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de Sitter symmetry and quantum theory

Felix M. Lev*

Artwork Conversion Software Inc., 1201 Morningside Drive, Manhattan Beach, California, 90266, USA
(Received 4 October 2011; published 5 March 2012)

de Sitter symmetry on quantum level implies that operators describing a given system satisfy
commutation relations of the de Sitter algebra. This approach gives a new perspective on fundamental
notions of quantum theory. We discuss applications of the approach to the cosmological constant problem,

gravity, and particle theory.
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I. INTRODUCTION: SYMMETRY ON
QUANTUM LEVEL

The most well-known way of implementing Poincare
invariance on quantum level is quantum field theory (QFT)
on Minkowski space. Here one starts from classical fields
on that space and constructs a Lagrangian. This makes it
possible to calculate the four-momentum P* and Lorentz
angular momenta M*” (u, v =0,1,2,3, M*’' =—-M"*)
for the system of fields under consideration. After quanti-
zation, P* and M*” become operators which should satisfy
the commutation relations

[P¥, P"] =0,
[PH, M*P] = —i(n#e P" — nhPP),
[M#?, MPT] = —i(n*P M + 5" MHP
— METMP = P MET), )

where n*" is the diagonal metric tensor such that % =
—pll = 2 ¥,

The requirement that the relations (1) should be satisfied
is a must in any relativistic quantum theory since they
represent the definition of Poincare symmetry on quantum
level. These relations do not involve Minkowski space at
all and should be valid regardless of whether the operators
(P*, M*") have been obtained in QFT or in other ap-
proaches. In typical QFTs the relations (1) can be formally
checked by using equal-time commutation relations be-
tween the field operators (see e.g. textbooks [I,2]).
However, the operators (P*, M*?) in QFT are constructed
from products of interacting fields at the same points, and it
is well known that such products are not well defined. A
proof that in interacting QFTs it is possible to construct
well defined operators (P#, M*") satisfying Eq. (1) is a
very difficult unsolved problem.

The idea of symmetry on quantum level follows. Each
system is described by a set of independent operators. By
definition, the rules about how these operators commute
with each other define the symmetry algebra. For example,
the definition of de Sitter (dS) invariance on quantum level
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is that the representation operators of the dS algebra de-
scribing a quantum system under consideration, should
satisfy the commutation relations

[Mab,MCd] — _i(T]achd + T’bdMac _ nadec _ T]bCMad),
(2)

where a, b =0, 1, 2, 3, 4, M®> = —M"“, and n? is the
diagonal metric tensor such that n% = —p!l = —9?2 =
—n¥ = —n* = 1. The validity of these relations is a
must in any de Sitter invariant quantum theory, regardless
of whether the operators M“’ have been obtained from
QFT on dS space or in other approaches. However, to the
best of our knowledge, these relations are not widely
discussed in the literature on quantum dS invariant theo-
ries. The same is true in the case of anti-de Sitter (AdS)
invariant theories where the commutation relations have
the same form (2) but n** = 1.

It is usually said that Egs. (1) and (2) are written in units
¢ = h = 1 and, as discussed in Refs. [3,4], such units have
a clear physical meaning. Then in the case of dS and AdS
symmetries, all the operators M’ are dimensionless, while
in the case of Poincare symmetry, only the operators of the
Lorentz algebra are dimensionless while the momentum
operators have the dimension 1/length. Equation (1) is a
special case of Eq. (2) obtained as follows. If R is a
parameter with the dimension length and the operators
P* are defined as P* = M** /R, then in the formal limit
R — 00 one gets Eq. (1) from Eq. (2). This contraction
procedure is well known. Hence from the point of view of
symmetry on quantum level, dS and AdS symmetries are
more natural and general than Poincare symmetry. It is also
clear that on quantum level dS and AdS theories can be
constructed without parameters having the dimension of
length. Such parameters may be used if one wishes to
interpret the results in classical approximation on dS or
AdS space or in the Poincare limit, but they are not
fundamental. In particular, if we accept dS or AdS sym-
metry on quantum level, then neither the cosmological
constant (CC) A = 3/R? nor the gravitational constant G
can be fundamental (see Refs. [3,4] for a detailed
discussion).
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The problem arises how an elementary particle should
be defined. A discussion of numerous controversial ap-
proaches can be found, for example, in Ref. [5]. In the
spirit of QFT, fields are more fundamental than particles,
and some authors even claim that particles do not exist.
From the point of view of QFT, a possible definition
follows [6]: It is simply a particle whose field appears in
the Lagrangian. It does not matter if it is stable, unstable,
heavy, light. If its field appears in the Lagrangian, then it is
elementary; otherwise, it is composite. We believe that
since Eqgs. (1) and (2) are treated as a definition of sym-
metry on quantum level, the most general definition, not
depending on the choice of the classical background and on
whether we consider a local or nonlocal theory, is that a
particle is elementary if the set of its wave functions is the
space of an irreducible representation (IR) of the symmetry
algebra in the given theory. The relation between the above
definitions is discussed in Sec. IV. Note that the construc-
tion of IRs is needed not only for describing elementary
particles, but even for describing the motion of a macro-
scopic body as a whole. For example, when we consider
the interaction between two macroscopic bodies such that
the distance between them is much greater than their sizes,
it suffices to describe each body as a whole by using the IR
with the corresponding mass.

II. DE SITTER SYMMETRY AND THE
COSMOLOGICAL CONSTANT PROBLEM

The data on the cosmological acceleration are inter-
preted in such a way that with the accuracy better than
5% the value of the CC is positive. Efforts to explain the
value of the CC in the framework of quantum gravity have
not been successful yet, and this problem is as well known
as the CC problem. In the literature the existing data are
often explained as a manifestation of dark energy or other
fields. The philosophy of such approaches is roughly as
follows: In the absence of matter the spacetime background
should be flat, so its curvature is caused by a hidden matter.
However, the notion of the empty spacetime background is
not physical (see e.g. the discussion in Refs. [3,4]). From
the point of view of quantum theory, the question is not
whether the empty space is flat or curved but what sym-
metry algebra is most pertinent for describing nature. We
are not claiming that the dS or AdS algebra is a universal
symmetry algebra, but at least in view of the above dis-
cussion, each of them is more relevant than the Poincare
algebra. As noted above, in theories based on the dS or AdS
algebra the quantity A is not fundamental. As argued in
Refs. [3,4], the value of the dimensionful parameter A
simply reflects the fact that we want to measure distances
in meters. Therefore a question why A is as it is does not
have a fundamental physical meaning.

Consider a system of two free bodies in dS invariant
theory. The motion of each body as a whole is described by
the IR of the dS algebra with the corresponding mass, and
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the fact that the bodies are free means that each two-body
operator M is a sum of the corresponding single-body
operators. Then the result of calculations [3,4] is that in
semiclassical approximation the relative acceleration de-
scribing their repulsion is a = Ac’r/3 where r is the
vector of the relative distance between the particles.
From the formal point of view the result is the same as in
general relativity (GR) on dS space. However, our result
has been obtained by using only standard quantum-
mechanical notions while dS space, its metric, connection,
etc. have not been involved at all. We believe this result is a
strong indication that the results of GR can be recovered
from semiclassical approximation in quantum theory with-
out using spacetime background and differential geometry
at all. In any case, our result shows that the CC problem
does not exist and the phenomenon of cosmological accel-
eration can be naturally explained without involving dark
energy or other unknown fields. The fact that A > 0 should
be interpreted not such that the spacetime background is
the dS space but that the dS algebra is more relevant than
the Poincare or AdS ones (in which cases one would have
A = 0or A <0, respectively).

II1. DS SYMMETRY AND GRAVITY

The mainstream approach to gravity is that this phe-
nomenon is a manifestation of a graviton exchange. The
data on binary pulsars are often treated as an indirect
indication of the existence of gravitons but their direct
detection has not been successful yet. In recent years a
number of works has appeared where gravity is treated as
an emergent phenomenon. We believe that until the nature
of gravity has been unambiguously understood, different
possibilities should be investigated. dS invariance opens a
new approach for investigating gravity. In our opinion, this
approach is clear and natural and the main idea is as
follows.

Consider a spectrum of the mass operator for a free two-
body system in dS invariant theory. This spectrum has been
investigated in Refs. [3,4,7,8]. In contrast to the situation in
Poincare and AdS theories where the mass operator is
positive definite and its spectrum is bounded below by
m; + m, (where m; and m, are the masses of the bodies),
the spectrum of the mass operator in dS theory is not
bounded below by this value. Therefore, in principle, there
is no problem to indicate two-body wave functions for
which the mean value of the mass operator contains an
additional term —Gm;m,/r with possible corrections
given by GR or other classical theories of gravity. Here
r = |r| while G is not a constant taken from the outside but
a quantity which should be calculated. The problem is to
understand whether such wave functions are semiclassical
and why they are more preferable than other wave func-
tions. Such a possibility has been first indicated in Ref. [9].

As noted in the preceding section, a standard quantum-
mechanical calculation in semiclassical approximation
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shows that the relative acceleration of two bodies in dS
theory is repulsive and proportional to r, i.e. not attractive
and proportional to 1/ for gravity as one would expect. In
this connection we note the following. Since all the dS
operators are conventional or hyperbolic rotations, the
distances in dS theory should be given in terms of dimen-
sionless angular variables. The angular distance ¢ and the
standard distance r are related as ¢ = r/R [4]. It is well
known that semiclassical approximation in quantum me-
chanics cannot be applied for calculating quantities which
are very small. If the distance between two bodies is large,
then the angular distance ¢ is not anomalously small
and can be calculated in semiclassical approximation.
However, the distances between bodies in the Solar
System are much less than R and therefore the angular
distances between them are very small if R is very large.

In Ref. [4] it has been argued that standard semiclassical
approximation does not apply for macroscopic bodies in
the Solar system and that the standard distance operator
should be modified. We have given a modification, such
that the distance operator has correct properties and semi-
classical approximation can be applied. As a result, the
classical nonrelativistic Hamiltonian is

2

q mlmzR 1 1

Hr. @) 2myy const (my + m2)7(31 i 52)’ ©)
where q is the relative momentum, m, is the reduced
mass, const. is of order unity, and ; (i = 1, 2) is the width
of the dS momentum distribution in the wave function of
body i. Therefore the Newton gravitational law can be
recovered if const- R/8; = Gm; where G is a quantity
which should be calculated. This problem will be discussed
in Sec. V. It has also been shown that the proposed modi-
fication naturally gives a correct value for the precession of
Mercury’s perihelion. We also discuss whether this ap-
proach can reproduce well-known results of GR for the
gravitational red shift of light and the deflection of light by
the Sun.

IV. DS SYMMETRY AND PARTICLE THEORY

Standard particle theory is based on Poincare symmetry.
Since dS symmetry becomes Poincare one when R is very
large and R is much greater than dimensions of elementary
particles, one might think that considering particle theory
with dS symmetry is of no interest. However, we will see
below that dS symmetry sheds new light on fundamental
notions of particle theory.

We first consider the two definitions of elementary
particles given in Sec. I. In theories with Poincare and
AdS symmetry, there are two kinds of IRs corresponding
to particles. IRs with positive energies are implemented on
the upper Lorentz hyperboloid where the temporal compo-
nent of the four-velocity is positive: vy = v/1 + vZ, while
IRs with negative energies are implemented on the lower
Lorentz hyperboloid where this component is negative:
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vy = —V1 + v2. IRs with positive energies are associated
with particles and IRs with negative energies—with their
antiparticles. Standard particle theory cannot throw away
IRs with negative energies as unphysical. In this theory,
positive and negative energy IRs are combined for con-
structing a local field satisfying a covariant equation (e.g.
the Dirac field satisfying the Dirac equation), and this field
is used for constructing a Lagrangian. Therefore, in QFT
the two definitions of elementary particles are usually
equivalent.

One of the ideas of quantization is to circumvent the
problem with negative energies. For simplicity, we assume
that there are only discrete states which can be enumerated
by an integer i = 1, 2, .... In addition, we define a quan-
tum number €, which shows whether a state with a quan-
tum number i belongs to the upper or lower hyperboloid.
For example, e = *1 for the upper and lower hyperbol-
oids, respectively. Let a(i, €) be the operator annihilating
the state with quantum numbers (i, €) and a(i, €)* be the
operator creating the state with such quantum numbers.
These operators can satisfy either commutation or anti-
commutation relations:

{Cl(i, 6): a(jr 6/)*}i = 51‘./‘556’) (4)

where 6,~j is the Kronecker symbol, and * refers to the
anticommutator and commutator, respectively. One can
define the vacuum vector @, such that a(i, e)®, = 0V i,
€. Then the energy operator is

E = ZE(i, e)a(i, €)*ali, €), (5)

where E(i, €) is the energy in the state (i, €). For theories
with Poincare and AdS symmetries, the sign of E(i, €) is
the same as the sign of €. For example, in Poincare invari-
ant theory, E(i, €) = muv(i, €) where m is the particle mass
which is assumed to be positive, and v is the value of
vo(i, €) in the state with quantum numbers (i, €).

At this point, we have only rewritten the usual expres-
sion for the energy in terms of secondly quantized opera-
tors and hence the problem of negative energies remains.
For example, as it follows from Egs. (4) and (5), any state
a(i, —1)*®, has a negative energy. Note that the sign of
energy is only a matter of convention. For example, in
Poincare invariant theory, a momentum p is measured and

then the energy can be defined as E = {/m? + p?, but the

definition E = —y/m? + p? is possible, too. It is important,
however, that the sign of energy should be the same for all

particles. For example, if one defines E = y/m?* + p? for

the electron and E = —+/m? + p? for the positron, then for
the electron-positron system such that the electron has the
momentum p and the positron has the momentum —p,
the total energy and momentum would be zero, which
contradicts experiment. Hence we accept the usual con-
vention that the energy of any particle should be positive.
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One might try to circumvent the problem of negative
energies by saying that the meaning of the operators
a(i, —1) and a(i, —1)* should be the opposite for the
following reason. If ®; is a state with the energy E|,
then a(i, —1)®, is a state with the energy E, — E(i, —1)
and a(i, —1)*®, is a state with the energy E; + E(i, —1).
Hence a(i, —1) can be treated as the operator of creation of
a state with the positive energy |E(i, —1)| and a(i, —1)*—
as the operator of annihilation of such a state. This idea can
be implemented only if the vacuum state is redefined. For
example, the new vacuum can be defined as

O, = na(i, —1)*®,, (6)

and then the new treatment of the operators a(i, —1) and
a(i, —1)* is in the spirit of Dirac’s hole theory. However, in
that case a new problem arises: as it follows from Eq. (5),
the energy of the state @, is

E = ZE(i, -1), (7)

and this is an infinite negative value. It is believed that in
quantum gravity the infinite value of the vacuum energy is
unacceptable.

The idea that creation of a state with a negative energy
can be described as annihilation of a state with a positive
energy and that annihilation of a state with a negative
energy can be described as creation of a state with a
positive energy can also be implemented as follows.
Instead of a(i, —1) and a(i, —1)*, define new operators
b(i) and b(i)* such that b(i) is proportional to a(i, —1)*
and b(i)" is proportional to a(i, —1). For example, if b(i) =
n(i)a(i, —1)* where m(i) is a complex number then
b(i)* = m(i)*a(i, —1). These operators will satisfy the
same commutation or anticommutation relations as in (4) if

n(i)n() = =1 (8)

for the case of anticommutators and commutators, respec-
tively, [here 7(i) is the complex conjugation of 7(i)]. In
standard theory (over complex numbers) only the plus sign
is possible. We now wish to treat b(i) as the operator of
annihilation of a state with a positive energy and b(i)*—as
the operator of creation of such a state. Therefore the
vacuum state ® should now be defined such that a(i)d =
b(i)® = 0V i where a(i) = a(i, 1). Such a transformation
is called the Bogolubov transformation. In that case, if
E(i)=E(i, 1) and E(i, —1) = —E(i, 1) then, as it follows
from Eq. (5), the energy operator can be written as

E= ZE(i){a(i)*a(i) + b(i)*b(i)} + E, 9)

for the case of anticommutation and commutation rela-
tions, respectively. Here E|; is given by Eq. (7). We see that
if the operators a and b are obtained from the Bogolubov
transformation then energies of antiparticles can be
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positive only in the case of anticommutation relations.
Also, the price for performing the Bogolubov transforma-
tion is the appearance of the infinite constant in Eq. (9).
This constant is usually neglected by requiring that, from
the beginning, the operators of physical quantities should
be written in the normal form (when the annihilation
operators precede the creation ones). However, this is an
extra requirement which does not follow from the theory.
Another way of avoiding the problem of infinite constants
is not to use the Bogolubov transformation at all and
require from the beginning that, regardless of the type of
the commutation relations, the energy operator should be
written in the form 3 ;E()[a(i)*a(i) + b(i)*b(i)].

If a particle is characterized by an additive quantum
number (e.g. the electric charge, the baryon or lepton
quantum number) then, since b* is proportional to a, the
antiparticle is characterized by the opposite quantum num-
ber. Therefore the sets (a, a*) and (b, b*) are independent.
However, in the case of a neutral particle, when all additive
quantum numbers are zero, one requires that the corre-
sponding field be Hermitian. Then the operators (b, b*) are
obsolete and the number of states describing a neutral field
is by a factor of 2 less than the number of states for a non-
neutral field.

All of the above facts can be found in practically every
textbook on QFT. We have mentioned these facts in order
to compare the results of standard theory with those ob-
tained with dS symmetry. The assumption that quantum
theory should be based on dS symmetry implies several far
reaching consequences. First of all, in contrast to Poincare
and AdS symmetries, the dS one does not have a super-
symmetric generalization. There is no doubt that super-
symmetry is a beautiful idea. On the other hand, one might
say that there is no reason for nature to have both, elemen-
tary fermions and elementary bosons since the latter can be
constructed from the former. A well-known historical anal-
ogy is that the simplest covariant equation is not the Klein-
Gordon equation for spinless fields but the Dirac and Weyl
equations for the spin 1/2 fields, since the former is the
equation of the second order while the latter are the equa-
tions of the first order.

A very elegant description of IRs of the dS group can be
found in a book [10] on the theory of induced representa-
tions for physicists. A crucial difference between dS sym-
metry on one hand and Poincare or AdS symmetry on the
other is that in the dS case, one IR can be implemented only
on the both, upper and lower Lorentz hyperboloids simul-
taneously. Only in the formal limit R — oo one IR of the dS
algebra splits into two independent IRs of the Poincare
algebra on the upper and lower Lorentz hyperboloids [3].
When R is finite, transitions between the hyperboloids are
not prohibited since the states on the upper and lower
hyperboloids belong to the same IR.

As shown in Ref. [10], there exists an equivalent
description when an IR is implemented not on two
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hyperboloids but on the three-dimensional unit sphere S° in
the four-dimensional space. The points of S* are charac-
terized by u = (u, uy) such that u2 + u? = 1. The relation
between the points of the upper hemisphere (u#, > 0) and
the upper hyperboloid is u = v/v, and u; = (1 — u?)!/2
while the relation between the points of the lower hemi-
sphere (1, < 0) and the lower hyperboloid is u = —v/v,

and u; = —(1 — u?)"/2. The equator of S where uy = 0
has measure zero with respect to the upper and lower
hemispheres.

In variables (u, uy), transitions between the hyperbol-
oids correspond to crossing the equator of S* and hence
such transitions are not singular. The possibility of such
transitions shows that if R is finite, then the very notions of
a particle and its antiparticle can be only approximate and
such quantum numbers as the electric charge, the baryon,
and lepton quantum numbers cannot be strictly conserved.
The nonconservation of the baryon and lepton quantum
numbers has been already considered in models of grand
unification but the electric charge has been always believed
to be a strictly conserved quantum number. The experi-
mental facts that all those numbers are conserved might be
a consequence of the fact that nowadays the value of R is
very large and probabilities of transitions particle <
antiparticle are very small. However, at earlier stages of
the Universe, when R was not so large, those probabilities
were not negligible. One might speculate that this was the
reason of the observed baryon asymmetry of the Universe.
It is also immediately clear that in the dS case there are no
neutral particles since it is not possible to reduce the
number of states in an IR.

Consider now the problem of quantization in dS theory.
We can take M* as the dS analog of the Hamiltonian since
M* /R becomes the Hamiltonian in Poincare limit. By
analogy with standard theory, we can define the operators
a(i, €) satisfying Eq. (4) and the vacuum state ®,. Then the
energy operator can be again written in the form (5) [3,8].
In contrast to the situation in standard theory, one cannot
now guarantee that E(i, 1) > 0, E(i, —1) < 0V i. However,
this is at least the case for those i when Poincare approxi-
mation works with a high accuracy [3,8]. Hence the prob-
lem of negative energies exists in the dS case as well. By
analogy with standard theory, one might try to redefine the
vacuum as in Eq. (6) but this vacuum also will have an
infinite energy given by Eq. (7).

One might define the operators (b, b*) in the same wave
as in standard theory and then, by analogy with standard
theory, one gets Eq. (9) [3,8]. However, since transitions
particle < antiparticle are not prohibited, in contrast to
standard theory, the Bogolubov transformation in the dS
case can be performed only at the expense of breaking dS
symmetry [3]. Symmetry breaking will occur only at ex-
tremely large energies and in that case the transitions
particle < antiparticle will be prohibited after the trans-
formation. If this scenario is acceptable and for some
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reason (see Sec. V) the infinite constant E; given by
Eq. (7) can be neglected then we come to conclusion that
in dS theory only fermions can be elementary. We believe,
however, that since we treat Eq. (2) as a must, we should
consider scenarios when difficulties can be resolved with-
out breaking symmetry. One such scenario is discussed in
the next section.

The fact that in Poincare and AdS theories a particle and
its antiparticle are described by different IRs means that
they are different objects. Then a problem arises why they
have the same masses and spins but opposite charges. In
QFT this follows from the CPT theorem which is a con-
sequence of locality since we construct local covariant
fields from a particle and its antiparticle with equal masses.
A question arises what happens if locality is only an
approximation: in that case the equality of masses, spins
etc., is exact or approximate? Consider a simple model
when electromagnetic and weak interactions are absent.
Then the fact that the proton and the neutron have the same
masses and spins has nothing to do with locality; it is only a
consequence of the fact that the proton and the neutron
belong to the same isotopic multiplet. In other words, they
are simply different states of the same object—the nucleon.
We see, that in dS invariant theories the situation is analo-
gous. The fact that a particle and its antiparticle have the
same masses and spins but opposite charges (in the ap-
proximation when the notions of particles, antiparticles
and charges are valid) has nothing to do with locality or
nonlocality and is simply a consequence of the fact that
they are different states of the same object since they
belong to the same IR.

Another consequence of dS symmetry is as follows. In
QFT a particle and its antiparticle should be combined into
one object, which is a local field. For example, the Dirac
field combines the electron and positron together.
However, in dS theory, Dirac’s idea of combining a particle
and its antiparticle together is already implemented since
they belong to the same IR. This poses a problem whether
for constructing quantum theory local fields are needed
at all.

V. A QUANTUM THEORY OVER A GALOIS FIELD

In the preceding sections we discussed symmetries in
standard approach to quantum theory, i.e. that quantum
states are represented as vectors in complex Hilbert spaces
and operators of physical quantities—as operators in such
spaces. In Ref. [11] we have proposed an approach when
quantum states are represented as vectors in spaces over a
Galois field and operators of physical quantities—as op-
erators in such spaces. We believe that this approach,
which we call a quantum theory over a Galois field
(GFQT), is more elegant and natural than standard ap-
proach. A detailed motivation can be found e.g. in
Refs. [4,12]. Since any Galois field is finite, in GFQT
infinities cannot exist in principle. One of the motivations
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of GFQT is that the notion of infinitely small is based on
the macroscopic experience that every macroscopic object
can be divided into any number of parts. However, in view
of the existence of atoms and elementary particles, it is
clear that standard division has a limited applicability.

Any Galois field F,» contains p" elements where p is
prime and 7 is a natural number. For any new theory, there
should exist a correspondence principle that at certain
conditions the predictions of this theory is close to the
predictions of standard well tested theory. For example,
classical theory is a special case of theory of relativity in
the formal limit ¢ — oo and a special case of quantum
theory in the formal limit 2 — 0. Poincare invariant theory
is a special case of dS and AdS theories in the formal limit
R — 0. Analogously, as shown in Refs. [9,11,12], stan-
dard theory is a special case of GFQT in the formal limit
p — . In this approach, p is a fundamental quantity
defining laws of physics in our Universe.

One might wonder why we need a new fundamental
constant. The history of physics tells us that new theories
arise when a parameter, which in the old theory was treated
as infinitely small or infinitely large, becomes finite. For
example, from the point of view of nonrelativistic physics,
the velocity of light ¢ is infinitely large but in relativistic
physics it is finite. Analogously, from the point of view of
classical theory, the Planck constant 7 is infinitely small
but in quantum theory it is finite. Therefore it is natural to
think that in the future quantum physics the quantity p will
be not infinitely large but finite.

Since we treat GFQT as a more general theory than
standard one, it is desirable not to postulate that GFQT is
based on F',> because standard theory is based on complex
numbers but vice versa, to explain the fact that standard
theory is based on complex numbers since GFQT is based
on F 2 Hence, one should find a motivation for the choice
of F 2 in GFQT. Possible motivations are discussed in
Refs. [12,13], and one of them is mentioned at the end of
this section.

By definition, dS or AdS symmetry in GFQT implies
that the operators describing the system under considera-
tion satisfy the commutation relations (2) which now
should be understood as relations in spaces over a Galois
field. Since in GFQT all physical quantities can be only
discrete and there are no continuous quantities, in GFQT all
physical quantities are dimensionless and there are no
systems of units. This is one of the reasons why dS and
AdS symmetries have a natural generalization to GFQT
while Poincare symmetry does not [12].

In GFQT the notion of probability can be only approxi-
mate when p is very large. In particular, the notions of
positive definite scalar product and Hermiticity can be only
approximate. In standard theory the difference between the
dS and AdS cases is as follows: Hermitian operators M**
in commutation relations (2) for n** = —1 become anti-
Hermitian when the relations are implemented for n* = 1
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and vice versa. However, since in GFQT the notion of
Hermiticity can be only approximate, the relations (2) in
GFQT can be treated as the GFQT generalization of dS and
AdS symmetries simultaneously. In different situations, a
description of a physical system can be close to a descrip-
tion in standard theory for the dS or AdS cases.

We first discuss an application of GFQT to gravity. It is
seen from Eq. (3) that the dS correction to standard
Hamiltonian disappears if the width of the dS momentum
distribution for each body becomes very large. In standard
theory there is no strong limitation on the width of distri-
bution; the only limitation in semiclassical approximation
is that the width of the dS momentum distribution should be
much less than the mean value of this momentum.
Therefore in standard theory the quantities §; can be very
large and then the dS correction practically disappears. As
shown in Ref. [4], in GFQT for the validity of the probabi-
listic interpretation of a wave function, the width of the dS
momentum distribution should be not only much less than
p but even much less than /np. Since p is expected to be a
huge number, this should not be a serious restriction for
elementary particles. However, when a macroscopic body
consists of many smaller components and each of them is
semiclassical, a restriction on the width of the momentum
distribution is stronger when the number of components is
greater. This qualitatively explains that the width of the
momentum distribution in the wave function describing a
motion of a macroscopic body as a whole is inversely
proportional to the mass of the body. As a consequence,
as noted in Sec. 3, Eq. (3) becomes the Newton law of
gravity. A very rough estimation of the quantity G gives

R
mylnp’

G= (10)
where my is the nucleon mass. If R is of order 10%°m then
Inp is of order 108" and therefore p is of order exp(10%°). In
the formal limit p — oo gravity disappears, i.e. in our
approach gravity is a consequence of finiteness of nature.
Consider now applications of GFQT to particle theory.
An elementary particle in GFQT is described by an IR of
the algebra (2) over a Galois field. Consider, for example,
how IRs can be constructed in standard AdS theory. We
start from the rest state of a particle (where energy = mass)
and gradually construct states with higher and higher en-
ergies. In such a way, in standard case we obtain the energy
spectrum in the range [m, ). However, in the analogous
construction in GFQT, we are moving not along a straight
line but along a circumference in Fig. 1 of Ref. [12]. Then
sooner or later we will arrive at the point where energy =
—mass, i.e. at the starting point for constructing an IR for
the corresponding antiparticle. As a consequence, in GFQT
one IR describes a particle and antiparticle simultaneously.
By analogy with the consideration in the preceding section,
we now immediately conclude that in GFQT there are no
neutral particles (since it is not possible to reduce the
number of states in an IR), the very notions of a particle
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and its antiparticle are approximate and such quantum
numbers as the electric charge and the baryon and lepton
quantum numbers can be only approximately conserved.
All these conclusions are valid regardless of whether we
consider a GFQT analog of dS or AdS theory.

The fact that in GFQT there are no neutral elementary
particles and, in particular, the photon cannot be elemen-
tary, has been indicated in Ref. [14]. As shown in Ref. [15],
titled ““One massless particle equals two Dirac singletons,”
in standard AdS theory a massless particle can be com-
posed of two IRs discovered by Dirac in Ref. [16]. As
argued in Ref. [12], in GFQT such a possibility is even
more attractive.

By analogy with standard theory, the next step is quan-
tization. In the preceding section we discussed two possi-
bilities. The first one is in the spirit of Dirac’s hole theory
when a new vacuum is defined by Eq. (6). The problem
with this case is that in standard theory, negative energy
states contribute to the energy of the vacuum according to
Eq. (7) and the energy becomes a negative infinite number.
On the other hand, in the approach with the Bogolubov
transformation, the new vacuum has zero energy but sym-
metry is broken. In GFQT it is broken at huge energies of
order p [12], and one might think that this is not very
important. However, as already noted, it is very desirable
not to break symmetry on quantum level. In GFQT there
can be no infinities and, if p is treated only as a cutoff
parameter, one might think that the vacuum energy calcu-
lated by analogy with Eq. (7) is of order p. In Galois fields,
the notion of positive and negative numbers can be only
approximate and a problem arises what the GFQT analog
of Eq. (7) is. This problem has been discussed in Ref. [12].
The result of calculations is that an analog of Eq. (7) is

E, — 9—16(m =D+ 12 +3), (1)

where m is the de Sitter mass and s is the spin in units
where 7 = 1/2. In this units, s = 1 for particles having
spin 1/2 in standard theory. Hence for such particles the
vacuum energy calculated by analogy with Eq. (7) is
zero. This result demonstrates that p is not only a cutoff
parameter and we have E,,. = 0 instead of E; = —©
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since the rules of arithmetic in Galois fields are not the
same as in standard mathematics. The result also might be
treated as an indication that only particles with the spin 1/2
can be elementary.

In summary, in GFQT it is possible to quantize an IR
with the spin 1/2 such that symmetry on quantum level is
not broken and the vacuum energy is zero. This can be
achieved in the GFQT analog of Dirac’s hole theory.

As noted in the preceding section, the idea of the
Bogolubov transformation is that creation of a state with
the energy E can be described as annihilation of a state
with the energy —FE. This makes it possible to formally
consider a transformation when not only a half but all the
(a, a*) operators are replaced by the (b, b*) operators. We
call this transformation the AB one. A natural requirement
is that the operators M“ should be invariant under the AB
transformation [12]. In the usual case the Bogolubov trans-
formation is meaningful only for fermions (see the preced-
ing section). In GFQT one can express 1(i) in terms of a
constant « such that instead of Eq. (8)

aa = F1 (12)

for the normal and broken spin-statistics connection, re-
spectively. As noted in Ref. [12], the second possibility is
unphysical (not only because the normal spin-statistics
connection is broken). In standard theory the first possi-
bility is impossible but in GFQT, if p = 3 (mod4), it is
possible only if F, is extended and the minimum extension
is F 2. This can be treated as an argument why standard
theory is based on complex numbers [12]. Also, Eq. (12)
shows that in GFQT both types of statistics are possible
and supersymmetry is not excluded [12]. However, as
noted above, if the spin is not equal to 1/2 then a problem
with the vacuum energy arises.

The above discussion shows that de Sitter symmetry on
quantum level gives a new perspective on fundamental
notions of quantum theory.
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