaternionic-Kahler manifold. We also construct a generalized N ¼ 8 BLG theory

by utilizing the dual curvature operator of a maximally symmetric space of dimension 4 to construct the

Nambu 3-algebra. Comparing with the previous N ¼ 8 BLG theory, the theory has a diffeomorphism

invariance and a local SOð4Þ invariance associated with the symmetric space.
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I. INTRODUCTION AND SUMMARY

In the last three years, the extended (N � 4) super-
symmetric Chern-Simons-matter (CSM) theories in 3D
have been constructed by using both ordinary Lie algebras
and 3-algebras [1–15]. In particular, symlectic 3-algebra
provides a unified framework for constructing all N � 4
CSM theories [12]. Using superalgebra to realize the
3-algebra, one can recover all known examples of the
extended N � 4 CSM theories [9,11,12] and construct
several new classes of N ¼ 4 theories as well [13].

A 3-algebra is a triple system. Since a covariantly con-
stant curvature tensor also defines a triple system, it is
natural to ask whether it can be used to construct the
3-algebras in the extended CSM theories. In this paper,
we demonstrate that at least some special curvature tensor
can be used to construct the structure constants of the
3-algebra. Specifically, we use the covariantly constant
curvature tensor of a manifold admitting a quaternion
structure to construct the symplectic 3-algebra in the
N ¼ 4 GW theory and N ¼ 5 theory; the symmetry
generated by the curvature tensor is partially gauged, and
the resulting gauge group is Spð2nÞ. Comparing to the
original N ¼ 4, 5 theories [3,7], the theories constructed
in this way have a local Spð2nÞ symmetry and a diffeo-
morphism symmetry related to the (quaternionic-Kahler)
manifold.

We demonstrate that the dual curvature tensor of a
4D (internal) manifold also defines a triple system, pro-
viding that the curvature tensor is covariantly constant.
Furthermore, if the dual curvature tensor is totally anti-
symmetric, we can use the triple system constructed by the
dual curvature operator to realize the Nambu 3-algebra in
the N ¼ 8 BLG theory. The N ¼ 8 BLG theory con-
structed in this way is a generalization of the previous
theory in Ref. [1,2], in that it has a diffeomorphism

invariance and a local SOð4Þ symmetry associated with
the 4D internal space. The gauge group generated by the
dual curvature 3-algebra is still SOð4Þ. It would be nice to
analyze this generalized N ¼ 8 BLG theory further.
The paper is organized as follows. In Sec. II, we briefly

review the symplectic 3-algebra, and utilize the covariantly
constant curvature tensor of a quaternionic-Kahler mani-
fold to construct the symplectic 3-algebra in the N ¼ 4
GW theory andN ¼ 5 theory [12]. In Sec. III, we use the
dual curvature tensor of a maximally symmetric 4D space
to construct the Nambu 3-algebra in the N ¼ 8 theory.
In Appendix A, we briefly review the N ¼ 4, 5, 8 CSM
theories. Our conventions are summarized in Appendix B.

II. CURVATURE TENSOR AND SYMPLECTIC
3-ALGEBRA

A. A review of symplectic 3-algebra

In this section, we will review the symplectic 3-algebra
[9,11]. A symplectic 3-algebra is a complex vector space,
equipped with the 3-bracket

½Ta; Tb;Tc� ¼ fabc
dTd; (2.1)

where Ta (a ¼ 1; . . . ; 2L) is a set of basis generators. We
assume that the structure constants are symmetric in the
first two indices, i.e.

fabc
d ¼ fbac

d: (2.2)

The structure constants are required to satisfy the funda-
mental identity

fabe
gfgfcd þ fabf

gfegcd � fefd
gfabcg � fefc

gfabdg ¼ 0:

(2.3)

The transformation of a 3-algebra valued field X ¼ XaTa is
defined as

�~�X
d ¼ �abfabc

d; (2.4)*famin.chen@gmail.com
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where �ab is a set of parameters, satisfying the reality
condition

��
ba ¼ �ab ¼ !ac!bd�cd: (2.5)

To define a symplectic 3-algebra, we require the trans-
form (2.4) to preserve both the antisymmetric form
!ðX; YÞ ¼ !abX

aYb and the Hermitian form hðX; YÞ ¼
X�aYb simultaneously:

�~�!ðX; YÞ ¼ �~�hðX; YÞ ¼ 0: (2.6)

Together with (2.2), (2.5), and (2.9) below, Eqs. (2.6) imply
that the structure constants satisfy the symmetry conditions

fabcd ¼ fbacd ¼ fabdc ¼ fcdab; (2.7)

and obey the reality condition

f�abcd ¼ fabcd ¼ !ae!bf!cg!dhfefgh: (2.8)

We have used the invariant antisymmetric tensor !ab to
lower a 3-algebra index, i.e. fabcd � !defabc

e. The inverse

of !ab is denoted as !bc, satisfying !ab!
bc ¼ �a

c. Also,
to close the N ¼ 4, 5 superalgebras, the structure con-
stants must satisfy the linear constraint equation

fðabcÞd ¼ 0: (2.9)

B. Curvature tensor and structure constants
of 3-algebra

In this section, we will demonstrate that the covariantly
constant curvature tensor of a quaternionic-Kahler mani-
fold can be used to construct the structure constants of
the symplectic 3-algebra. Let ðM;gÞ be a 4n-dimensional
manifold, which will be called an internal space. Assume
that the metric g is nondegenerate and positive definite.
Suppose that the curvature tensor is covariantly constant,
i.e. rIRJKLM ¼ 0, with the index I running over 1; . . . ; 4n.
Then the integrability condition ½rI;rJ�RKLMN ¼ 0 gives

RO
KIJROLMNþRO

LIJRKOMNþRO
MIJRKLON

þRO
NIJRKLMO¼0: (2.10)

On the other hand, it is well known that the curvature
operator maps three vectors into one vector, that is,

RðeI; eJÞeK ¼ RIJK
LeL; (2.11)

where eI is a set of basis vectors satisfying

gðeI; eJÞ ¼ gIJ: (2.12)

Equations (2.10) and (2.11) actually define a triple system:
using the curvature operator to construct the 3-bracket

½eI; eJ; eK� � RðeI; eJÞeK ¼ RIJK
LeL; (2.13)

we see that Eq. (2.10) is equivalent the equation

½eI; eJ; ½eM; eN; eK��
¼ ½½eI; eJ; eM�; eN; eK� þ ½eM; ½eI; eJ; eN�; eK�

þ ½eM; eN; ½eI; eJ; eK��; (2.14)

which plays the role of fundamental identity (FI). We call
the Lie triple system defined by (2.12), (2.13), and (2.14) a
curvature 3-algebra. The curvature 3-algebra can generate
an SOð4nÞ symmetry; the corresponding symmetry group
is of course the holonomy group. Writing RIJKL as ðRIJÞKL,
we can think of that ðRIJÞ are a set of matrices,1 with
ðRIJÞKL the matrix elements. Then the matrices ðRIJÞ are
indeed a set of SOð4nÞ generators, since they preserve the
symmetric and nondegenerate inner product gKL in the
sense that ½rI;rJ�gKL ¼ RIJK

MgML þ RIJL
MgKM ¼ 0,

i.e. the matric elements ðRIJÞKL are antisymmetric in KL.
The structure constants of the algebra can be read off
from (2.10).
Assume that the manifold admits the quaternion struc-

ture or the triplet of complex structures

ðJiÞIJ ¼ �ieaAI ð�iÞABeJaB; (2.15)

where ð�iÞAB (i ¼ 1, 2, 3; A ¼ 1, 2) are the pauli matrices.
The vielbein eaAI satisfies

eaAI eJaA ¼ gIJ; eaAI eIbB ¼ !ab�AB; (2.16)

where eIbB ¼ gIJebBJ . Here �AB is the antisymmetric tensor
of Spð2Þ ffi SUð2Þ, and the antisymmetric tensor !ab will
be identified as the symplectic form of Spð2nÞ. We denote
the inverse of �AB as �BC: �AB�BC ¼ �A

C. The inverse

of !ab is !bc satisfying !ab!bc ¼ �a
c . Since gIJ is real,

the vielbein must obey the reality condition eIaA ¼
�AB!abe

bB
I . The quaternion algebra reads JiJj ¼ �ijkJk �

�ij. The triplet of complex structures, vielbein and
antisymmetric tensors must be covariant constants,

rIðJiÞJK ¼ rIe
aA
J ¼ rI�

AB ¼ rI!
ab ¼ 0: (2.17)

The integrability condition

½rI;rJ�eaAK ¼ RIJK
LeaAL þ RIJ

a
be

bA
K þ RIJ

A
Be

aB
K ¼ 0

(2.18)

suggests that the curvature tensor RIJK
L can be decom-

posed into two parts2:

eIaAe
J
bBe

K
cCe

L
dDRIJKL

¼RaA;bB;cC;dD¼!ab!cdRABCDþ�AB�CDRabcd: (2.19)

The symmetry properties of RIJKL (RIJKL ¼ �RJIKL ¼
�RIJLK ¼ RKLIJ) imply that Rabcd and RABCD obey the
symmetry conditions

Rabcd ¼ Rbacd ¼ Rabdc ¼ Rcdab; (2.20)

1Here ðRIJÞ is not the Ricci tensor RIJ.
2For a general discussion of the curvature of quaternionic-

Kahler manifolds, see Ref. [16].
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RABCD ¼ RBACD ¼ RABDC ¼ RCDAB: (2.21)

The integrability condition

½rI;rJ�!ab ¼ RIJ
a
c!

cb þ RIJ
b
c!

ac ¼ 0 (2.22)

implies that the matrix RIJ
a
c (for fixed I and J) is an

Spð2nÞ matrix. Similarly, for fixed I and J, the matrix
RIJ

A
B is a generator of the Lie algebra of Spð2Þ. Later

we will see, only the symmetry generated by Rbd
a
c will be

gauged, meaning that we will gauge part of the full sym-
metry generated by RIJK

L. By Eqs. (2.17) and (2.15), we
learn that the pauli matrices must be covariantly constant
as well, i.e. raAð�iÞEF ¼ 0. Defining

ð�CDÞEF � �i
CD�

i
EF ¼ �CE�DF þ �CF�DE; (2.23)

the integrability condition!ba½raA;rbB�ð�CDÞEF¼0 gives

RABC
Gð�GDÞEF þ RABD

Gð�CGÞEF þ RABE
Gð�CDÞGF

þ RABF
Gð�CDÞEG ¼ 0: (2.24)

In accordance with the decomposition (2.19), Eq. (2.10)
is decomposed into two equations

Rabe
gRgfcdþRabf

gRegcd�Refd
gRabcg�Refc

gRabdg¼0;

(2.25)

RABE
GRGFCDþRABF

GREGCD�REFD
GRABCG

�REFC
GRABDG¼0: (2.26)

It can be see that (2.20) and (2.25) take exactly the same
forms as that of (2.3) and (2.7), respectively. However,
if we want to identify the structure constants fabcd with
Rabcd, we must make sure that Rabcd also obeys the linear
constraint Eq. (2.9) and satisfies the reality condition (2.8).
We will see that at least in some special case, these two
requirements can be fulfilled. To see this, let us consider
the algebraic property of the Riemann curvature tensor

RaA;bB;cC;dD þ RbB;cC;aA;dD þ RcC;aA;bB;dD ¼ 0: (2.27)

Using the decomposition (2.19), Eq. (2.27) can be con-
verted into

Rabcd�AB�CDþRbcad�BC�ADþRcabd�CA�BD

þRABCD!ab!cdþRBCAD!bc!adþRCABD!ca!bd¼0:

(2.28)

Let us solve for RABCD first; comparing (2.26) with (2.24),
we find an obvious solution to these two equations:

RABCD ¼ kð�ABÞCD ¼ kð�AC�BD þ �AD�BCÞ; (2.29)

where k is proportional to the (constant) curvature scalar
R ¼ gIJRIJ. It can be seen that right hand side of (2.29)
satisfies the symmetry conditions (2.21) and (2.26).
Substituting Eq. (2.29) above into (2.28), we obtain

½Rabcd�Rbcad�kð!bc!ad�2!ca!bdþ!ab!cdÞ��AB�CD
þ½Rcabd�Rbcadþkð!bc!ad�2!ab!cd

þ!ca!bdÞ��CA�BD¼0; (2.30)

where we have used the identity �AB�CD ¼ �AC�BD �
�BC�AD. We observe that if the first line vanishes, then
the second line vanishes automatically, and vice versa. We
therefore need only to consider the equation

Rabcd � Rbcad � kð!bc!ad � 2!ca!bd �!ab!cdÞ ¼ 0:

(2.31)

Under the condition RðabcÞd ¼ 0, the solution is given by

Rabcd ¼ kð!ac!bd þ!ad!bcÞ; (2.32)

which is nothing but an Spð2nÞ matrix (for fixed a and b).
Now it is straightforward to check that (2.32) obeys
the linear constraint Eq. (2.9) and satisfies the reality
condition (2.8): namely, RðabcÞd ¼ 0 and R�

abcd ¼ Rabcd ¼
!ae!bf!cg!dhRefgh. Hence Rabcd can be used to con-

struct the structure constants of the symplectic 3-algebra.
Substituting (2.29) and (2.32) into (2.19) determines k ¼

R
8nðnþ2Þ . Also by (2.29) and (2.32), we learn that our solu-

tion RaA;bB;cC;dD is consisted of entirely by covariantly

constant quantities such as !ab and �AB, so it must be
also a covariantly constant tensor, i.e. rIRaA;bB;cC;dD ¼ 0.
Setting fabcd ¼ Rabcd and substituting (2.32) into Eq. (A1)
[Eq. (A5)] gives the N ¼ 4 GW (N ¼ 5) theory with
Spð2nÞ gauge group.
It can be seen that the N ¼ 4 action constructed here

has the symmetries associated with the quaternionic-
Kahler manifold:
(i) Diffeomorphism invariance3:

R0
abcdðq0Þ¼RabcdðqÞ; Z0a

� ðq0Þ¼Za
�ðqÞ;

c 0a
_� ðq0Þ¼ c a

_�ðqÞ; A0ab
� ðq0Þ¼Aab

� ðqÞ (2.33)

with qJ a set of local coordinates, and qI ! q0I an
arbitrary coordinate transformation.

(ii) Local Spð2nÞ symmetry:

Ẑa
�ðqÞ¼La

bðqÞZb
�ðqÞ; ĉ a

_�ðqÞ¼La
bðqÞc b

_�ðqÞ;
Âab
� ðqÞ¼La

cðqÞLb
dðqÞAcd

� ðqÞ;
f̂abcdðqÞ¼ R̂abcdðqÞ

¼La
eðqÞLb

fðqÞLc
gðqÞLd

hðqÞRefghðqÞ
¼RabcdðqÞ; (2.34)

where La
eðqÞ ¼ !ac!

edLc
dðqÞ, and La

bðqÞ satisfies
Lc

aðqÞLd
bðqÞ!cd ¼ !ab: (2.35)

3The indices � ¼ 1, 2 and _� ¼ 1, 2 below denote the bifun-
damental representation of the R-symmetry group SUð2Þ �
SUð2Þ (see Sec. A1).
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In the last equation of (2.34), we have used (2.32)
and (2.35).

Similarly, the N ¼ 5 theory also possesses the diffeo-
morphism symmetry and the local Spð2nÞ symmetry asso-
ciated with the internal space.

However, we emphasis that the N ¼ 4 GW theory
constructed here is not a conventional nonlinear sigma
model like the one in Ref. [3]: in our construction,
the scalar fields Za

� are a set of complex vectors of the
quaternionic-Kahler manifold, while in the original
N ¼ 4 GW nonlinear sigma model, the scalar fields are
a set of local coordinates of the target space being a
4n-dimensional hyper-Kahler manifold. Also, the gauge
symmetry of the N ¼ 4 GW theory constructed here is
generated by the curvature 3-algebra or the holonomy
algebra of the internal space, while in the N ¼ 4 GW
nonlinear sigma model, the gauge symmetry is generated
by the Killing vectors of the target space.

III. DUAL CURVATURE TENSOR AND
GENERALIZED N ¼ 8 BLG THEORY

In this section, we will demonstrate that the Nambu
3-algebra can be realized by utilizing the dual curvature
operator of a 4D maximally symmetric space. We call this
symmetric space an internal space. A generalized N ¼ 8
BLG theory possessing a diffeomorphism invariance and a
local SOð4Þ symmetry related to the internal space can be
constructed by virtue of the dual curvature tensor.

In 4D, the dual curvature tensor is defined as

~R abcd ¼ 1

2

ffiffiffi
g

p
"abefR

ef
cd; (3.1)

where g ¼ detðgabÞ, and ffiffiffi
g

p
"abef is the totally antisym-

metric tensor.4 (We assume that the metric is nondegener-
ate and positive definite.) If the curvature tensor Refcd

satisfies rgRefcd ¼ 0, we must have rg
~Rabcd ¼ 0 on ac-

count of that
ffiffiffi
g

p
"abef is always a covariant constant. To

prove thatrgð ffiffiffi
g

p
"abefÞ ¼ 0, we introduce a set of vielbein

fields eai (i ¼ 1; . . . ; 4) satisfying �ijeai e
b
j ¼ gab and

gabe
a
i e

b
j ¼ �ij. Now the totally antisymmetric tensor can

be converted into a constant "ijkl ¼ eai e
b
j e

c
ke

d
l

ffiffiffi
g

p
"abcd (our

convention is that "ijkl ¼ �im�jn�ko�lp"mnop ¼ "ijkl), and

its covariant derivative is given by

rm"ijkl ¼ eamð@a"ijkl �!a
n
i"njkl �!a

n
j"inkl

�!a
n
k"ijnl �!a

n
l"ijknÞ: (3.2)

The spin connection can bewritten as!a
n
i ¼ 1

2!
op
a ð�opÞni,

with ð�opÞni ¼ �n
o�pi � �oi�

n
p the SOð4Þ matrices. Since

@a"ijkl ¼ 0, the right hand side of (3.2) becomes

� 1

2
eam!

op
a ½ð�opÞni"njkl þ ð�opÞnj"inkl þ ð�opÞnk"ijnl

þ ð�opÞnl"ijkn�: (3.3)

The quantity in the bracket is nothing but the variation
of "ijkl under the transformation generated by ð�opÞ; it
vanishes due to the fact that "ijkl is SOð4Þ-invariant.
Alternatively, one can write the first term in the bracket of
(3.3) as

ð�opÞni"njkl ¼
�
1

2
"msop"

ms
ni

�
"njkl: (3.4)

Substituting "opms"
njkl ¼ �½n

o �
j
p�k

m�
l�
s into the right hand

side of (3.4) proves that (3.3) is zero. This completes the
proof thatrm"ijkl ¼ 0, meaning that the tensor

ffiffiffi
g

p
"abef is a

covariant constant. Assuming thatraRcdef ¼ 0, and multi-

plying the integrability condition ½rg;rh� ~Rcdef ¼ 0 by 1
2 �ffiffiffi

g
p

"abgh, we obtain

~R abe
g ~Rgfcdþ ~Rabf

g ~Regcd� ~Refd
g ~Rabcg� ~Refc

g ~Rabdg¼0:

(3.5)

On the other hand, we can construct a 3-bracket in terms of
the dual curvature operator:

fea; eb; ecg � 1

2

ffiffiffi
g

p
"abefRðee; efÞec ¼ ~Rabc

ded; (3.6)

with ea a set of basis vectors satisfying

gðea; ebÞ ¼ gab: (3.7)

We now see that taking account of the inner product (3.7),
Eq. (3.5) is equivalent to the fundamental identity

fea;eb;fec;ed;eegg¼ffea;eb;ecg;ed;eegþfec;fea;eb;edg;eeg
þfec;ed;fea;eb;eegg: (3.8)

We call the triple system defined by Eqs. (3.6), (3.7), and
(3.8) a dual curvature 3-algebra. In Sec. II B, we
have demonstrated that the curvature tensor of the
4n-dimensional manifold can generate an SOð4nÞ symme-
try. Based on the same reason, the dual curvature 3-algebra
can generate an SOð4Þ symmetry.
If ~Rabcd is completely antisymmetric in all indices, the

dual curvature 3-algebra is an obvious realization of the
Nambu 3-algebra.5 We now assume that ~R is totally anti-
symmetric. Since in 4D the totally antisymmetric tensor is
essentially unique, we must have ~Rabcd ¼ k

ffiffiffi
g

p
"abcd.

Using Eq. (3.1), one can determine that

Refcd ¼ R

12
ðgecgfd � gedgfcÞ: (3.9)

Namely, the manifold is maximally symmetric and k is
given by k ¼ R

12 , with R the curvature scalar, which must

be a constant. Therefore our final result is

4Here a ¼ 1; . . . ; 4 is a tangent vector index, not an Spð2nÞ
fundamental index of the last section. We hope this will not
cause any confusion.

5If the inner product is Lorentzian in the sense that gabeiae
j
b ¼

�ij, then it is a realization of the Lorentzian 3-algebra. But we do
not consider this case in the current paper.
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fabcd ¼ ~Rabcd ¼ R

12

ffiffiffi
g

p
"abcd: (3.10)

~Rabcd being totally antisymmetric is a necessary condition
for closing the N ¼ 8 superalgebra. We now present an
alternative derivation of (3.10). Since ~Rabcd ¼ � ~Rbacd ¼
� ~Rabdc, ~Rabcd will be totally antisymmetric if ~Rabcd ¼
� ~Racbd. Multiplying both sides of the equation by
1

2
ffiffi
g

p "ef
ab and using (3.1), we obtain

Refcd ¼
�

1

2
ffiffiffi
g

p "ef
ab

��
� 1

2

ffiffiffi
g

p
"ac

ghRghbd

�
: (3.11)

A short calculation gives

Refcd þ 1

3
ðgfcRed � gecRfdÞ ¼ 0: (3.12)

In order that Refcd ¼ �Refdc, we must require that

gfcRed�gecRfd¼�ðgfdRec�gedRfcÞ. Multiplying both

sides by gcf determines the Ricci tensor Red uniquely:
Red ¼ R

4 ged. Substituting it into (3.12) gives (3.9).

Combining (3.1) and (3.9), we obtain (3.10) again.
We see that the curvature tensor (3.9) indeed obeys the

crucial equation rbRefcd ¼ 0. The dual curvature tensor

satisfies Eq. (3.5), and has the desired symmetry properties
as well. So (3.6) and (3.8), as well as the inner product
(3.7), are indeed a realization of the Nambu 3-algebra. In
this realization, we must use the metric gab and its inverse
gbc to lower and raise indices, respectively. Plugging (3.10)
into Eq. (A8) and (A9) gives theN ¼ 8 BLG theory with
SOð4Þ gauge group. The matter fields are in the vector
representation of SOð4Þ. The N ¼ 8, SOð4Þ theory has
been conjectured to be the dual gauge theory of two
M2-branes [4].

Comparing with the original N ¼ 8 BLG theory in
Ref. [1,2], our theory has a diffeomorphism invariance
and a local SOð4Þ symmetry related to the 4D (internal)
symmetric space. Specifically, the theory is invariant under
the transformations

Z0A
a ð�0Þ¼ @�b

@�0aZ
A
b ð�Þ; c 0

Aað�0Þ¼ @�b

@�0ac Abð�Þ;

A0
�
a
bð�0Þ¼@�0a

@�c

@�d

@�0bA�
c
dð�Þ;

g0abð�0Þ¼ @�c

@�0a
@�d

@�0bgcdð�Þ;
f0abcdð�0Þ¼ ~R0

abcdð�0Þ

¼ @�e

@�0a
@�f

@�0b
@�g

@�0c
@�h

@�0d ~Refghð�Þ

¼
ffiffiffiffiffi
g0

q
"abcd;

(3.13)

where �a and �0a are two sets of coordinates of the 4D
internal space. The N ¼ 8 action is also invariant under
the local SOð4Þ transformations:

ẐA
i ð�Þ ¼ Li

jð�ÞZA
j ð�Þ;

ĉ Aið�Þ ¼ Li
jð�Þc Ajð�Þ;

Â�
i
jð�Þ ¼ Li

kð�ÞLj
lð�ÞA�

k
lð�Þ

Lk
ið�ÞLl

jð�Þ�kl ¼ �ij;

f̂ijklð�Þ ¼ ~̂Rijklð�Þ ¼ "ijkl ¼ ~Rijklð�Þ; (3.14)

where ZA
i ¼ eai Z

A
a , c Ai ¼ eai c Aa and A�

i
j ¼ eibe

b
jA�

a
b,

and Li
jð�Þ ¼ �ik�

jlLk
lð�Þ. Hence our theory is sort of

generalized N ¼ 8 BLG theory.
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APPENDIX A: A REVIEW THE N ¼ 4, 5, 8
THEORIES

In this section, we review the N ¼ 4, 5, 8 CSM
theories.

1. N ¼ 4 GW Theory

TheN ¼ 4GW theory was first constructed in Ref. [3],
using an ordinary Lie algebra approach. In Ref. [12], the
N ¼ 4 GW theory was constructed in terms of the sym-
plectic 3-algebra. (The symplectic 3-algebra is reviewed in
Sec. II A.) The action reads

L ¼ 1

2
ð�D�

�Z�
aD

�Za
� þ i �c _�

a�
�D�c

a
_�Þ

� i

2
facbdZ

a
�Z

�bc c
_	
c

_	d

þ 1

2
��
�

�
fabcdA

ab
� @
A

cd
� þ 2

3
fabc

gfgdefA
ab
� Acd


 Aef
�

�

þ 1

12
fabcgf

g
defZ

�aZb
	Z

	ðcZdÞ
� Z�eZf

�: (A1)

Here � ¼ 1, 2 and _� ¼ 1, 2 are the undotted and dotted
indices of the SUð2Þ � SUð2Þ R-symmetry group, respec-
tively; a ¼ 1; . . . ; 2n a symplectic 3-algebra index. The
covariant derivative is defined as

D�Z
�
d ¼ @�Z

�
d � ~A�

c
dZ

�
c ; ~A�

c
d ¼ Aab

� fab
c
d: (A2)

The matter fields obey the natural reality conditions �Z�
a ¼

!ab�
�	Zb

	, and
�c _�
a ¼ !ab�

_� _	Zb
_	
. Here ��	 and � _� _	 are

invariant antisymmetric tensors of the R-symmetry group

SUð2Þ � SUð2Þ, satisfying ��	�	� ¼ ��
� and � _� _	� _	 _� ¼

� _�
_� . The supersymmetry transformations are given by
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�Za
�¼ i��

_�c a
_�; �c a

_�¼���D�Z
a
	�

y	
_� �1

3
fabcdZ

b
	Z

	cZd
��

y�
_� ; � ~A�

c
d¼ i��

_	��c
b
_	
Za
�fab

c
d; (A3)

where the parameter satisfies the reality condition

�y_�	 ¼ ��	�� _� _	�
_	
�: (A4)

2. N ¼ 5 Theory

The N ¼ 5 action reads [11]

L ¼ 1

2
ð�D�

�Z�
aD

�Za
� þ i �c �

aD��
�c a

�Þ � i

2
!�	!��!defabc

eðZa
�Z

c
	
�c b
�c

d
� � 2Za

�Z
c
�
�c b
�c

d
	Þ

þ 1

2
��
�ð!defabc

eAab
� @
A

cd
� þ 2

3
!fhfabc

gfgde
hAab

� Acd

 Aef

� Þ

� 1

60
ð2fabcgfgdfe � 9fcda

gfgfb
e þ 2fabd

gfgcf
eÞZf

�Z�aZb
	Z

	cZd
�Z

�
e : (A5)

Here � ¼ 1; . . . ; 4 is a fundamental index of the Spð4Þ
R-symmetry group;6 a ¼ 1; . . . ; 2n a symplectic 3-algebra
index. The covariant derivative is defined as D�Z

�
d ¼

@�Z
�
d � ~A�

c
dZ

�
c , where ~A�

c
d ¼ Aab

� fab
c
d. The matter

fields obey the reality conditions

Z�a
� ¼!�	!abZ

b
	; c �a

� ¼!�	!abc
b
	: (A6)

Here !�	 is the invariant antisymmetric tensor of Spð4Þ,
satisfying!�	!

	� ¼ ��
�. The supersymmetry transforma-

tions are given by

�Za
�¼ i ���

	c a
	; �c a

�¼��D�Z
a
	�

	
�þ1

3
fcdb

a!	�Zb
	Z

c
�Z

d
��

�
��2

3
fcdb

a!	�Zb
�Z

c
�Z

d
��

�
	; � ~A�

c
d¼ i ���	��c

b
	Z

a
�fabd

c;

(A7)

where the parameter ��	 is antisymmetric in �	, satisfying

!�	�
�	 ¼ 0; ���	 ¼ !��!	����:

3. N ¼ 8 BLG Theory

Here we will follow the convention of Ref. [15]. The action is given by

L ¼ �D�
�Za
AD

�ZA
a � i �c Aa��D�c Aa � ifabcd

�c Adc AaZ
B
b
�Zc
B þ 2ifabcd

�c Adc BaZ
B
b
�Zc
A �

i

2
"ABCDf

ab
cd

�c Acc BdZC
aZ

D
b

� i

2
"ABCDfcdab

�c Acc Bd
�Za
C
�Zb
D þ 1

2
"�
�

�
fabcdA�

c
b@
A�

d
a þ 2

3
facdgf

ge
fbA�

b
aA


d
cA�

f
e

�

� 2

3

�
fabcdf

ed
fg �

1

2
febcdf

ad
fg

�
�Zc
AZ

A
e
�Zf
BZ

B
a
�Zg
DZ

D
b : (A8)

Here A ¼ 1; . . . ; 4 is a fundamental index of the SUð4Þ R-symmetry group.7 And a ¼ 1; . . . ; L is a Hermitian 3-algebra
index. The covariant derivative is defined as D�Z

A
b ¼ @�Z

A
b � ~A�

a
bZ

A
a , where ~A�

a
b ¼ A�

d
cf

ac
db. The SUSY trans-

formation law reads

�ZA
d ¼ �i ��ABc Bd; �c Bd ¼ ��D�Z

A
d�AB þ fabcdZ

C
aZ

A
b
�Zc
C�AB þ fabcdZ

C
aZ

D
b
�Zc
B�CD;

� ~A�
c
d ¼ �i ��AB��Z

A
ac

Bbfcabd þ i ��AB��
�Za
Ac Bbf

cb
ad: (A9)

6In the N ¼ 4 theory (see Appendix A1), � ¼ 1, 2 transforms in the fundamental representation of one factor of the SUð2Þ �
SUð2Þ R-symmetry group. We hope this will not cause any confusion.

7In Sec. II B, A ¼ 1, 2 denotes the Spð2Þ index of the curvature tensor of the quarternionic-Kahler manifold; in this section, A ¼
1; . . . ; 4 refers to the fundamental index of the SUð4Þ R-symmetry of the BLG theory. We hope this will not cause any confusion.
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Here the SUSY transformation parameters �AB
satisfy

�AB¼��BA; ��AB¼�AB¼1

2
"ABCD�CD: (A10)

In the action and the supersymmetry transformation

law, only SUð4Þ R-symmetry is manifest. However, in

Ref. [14], it was demonstrated explicitly that theory

actually has an N ¼ 8 R-symmetry, if the structure

constants fabcd are totally antisymmetric or the

Hermitian 3-algebra becomes the Nambu 3-algebra.

APPENDIX B: CONVENTIONS

In 1þ 2 dimensions, the gamma matrices are defined as

ð��Þ��ð�
Þ�	 þ ð�
Þ��ð��Þ�	 ¼ 2��
��
	: (B1)

For the metric we use the ð�;þ;þÞ convention. We also
define the totally antisymmetric tensor "�
� ¼ �"�
�. So

"�
�"
�
�¼�2��

�. We raise and lower spinor indices with

an antisymmetric matrix ��	¼���	, with �12¼�1. For

example, c � ¼ ��	c 	 and ��
�	 ¼ �	�ð��Þ��, where c 	

is a Majorana spinor. We use the following spinor summa-
tion convention: c
¼ c �
�, c��
¼ c �ð��Þ�	
	,

where c and 
 are anticommuting Majorana spinors.
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