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We study Casimir interactions between cylinders in thermal nonequilibrium, where the objects as well

as the environment are held at different temperatures. We provide the general formula for the force, in a

one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for

equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate

summation of the corresponding result for spheres. We find that the nonequilibrium forces are generally

larger than their equilibrium counterpart at separations greater than the thermal wavelength. They may

also exhibit oscillations as function of separation, leading to stable points of zero net force. These effects

are particularly pronounced for thin conducting cylinders (e.g. 40 nm diameter nanowires of tungsten) due

to their large emissivity.
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I. INTRODUCTION AND SUMMARY

There has been considerable recent activity in fabrica-
tion of micro and nano electromechanical devices which
actuate forces in response to currents. At submicron scales
classical electromechanical forces are supplanted by forces
due to quantum and thermal fluctuations [1]. In equilibrium
these are manifested as van der Waals and Casimir forces
[2], while the passage of currents may well lead to tem-
perature imbalances resulting in thermal radiation and
nonequilibrium forces. Fluctuation-induced forces are
typically non additive, and (especially for conductors)
with sensitive dependence on shape and material proper-
ties. Nanowires and nanotubes provide a simple example
of an extended shape, with several possible applications
[3–6]. Moreover, cylindrical geometries are amenable to
high-precision experiments [7–12], providing good con-
trast to the more widely studied spherical geometry [13].
Cylinders can also be easier fixed positionally and held
at different temperatures for possible experimental study
of nonequilibrium effects [14].

In his seminal paper [15] Casimir calculated the force
between two perfectly conducting parallel plates, due to
the quantum zero-point fluctuations of the electromagnetic
(EM) field in the intervening vacuum. Lifshitz [16] later
extended Casimir’s computations to the case of real dielec-
tric materials and to finite temperatures. A key step in
Lifshitz’s approach is to include thermal and quantum
fluctuations of currents (sources) in the dielectric, follow-
ing the formalism of fluctuational electrodynamics pio-
neered by Rytov [17]. Typically at small separations
zero-point fluctuations shape the force, whereas at separa-
tions large compared to the thermal wavelength �T , ther-
mal effects dominate [16,18,19]. Rytov’s formalism is
also appropriate to out of equilibrium steady states in
which each object is held at a different temperature.
There is extensive literature on the topic of nonequilibrium

interactions between two atoms (or molecules) [20–26].
Recently out of equilibrium Casimir forces have been
considered in several systems: parallel plates [27–29],
modulated plates [30], plate and an atom in different setups
[28,31–34], two spheres and sphere and a plate [18].
Formalisms for general objects were presented in
Refs. [28,35]. A common feature for setups involving
compact objects is the need to account for the contribution
of the environment to the force, which depends on a
possibly different ambient temperature.
In this paper, we consider nonequilibrium forces be-

tween two parallel cylinders characterized by an arbitrary
(including axially anisotropic) dielectric function. Using
the Rytov formalism general expressions are obtained for
forces between wires maintained at different temperatures
from each other and the environment. These expressions
are then analytically and numerically studied in a number
of cases. With the general reader in mind, in the remainder
of this section we provide both an outline of the paper as
well as a summary of its main results. The interested reader
can then proceed to the detailed derivations that follow in
subsequent sections.
Analytical results are presented in Sec. II, starting with a

brief introduction to the Rytov formalism in Sec. II A. The
fluctuating EM field in the space between the cylinders is
sourced by fluctuating currents in the cylinder, with an
additional contribution from the surrounding. The current
correlations in each source can be related by a fluctuation
dissipation theorem to the corresponding temperature [17];
the stress tensor (from which forces are computed) is then
related (via Green’s functions) to the source fluctuations.
The force on each cylinder now has two contributions: an
interaction force sourced by the other cylinder, and a self-
force due to modification of the EM fields sourced by itself
through influences of the other cylinder. These two con-
tributions are computed, respectively, in Secs. II B and
II Cwithin a so-called one reflection approximation in
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which multiple scatterings of the EM field sourced by
either cylinder are ignored. The results are further simpli-
fied for thin cylinders, with radiiR1 and R2 small compared
to thermal wavelength, relevant skin-depth and separation
d. In this limit, the nonequilibrium force per unit length is
proportional to R2

1R
2
2, and decays at large separation as

d�1. It is well known that in the optically dilute limit, with
dielectric response " ! 1, equilibrium Casimir forces be-
come pair-wise additive, obtained by summing over con-
tributions of pairs of polarizable volume elements. In
Sec. II D we show that a corresponding result holds out
of equilibrium, namely, that the force on cylinders of
sufficiently diluted media can be obtained by pair-wise
addition of corresponding forces for chains of small
spheres [18] by treating a thin cylinder as a chain of small
spheres.

As discussed in Sec. III, precise calculations of the force
can be performed numerically for different materials, start-
ing from optical data in the form of a (frequency depen-
dent) dielectric response "ð!Þ. In particular, we report
results for silicon-carbide (insulator) and tungsten (metal):

Fig. 1 depicts forces for two SiC nanowires of radii
R1 ¼ R2 ¼ 0:1 �m; each wire or the environment is at
0 K or 300 K, for a total of 8 possible combinations. The
top panel corresponds to the four cases where the environ-
ment is at 0 K, the bottom to where it is at 300 K ambient
temperature. To depict results on a logarithmic scale,
attractive forces are indicated by solid lines and repulsive
forces by dashed lines. The equilibrium force (whether at
0 K or 300 K) is attractive at all separations d; nonequi-
librium forces deviate strongly from the equilibrium
force at distances larger than the thermal wavelength
�Tð300 KÞ � 7:6 �m. The most significant deviation is
for the force on a cold cylinder due to a hot cylinder at
Tenv ¼ 0 K (top panel) which becomes repulsive due to
radiation pressure, falling off as 1=d at large separations.
Note that for the same setup the force experienced by the
hot cylinder is not equal and opposite, instead undergoing
oscillations at a wavelength related to the resonance of
SiC. Oscillations are in fact a common feature in these
curves, which thus go through several points of zero net

?

FIG. 1 (color online). Total force on cylinder 1 per unit length
in a system of two SiC cylinders with equal radii R ¼ 0:1 �m at
separation d in a (a) cold (0 K), (b) warm (300 K) environment.
Dashed lines indicate repulsion. Points of change from repulsive
to attractive force with increasing d correspond to stable points
of zero force.

FIG. 2 (color online). Total force on cylinder 1 per unit length
in a system of two tungsten cylinders with equal radii R ¼
0:02�m at separation d in a (a) cold (0 K), (b) warm
(2400 K) environment. Dashed lines indicate repulsion.
Horizontal line FG=L denotes the weight of the corresponding
tungsten cylinder per unit length.
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force, alternating between stable and unstable mechanical
equilibria.

Conducting cylinders strongly radiate for radii of the
order of the relevant skin-depth; hot conducting nanowires
are hence good candidates for experimental observation of
thermal nonequilibrium effects. Figure 2 depicts the cor-
responding force curves for tungsten nanowires of R1 ¼
R2 ¼ 20 nm. The higher temperature considered in this
case is 2400 K; the large temperature and small radius are
chosen for emphasis. Indeed in this case both the equilib-
rium and nonequilibrium forces are six orders of magni-
tude larger than for SiC (nonequilibrium effects are
roughly three orders of magnitude larger for tungsten at
room temperature compared to SiC, and additionally en-
hanced by increasing the temperatures of the tubes). The
overall trends (repulsive or attractive forces) are similar to
SiC, but there are fewer oscillations. Interestingly, for
conductors, the nonequilibrium correction to the Casimir
forces can be two orders larger than the weight of the
cylinder, thereby being in the observable range in princi-
ple. We also give a rough estimate of Ampere’s force
between the nanowires, based on the currents necessary
to keep their temperatures constant, which is much smaller
than the nonequilibrium correction, rendering conducting
nanowires potential candidates for experimental studies of
nonequilibrium Casimir forces.1

The above results (as well as input dielectric functions
and other details) for SiC and W are discussed in
Secs. III A and III B. Additional computational details,
such as the expansion of scattering amplitudes at small
cylinder radius, are relegated to Appendixes.

II. NONEQUILIBRIUM CASIMIR FORCES
BETWEEN CYLINDERS

A. Formalism

We apply the formalism introduced in Ref. [35] and
further discussed in Ref. [18], to a system of two parallel
cylinders of radii Rj (j ¼ 1, 2) and axis-to-axis separation

d in vacuum. Each object is held at a constant and homo-
genous temperature fTjg, and embedded in an environment

at temperature Tenv. The cylinders are characterized by
electric and magnetic responses "j and �j. For anisotropic

materials "j can be a tensor; we specialize to objects with

azimuthal and translational (in the direction of the cylin-
drical axis) symmetries such that the problem can be
decomposed into independent sectors indexed by n and
kz (see below). Such a description is valid for isotropic as

well as for uniaxial materials (with optical axis parallel to
the cylinder axis); such a model was recently proposed as a
description of multiwalled carbon nanotubes [37].
In a nonequilibrium steady state, the net force on the

system may be nonzero since there is momentum carried
away by the field radiated to the environment. Thus we
need to consider the force acting on each cylinder sepa-
rately. We denote the total force acting on the cylinder 1 by

Fð1Þ, whereas Fð2Þ can be found directly from the expres-

sion for Fð1Þ by interchanging indices 1 and 2 and changing
its sign. As shown in Refs. [18,35],

Fð1ÞðTenv;T1;T2Þ
¼Fð1Þ;eqðTenvÞþ

X
j¼1;2

�
Fð1Þ
j ðTjÞ�Fð1Þ

j ðTenvÞ
�
; (1)

where Fð1Þ;eqðTenvÞ is the Casimir force between the cylin-
ders for the case of global equilibrium at temperature Tenv,
containing the contribution from zero-point fluctuations.
This force is not discussed in the present paper and treated
as known (it can be computed using scattering results for
cylinders as in Refs. [5,38]; more general numerical
schemes exist for calculating Casimir forces between 3D
objects of arbitrary shapes and dielectric properties [39]).

The difference of Fð1ÞðTenv; T1; T2Þ from Fð1Þ;eqðTenvÞ is due
to the deviations of the cylinder temperatures T1 and T2

from Tenv. F
ð1Þ
j ðTÞ is the force acting on cylinder 1 due to

the sources in cylinders j ¼ 1, 2 at temperature T.
Although dealing with three sources (including the envi-

ronment), we have thus only to evaluate two terms: Fð1Þ
1 ðTÞ

and Fð1Þ
2 ðTÞ. Because of symmetry of the system, the net

force is parallel to the axis-normal connecting the two

axes, and we denote its magnitude by Fð1Þ
1 ðTÞ and Fð1Þ

2 ðTÞ.
Computation of forces proceeds through integrating ap-

propriate components of the EM stress-energy tensor
around a surface enclosing one (or both) cylinders. In the
Rytov formalism [17], correlations of the electric fieldE at
frequency ! are sourced by sources in the two cylinders.
The contribution of each cylinder can be computed sepa-
rately [37], and for a pair of points at r and r0 outside the
cylinder, the symmetrized correlator has the following
spectral density:

hEðt;rÞ�Eðt0;r0Þisym¼
Z 1

�1
d!

ð2�Þ2e
�i!ðt�t0ÞCjðTj;!Þ;

CjðTj;!Þ¼�aðTj;!Þ X
fP;P0g¼M;N

X1
n¼�1

Z 1

�1
dkz
8�

Aj;n;kzPn;kzðrÞ

�P0�
n;kz

ðr0Þ; (2)

where Mn;kz and Nn;kz are the two polarized outgoing

cylindrical waves, see Appendix A. These waves are in-
dexed by the multipole order n and kz, the component of
the wave number k ¼ !=c along the cylinder axis. The
overall strength of correlations is set by

1We note however that the validity of a continuous dielectric
function when the size of the object is comparable to the mean
free path of the charges (typically a few nanometers for con-
ductors) is an issue to be addressed in future studies. For
example, plasmon resonances can occur in this case [36], which
might change the nonequilibrium phenomenology in interesting
ways.
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aðT;!Þ ¼ !2ℏð4�Þ2
c2

ðexp½ℏ!=kBT� � 1Þ�1; (3)

which describes the occupation number of all oscillators of
frequency !; c is the speed of light, and ℏ is Planck’s
constant. We have also introduced the abbreviation

APP0
j;n;kz

¼
�
ReTPP0

j;n;k;z þ
X

P00¼M;N

TPP00
j;n;kz

TP0P00�
j;n;kz

�
�

�
!

c
� jkzj

�

þ ð�1ÞnReTPP0
j;n;k;z�

�
jkzj �!

c

�
; (4)

describing the contribution of propagating and evanescent
waves. Note that only propagating waves contribute to the
heat emitted by a single cylinder, whereas evanescent
waves also contribute to the interactions of two cylinders.

TPP0
j;n;kz

is the T-matrix element of cylinder j, which relates

the amplitude of a scattered wave of polarization P in
response to an incoming wave of unit amplitude and po-
larization P0. The explicit form of T-matrix elements for
isotropic or uniaxial materials can be found in Sec. III of
Ref. [37] (see also [40] for the isotropic case). In general,
the T operator of a cylindrical object is symmetric and
diagonal in n and kz, but couples different polarizations.

B. Interaction force

In this subsection we compute the force exerted on
cylinder 1 by the field produced by cylinder 2, i.e., the

interaction force Fð1Þ
2 ðTÞ. To this end, we scatter the field in

Eq. (2) (for j ¼ 2) at cylinder 1 and then compute the force
by integration of the Maxwell stress tensor on a surface
enclosing 1. Since multiple reflections on the cylinders are
ignored this is a one reflection approximation [18], valid
for large d=R, which results in a force per unit length of

lim
d�R

Fð1Þ
2

L
¼ ℏ

2�2

Z 1

0

d!

eðℏ!=kBT2Þ � 1

X
P;P0

X1
n;m¼�1

�
�
ð�1ÞðnþmÞ Z

jkzj>!=c
dkzjqj~f1PP0

2;n;m;kz

�
Z
jkzj<!=c

dkzqf
1PP0
2;n;m;kz

�
; (5)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
is the wave number component per-

pendicular to the cylindrical axis. Note that negative and
positive signs of the numerical result correspond to attrac-
tion and repulsion, respectively, (again, the force is parallel

to the axis-to-axis separation). The functions f and ~f in
Eq. (5) take the rather lengthy forms

f1PP
0

2;n;m;kz
¼ ReAPP0

2;n;k;z Im

�
Hð1Þ

n�mðqdÞHð1Þ�
n�m�1ðqdÞ

�
�
TPP0
1;m;kz

þ TP0P�
1;mþ1;kz

þ 2
X
P00
TPP00
1;m;kz

TP00P0�
1;mþ1;kz

��

þ 2 ImAPP0
2;n;kz

Re

�
Hð1Þ

n�mðqdÞHð1Þ�
n�m�1ðqdÞ

�X
P00
TPP00
1;m;kz

TP00P0�
1;mþ1;kz

�
;

~f1PP
0

2;n;m;kz
¼ ReTPP0

2;n;kz
Re½Hð1Þ

n�mðqdÞHð1Þ�
n�m�1ðqdÞ

� ðTPP0
1;m;kz

þ TPP0�
1;mþ1;kz

Þ�; (6)

where Hð1Þ
n stands for the Hankel function of first kind of

order n. The interaction force in Eq. (5) consists of two
distinct terms: Because of propagating (jkzj<!=c) and
evanescent waves (jkzj>!=c), whose properties will be
discussed below. We note that for nanowires with thickness
in the range of a few tens of nanometers, Eq. (5) gives
accurate results down to separations of well below 1 �m.
Thin cylinders (fRjg � d, f�jg, �T): The general expres-

sion in Eq. (5) is complicated as it involves an infinite
series; more insightful expressions are obtained in the
asymptotic limit of thin cylinders. In this paragraph we
analytically study the limit fRjg � d, f�jg, �T , where �j ¼
c=Im½ ffiffiffiffiffi

"j
p �! is the skin-depth of tube j. The additional

limits fRjg � f�jg, �T allow restriction to a finite number

of partial waves whose T-matrix elements are proportional
to R2

j (see Appendix B and note that we take � ¼ 1). Thus

all terms with jnj or jmj larger than 1, and the terms with
products of two T-matrix elements, can be neglected. The
corresponding force can be found analytically in the two
limits concerning the ratio of thermal wavelength and
separation. For d � �T2

, we have

lim
fRjg�d;f�jg;�T2

Fð1Þ
2

L
¼ ℏ

Z 1

0

d!

eðℏ!=kBT2Þ � 1

� R2
1R

2
2

�
gin6 ð"1ð!Þ; "2ð!ÞÞ

d6

þ!2gin4 ð"1ð!Þ; "2ð!ÞÞ
c2d4

�
; (7)

where the auxiliary functions gin6 and gin4 , that depend only

on the dielectric functions, are given in Eqs. (C1) and (C2),
respectively. We note that the force in Eq. (7) is in most
cases attractive and dominated by the evanescent part. (It
can nevertheless be made repulsive for certain dielectric
functions, as discussed in Ref. [41]). At large separations,
i.e., d � �T2

, the leading term of the interaction force is,

lim
fRjg�d;f�jg;�T2

Fð1Þ
2

L
¼

Z 1

0

d!!5R2
1R

2
2

eðℏ!=kBT2Þ � 1

gin1 ð"1ð!Þ; "2ð!ÞÞ
c5d

;

(8)
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where gin1 is given in Eq. (C3). This limit always yields a
repulsive force which is due to momentum transfer by
propagating waves. Evanescent waves do not contribute
in this order as they decay too quickly with separation.

Further insight can be gained by additionally requiring
the temperature to be so low that one can expand the
dielectric function, i.e., �T2

� �0j , where �0j is the wave-

length of the lowest resonance of the dielectric response of
cylinder j. According to Ref. [42],

lim
�0j

��T2

"jð!Þ ¼ "0j þ i
�inj!

c
þOð!2Þ; (9)

with real valued static dielectric constant "0j and inelastic

collision length �inj . With this form of "jð!Þ, the corre-

sponding leading behaviors of the force are

lim
d;f�0j g��T2

d;f�jg;�T2�fRjg

Fð1Þ
2

L
¼ �ℏc�in2R

2
1R

2
2f

in
6 ð"01 ; "02Þ

�2
T2
d6

� ℏc�in2R
2
1R

2
2f

in
4 ð"01 ; "02Þ

�4
T2
d4

; (10)

and

lim
d��T2

�f�0j g
d;f�j g;�T2�fRjg

Fð1Þ
2

L
¼ ℏc�in1�in2R

2
1R

2
2f

in
1 ð"01 ; "02Þ

�8
T2
d

: (11)

Note that the dependence of temperature (via powers of
�T) is quite different in these limits. The corresponding
auxiliary functions fin6 , fin4 and fin1 are given by

Eqs. (C4)–(C6), respectively.

C. Self-force

We next compute the self-force Fð1Þ
1 , acting on cylinder 1

due to the field emitted by cylinder 1 and reflected from
cylinder 2, again restricting to d � fRjg, where the one

reflection approximation is valid. The origin of this force is
cylinder 2 acting as a reflector of EM waves emitted by
cylinder 1. The interference of the emitted and reflected
waves is expected to give rise to the observed oscillatory
behavior of the self-force as a function of separation.
Computationally it is easier to first evaluate the force

Fð1þ2Þ
1 ¼ Fð2Þ

1 þ Fð1Þ
1 acting on both cylinders due to

sources on cylinder 1, and to then subtract Fð2Þ
1 . Again, it

is a property of nonequilibrium that the net force on the

system is not zero. Note that Fð2Þ
1 is obtained from Eq. (5)

by interchanging indices 1 and 2 and changing its overall
sign.

After tedious algebra we arrive at the following expres-

sion for the force Fð1þ2Þ
1 ,

lim
d�R

Fð1þ2Þ
1

L
¼ ℏ

2�2

Z 1

0

d!

eðℏ!=kBT1Þ � 1

� X
fP;P0g¼N;M

X1
n;m¼�1

Z
jkzj<!=c

dkzqs
PP0
1;n;m;kz

;

(12)

where

sPP
0

1;n;m;kz
¼ 2ReAPP0

1;n;kz
Im½Hð1Þ

n�mðqdÞJn�m�1ðqdÞTPP0
2;m;kz

þ Jn�mðqdÞHð1Þ�
n�m�1ðqdÞTPP0�

2;mþ1;kz
�; (13)

and Jn denotes the Bessel function of order n. As expected,
the force on the system is solely due to propagating waves,
since evanescent waves do not carry momentum to the
environment.
Thin cylinders (fRjg � d; f�jg, �T): We gain further

insight by examining Fð1þ2Þ
1 in the asymptotic limit of

thin dielectric cylinders. For d � �T1
,

lim
d;f�jg;�T1

�fRjg
Fð1þ2Þ
1

L
¼ Oðd�1Þ (14)

i.e. diverging weakly at small d. Compared to this, the

force Fð2Þ
1 in Eq. (7) is proportional to d�6, and we can

neglect Fð1þ2Þ
1 in this regime, so that for d � �T1

lim
d;f�jg;�T1

�fRjg
Fð1Þ
1 ¼ � lim

d;f�jg;�T1
�fRjg

Fð2Þ
1 :

We thus observe that at close separations these contribu-
tions to the forces on the cylinders are equal and opposite,
again because momentum transfer to the environment can
be ignored.
In the opposite limit of large distances, d � �T1

, one

can verify that

lim
d;f�jg;�T1

�fRjg
Fð1Þ
1

L
¼ Oðd�3=2Þ; (15)

where the prefactor is a lengthy algebraic function addi-
tionally depending on d in an oscillatory manner via
expð2i!d=cÞ. Thus, at large separations the self-force is

asymptotically less relevant compared to Fð1Þ
2 [following

d�1 in Eq. (8)].

D. Cylinders from spheres in the dilute limit

A rarefied material can be regarded as a collection of
independent molecules; forces between two such materials
may then be obtained by pair-wise summation of forces
between their molecules. Indeed, equilibrium Casimir
forces in the optically dilute limit ("jð!Þ ! 1) can be

calculated by integrating the interactions between volume
elements. In this subsection we show that even the non-
equilibrium force between two cylinders can be obtained
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from the nonequilibrium force between two spheres [18],
by appropriate summation in the optically dilute limit.

We start with Fð1Þ
2 , where we get from Eqs. (7) and (8) in

the limit of "j ! 1, (note that this means that �j is much

larger than the radius of the objects)

lim
�T2

�d�fRjg
Fð1Þ
2

L
¼ �ℏ

Z 1

0

d!

eðℏ!=kBT2Þ � 1
R2
1R

2
2

� Re½"1 � 1�Im½"2�
�
45

64d6
þ 3!2

16c2d4

�
;

(16)

and

lim
d��T2

�fRjg
Fð1Þ
2

L
¼ ℏ

2�

Z 1

0

d!

eðℏ!=kBT2Þ � 1
R2
1R

2
2

!5

c5d

� Im½"1� Im½"2�: (17)

On the other hand, Eq. (6) from Ref. [18] for the interaction
force between two spheres can be expanded in the dilute
limit to yield the force between two volume elements V1

and V2,
2

lim
d;�T2

�fRjg
F ð1Þ

2 ðdÞ ¼ V1V2ℏ
4c7�3

Z 1

0

!7d!

eðℏ!=kBT2Þ � 1

� Im½"2�
�

c2

!2d2
Im½"1� � Re½"1 � 1�

�
�

c3

!3d3
þ 2c5

!5d5
þ 9c7

!7d7

��
; (18)

The force between two cylinders follows then as an integral
over the volume of the two cylinders, see Fig. 3,

Fð1Þ
2

L
¼ �2R2

1R
2
2

Z 1

�1
dl

F ð1Þ
2 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ l2
p Þ
V1V2

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p : (19)

Using this and Eq. (18), the terms in Eqs. (16) and (17) are
recovered. Since the consistency of the two results is
physically expected, it provides a useful check for both
calculations. We note, however, that we could not recover

the term proportional to d�2 in Fð1Þ
2 [corresponding to d�3

in Eq. (18)] due to mathematical difficulties in the integral
over special cylindrical functions.

We note also the corresponding equivalence for the self-
force, though somewhat more involved mathematically: In
Eq. (7) from Ref. [18], the self-force decays as d�2 with an
oscillating prefactor expð2i!d=cÞ. Pair-wise summation of

this result yields exactly a d�3=2 separation dependence
modulated by expð2i!d=cÞ, as discussed in relation to
Eq. (15). Moreover, if we represent a plate of finite thick-
ness by an infinite set of cylinders and place a small sphere

in front of this plate, the self-force acting on the sphere
scales as d�1 with the prefactor of expð2i!d=cÞ. This
matches perfectly with the result for the sphere/plate ge-
ometry, in Eq. (19) from Ref. [18], in the limit of large
separations. Thus, in the dilute limit one regains the ex-
pected connections between different geometries.

III. NUMERICAL EXAMPLES

In this section we numerically compute the total Casimir
force between two cylinders, in one case composed of
dielectrics (SiC) and of conductors (tungsten) in the other.
The equilibrium contributions to the force [see Eq. (1)]
were computed using the methods of Ref. [39] as imple-
mented in the SCUFF-EM code suite [44].

A. Silicon carbide

Figure 1 depicts the forces on SiC cylinders of radii
R1 ¼ R2 ¼ 0:1 �m in both cold (0 K) and warm (300 K)
environments. The optical properties of SiC are modeled
by the dielectric function [45],

"SiCð!Þ ¼ "1
!2 �!2

LO þ i!�

!2 �!2
TO þ i!�

;

where "1 ¼ 6:7, !LO ¼ 0:12 eV, !TO ¼ 0:098 eV, � ¼
5:88� 10�4 eV. We evaluated Eqs. (5) and (12) numeri-
cally, restricting n and m to orders f�1; 0; 1g, and omitting
quadratic terms in T, which is justified for fRjg � f�Tj

g,
f�jg, where the forces per unit length will be proportional

to R2
1R

2
2. We note that Rj ¼ 0:1 �m is roughly an upper

bound for the validity of this asymptotic behavior, as we
have checked by including higher-order terms. Because of
the small thickness of the cylinders, the resulting phenome-
nology is in close analogy to the case of two spheres [18]
(compare also Sec. II D): in the case when Tenv ¼ 0 K, the
force starts to deviate strongly from its equilibrium value
around d � �T=2, where �T ¼ ℏc

kBT
� 7:6 �m. Cylinder 1

is repelled at large d if T2 ¼ 300 K due to radiation
pressure with a force that decays with distance as d�1.
On the other hand, if additionally T1 ¼ 300 K, the oscil-

lating force Fð1Þ
1 is appreciable and in fact dominates the

total force for large d if T1 ¼ 0 K; the net force now has

d

R2

R1 l V1

V2

FIG. 3. Casimir forces between objects can also be obtained by
pair-wise summation of the forces between all the volume
elements.

2We have an additional minus sign compared to Eq. (6) from
Ref. [18], and we exchanged indices 1 $ 2.
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many zero crossings, where every second one is a stable
point of zero force. The wavelength of the oscillations is
roughly 6 �m due to the optical resonance of SiC at
wavelength �0 � 12 �m (the length of the optical path
from cylinder 1 to cylinder 2 and back is 2d, and for a sharp
resonance of the dielectric function of cylinder 1 at �0, we
have constructive interference at 2d ¼ �0; 2�0; . . . , for an
oscillation wavelength of �0=2). Note that this figure also
provides complete information about the force on cylinder
2: e.g., in case fT1 ¼ 0; T2 ¼ 300 Kg, the corresponding
curve shows the force acting on cylinder 1, while the fT1 ¼
300; T2 ¼ 0Kg one represents the force on cylinder 2. At
the crossing of the solid red and dashed blue curves the two
cylinders feel equal forces in the same direction, an effect
which might have less practical importance for tubes com-
pared to spheres [18].

B. Tungsten

Let us turn to conductors at high temperatures. Figure 2
illustrates the total Casimir force for two very thin tungsten
cylinders (nanowires) of equal radii Rj ¼ 0:02 �m, and

large temperature differences of 2400 K. We have chosen
this value for Rj as it corresponds to the maximum in

emissivity of an isolated tungsten cylinder [37] (which is
connected to the skin depth being of the same order). As
the nonequilibrium force strongly depends on the heat
radiation of the objects, we expect it to be also compara-
tively large for this value. Also, tungsten has a relatively
high melting temperature, and the value of 2400 K prom-
ises large effects. Note that Eqs. (7) and (8) are not valid
here, and the force is not proportional to R2

1R
2
2, despite the

small thickness of the wires.
The following dielectric function for tungsten was

used [46],

"Wð!Þ ¼ 1� �2

2�c�0

X2
q¼1

�q

�rq � i�
; (20)

where � is thewavelength in vacuum, c is the speed of light,
and �0 is the permittivity of vacuum in SI units. The remain-
ing parameters are �1 ¼ 1:19� 106 ohm�1 m�1, �2 ¼
0:25� 106 ohm�1 m�1, �r1 ¼ 3:66�m, �r2 ¼ 0:36 �m.
These values were obtained by fitting the dielectric function
of tungsten at T ¼ 2400 K [46].3

The relative deviation of the total Casimir force from its
equilibrium form is not as pronounced as in Fig. 1, since
equilibrium forces between conductors decay much slower
with distance compared to dielectrics. In particular, a
Drude dielectric function gives rise to an equilibrium force

scaling as d�4= logðd=RÞ [5], in good agreement with our
numerical results. (For dielectrics, our numerical result
suggests a d�7 law of the equilibrium Casimir force in
the small separation retarded regime). Nevertheless, as in
the dielectric case, the force in Fig. 2 starts to deviate
from the equilibrium curve at approximately �T=2 with a
corresponding �T � 0:95 �m. In a cold environment,
Tenv ¼ 0 K, the force is attractive at small separations,
whereas at large distances it becomes repulsive if T2 ¼
2400 K. When we increase the environment temperature to
Tenv ¼ 2400 K, the force shows another feature for T1 ¼
T2 ¼ 0 K, where it is attractive for both small and large
distances, but for an intermediate region it becomes repul-
sive yielding a stable point of zero force in the vicinity of
d � 4 �m. This intermediate repulsion is due to the con-
tribution from evanescent waves [which is repulsive be-

cause Fð1Þ
j enters Eq. (1) with a minus sign], and then for

higher d propagating waves make the force attractive
again. In contrast to the dielectric displayed in Fig. 1(b),
no oscillations are visible in Fig. 2. We attribute this to the
absence of sharp peaks in the dielectric function of
tungsten.
The nonequilibrium force in Fig. 2 is much larger com-

pared to Fig. 1, again, as a consequence of both replacing
the dielectric materials with conductors, as well as choos-
ing the higher temperature T ¼ 2400 K instead of
T ¼ 300 K. At the point where the total Casimir force
deviates from the equilibrium force the magnitude of the
force is roughly 106 times larger for tungsten compared to
SiC—approximately 5� 106 larger per unit mass. For
tungsten nanowires at T ¼ 300 K (we do not provide the
plot for this case) the nonequilibrium effects are still three
orders of magnitude larger when compared to SiC. Thus,
the strong enhancement is a result of both material prop-
erties and high temperatures. Furthermore, considering
wires of length 1 �m at high temperature T ¼ 2400 K,
the force at the point when nonequilibrium forces start to
dominate is approximately 10 fN (see Fig. 2), significantly
larger than the weight FG � 0:24 fN (also depicted in the
figure) of the nanowires.
There is another force we can use for comparison: If an

electric current is used to heat the wire [14,46], one re-
quires a current of 17 �A to maintain the temperature T ¼
2400 K for tungsten nanowires (obtained by equating heat
losses described by Joule’s law to the heat radiation for a
single cylinder predicted in Ref. [37]). Such currents cor-
respond to an Ampere’s force of about 0.15 fN for
d ¼ 0:4 �m, which is two orders of magnitude smaller
than the nonequilibrium correction to the Casimir force.4

Thus, when switching on an AC or DC current in the wires,
the change in force between them due to heating-induced
nonequilibrium Casimir force is much larger than that due

3For the accurate evaluation of the total Casimir force with
Eq. (1), one must use the cylinder dielectric function at its
corresponding temperature. Thus, Eq. (20) is strictly only ap-
propriate for T1 ¼ T2 ¼ 2400 K in Fig. 2. However, the dielec-
tric function does not depend significantly on T and the curves
for Tj ¼ 0 K in Fig. 2 are good estimates.

4This estimate neglects possible couplings between AC or DC
currents and thermal current fluctuations [48]
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to Ampere’s force. We thus conclude that hot conducting
nanowires are promising candidates for measuring or using
nonequilibrium Casimir effects.
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APPENDIX A: CYLINDRICAL HARMONICS

Following Ref. [47], the EM cylindrical harmonics can
be written as,

Mn;kzðrÞ ¼
�
in

qr
Hð1Þ

n ðqrÞer �H0ð1Þ
n ðqrÞe�

�
eikzzþin�;

Nn;kzðrÞ ¼
c

!

�
ikzH

0ð1Þ
n ðqrÞer � nkz

qr
Hð1Þ

n ðqrÞe�

þ qHð1Þ
n ðqrÞez

�
eikzzþin�; (A1)

whereHn is the Hankel function of the first kind of order n.
Mn;kz andNn;kz correspond to outgoing magnetic multipole

(TE) and electric multipole (TM) waves, respectively.
Also, kz and q are the wave vectors parallel and perpen-
dicular to the cylindrical z-axis, respectively, satisfying the

relation q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
, k ¼ !=c. H0ð1Þ

n corresponds to the

first derivative with respect to the argument. Furthermore,
we denote the corresponding regular waves byRMn;kz and

RNn;kz , which differ from regular ones by replacing Hð1Þ
n

with the Bessel function Jn.
The above solutions correspond to transverse waves, i.e.

r 	Mn;kz ¼ r 	 Nn;kz ¼ 0. Moreover, they obey useful re-

lations Mn;kz ¼ c
!r�Nn;kz , Nn;kz ¼ c

!r�Mn;kz . These

relations are also valid for outgoing waves.

APPENDIX B: SMALL R EXPANSION OF THE
T OPERATOR OF THE CYLINDER

In order to derive Eqs. (7), (8), (14), and (15), we need
the expansion of the T operator in terms of !R=c. For a
cylinder made of isotropic material with magnetic perme-
ability �ð!Þ and dielectric permittivity "ð!Þ, we find for
the limit R � f�; c=!g [37],

TNN
0;kz

¼ � i�

4
ð"� 1Þð~k2z � 1Þð!R=cÞ2; (B1)

TMM
0;kz

¼ � i�

4
ð�� 1Þð~k2z � 1Þð!R=cÞ2; (B2)

TNN
1;kz

¼ TNN
�1;kz

¼ i�

4

~k2zð�þ 1Þð"� 1Þ þ ð�� 1Þð"þ 1Þ
ð"þ 1Þð�þ 1Þ ð!R=cÞ2;

(B3)

TMM
1;kz

¼ TMM
�1;kz

¼ i�

4

~k2zð�� 1Þð"þ 1Þ þ ð�þ 1Þð"� 1Þ
ð"þ 1Þð�þ 1Þ ð!R=cÞ2;

(B4)

TMN
1;kz

¼ TNM
1;kz

¼ �TMN
�1;kz

¼ �TNM
�1;kz

¼ i�

2

ð"�� 1Þ~kz
ð"þ 1Þð�þ 1Þ ð!R=cÞ2; (B5)

where ~kz ¼ kz=k.

APPENDIX C: AUXILIARY FUNCTIONS

In defining the functions below, the superscript empha-
sizes that we deal with the interaction force, whereas the
numerical subscript indicates the force’s power of decay in
the axis-to-axis separation between cylinders.

gin6 ð"1ð!Þ; "2ð!ÞÞ
¼ 45

2048
Im

�
1

"2 þ 1

�
1

j"1 þ 1j2 ½ðj"1j
2 � 1Þ

� ð4ð33þ 5Re½"1�Þ þ ð7þ 3Re½"1�Þj"2 þ 1j2Þ
þ ðRe½"1�2 � 1Þð40þ 6j"2 þ 1j2Þ�; (C1)

gin4 ð"1; "2Þ
¼ 3

256
Im

�
1

"2 þ 1

�
1

j"1 þ 1j2 ½Im½"1�2ðj"2 þ 1j2

� ð7� Re½"1�Þ þ 12Re½"1� þ 76Þ
þ ðRe½"1�2 � 1Þðj"2 þ 1j2ð5� Re½"1�Þ
þ 12Re½"1� þ 100Þ�; (C2)

gin1 ð"1ð!Þ; "2ð!ÞÞ
¼ 2

15�
Im

�
1

"1 þ 1

�
Im

�
1

"2 þ 1

�

� ðj"1 þ 1j2j"2 þ 1j2 þ j"1 þ 1j2 þ j"2 þ 1j2 þ 36Þ;
(C3)
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fin6 ð"01 ; "02Þ ¼
15�2

4096

ð"01 � 1Þ½172þ ð13þ 3"01Þð"02 þ 1Þ2 þ 20"01�
ð"01 þ 1Þð"02 þ 1Þ2 ; (C4)

fin4 ð"01 ; "02Þ ¼
�4ð"01 � 1Þ
1280ð"01 þ 1Þ

�
12"01 þ 100

ð"02 þ 1Þ2 � "01 þ 5

�
; (C5)

fin1 ð"01 ; "02Þ ¼
16�7

225

ð"01 þ 1Þ2 þ ð"02 þ 1Þ2 þ ð"01 þ 1Þ2ð"02 þ 1Þ2 þ 36

ð"02 þ 1Þ2ð"01 þ 1Þ2 : (C6)
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[35] M. Krüger, T. Emig, and M. Kardar, Phys. Rev. Lett. 106,
210404 (2011).

[36] J. Kottmann and O. Martin, Opt. Express 8, 655
(2001).
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