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We calculate via the effective field theory (EFT) approach the next-to-next-to-leading order (NNLO)

spin1-spin2 conservative potential for a binary. Hereby, we first demonstrate the ability of the EFT

approach to go at NNLO in post-Newtonian (PN) corrections from spin effects. The NNLO spin1-spin2

interaction is evaluated at fourth PN order for a binary of maximally rotating compact objects. This sector

includes contributions from diagrams, which are not pure spin1-spin2 diagrams, as they contribute

through the leading-order spin accelerations and precessions, that should be first taken into account

here. The fact that the spin is derivative-coupled adds significantly to the complexity of computations. In

particular, for the irreducible two-loop diagrams, which are the most complicated to evaluate in this sector,

irreducible two-loop tensor integrals up to order 4 are required. The EFT calculation is carried out in terms

of the nonrelativistic gravitational (NRG) fields. However, not all of the benefits of the NRG fields apply

to spin interactions, as all possible diagram topologies are realized at each order of G included. Still, the

NRG fields remain advantageous, and thus there was no use of automated computations in this work. Our

final result can be reduced, and a corresponding Hamiltonian may be derived.
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I. INTRODUCTION

Though predictions of General Relativity (GR) have
been confirmed in all observations and experiments to
date, one of its most essential predictions, namely, that of
gravitational waves (GW), has not yet been directly ob-
served. Worldwide efforts are undertaken in order to ob-
serve such signals either with ground-based [1–4], or future
space-based [5] detectors. Inspiralling compact binaries,
which are promising candidate sources for such signals,
can be described analytically by the post-Newtonian (PN)
approximation of GR [6]. It turns out that even relatively
high-order PN corrections for the binary inspiral, as high as
the fourth order PN (4PN) correction, have a phenomeno-
logical impact on the theoretical waveform templates,
required for successful detection (see [7] and references
therein). Moreover, astrophysical objects are expected to
have significant spins, for which spin effects have a big
impact on the event rates expected in GW detectors [8]. It
is therefore desirable to have PN corrections involving spin
effects to the same high orders as for the nonspinning case.

A novel effective field theory (EFT) approach was sug-
gested recently by Goldberger and Rothstein for the treat-
ment of the binary inspiral problem [9,10]. The EFT
approach is very advantageous in applying the efficient
standard tools of quantum field theory to GR, such as
Feynman diagrams and dimensional regularization.
Subsequently, PN corrections of conservative dynamics
have been reproduced: 1PN and 2PN corrections for bi-
naries [9,11], 2PN correction for the n-body problem [12],
first promoting the use of automated computations in the
EFT approach, and recently even the 3PN correction [7].
The EFT approach was further extended to include spin
effects [13], and PN corrections involving spin were

tackled as well: the next-to-leading (NLO) spin1-spin2
[14–17] (complete results also in [18]) and NLO spin-
squared interactions [19] (complete results also in
[20–22]) at 3PN order were computed. The more complex
NLO spin-orbit interaction at 2.5PN order was also com-
puted [23–25] (first obtained in [26–29]). We note that
following [30,31] in more traditional methods, the NLO
spin-orbit and spin(a)-spin(b) interactions for the n-body
problem [32] and the next-to-next-to-leading-order spin-
orbit interaction for a binary [33] were also obtained.
Following the EFT treatment of the radiation sector in
the nonspinning case [34], the spin-orbit, spin1-spin2,
and spin-squared components of multipole moments
were computed to NLO in [35], where spin-orbit radiative
effects at NLO were already obtained in [28], and have
been pushed further to include tail effects in [36]. Recently,
the EFT formalism has been extended to incorporate ra-
diation reaction [38], and similar EFT approaches were
developed to investigate the extreme mass ratio inspiral
problem [37,39,40], which is also relevant for GW detec-
tion, and to treat weak ultra relativistic scattering [41].
A major improvement for the obtainment of higher-

order PN corrections via the EFT approach was presented
in [42]. There, a reduction over the time dimension of the
metric à la Kaluza-Klein was made, and was demonstrated
to improve the 1PN order EFT computation. This non-
relativistic parametrization of the metric defines a set of
new nonrelativistic gravitational (NRG) fields, which were
later used to reproduce, e.g. the 2PN and 3PN order cor-
rections via EFT as was already noted. The advantages of
the NRG fields are numerous. First, there is the physical
interpretation of the different field components and the
clear coupling hierarchy to the mass and spin. Second,
the derivation of the self-gravitational vertices is
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simple since there is a full explicit expression for the pure
gravitational action [43], as well as a simple expression for
its stationary part which contributes at leading orders.
Further, simple propagators are obtained, there are no
mixed 2-point functions, and the derivation of the mass
couplings is also simple and immediate. Because of the
structure of vertices and mass couplings to the worldline,
not all possible diagram topologies are realized at each
order, and the number of diagrams, and, in particular, the
more complicated ones, is reduced. Those are pushed to
higher orders, for example, with respect to the standard
Lorentz covariant parametrization, where a one-loop
diagram is eliminated at 1PN [42], or to the Arnowitt-
Deser-Misner (ADM) parametrization, where mass cou-
plings are eliminated at 2PN [44].

In this paper, we calculate the next-to-next-to-leading
order (NNLO) spin1-spin2 conservative potential for a
binary of compact spinning objects at the 4PN order, via
the EFT approach in terms of the NRG fields. With this
result, we demonstrate for the first time the ability of the
EFT approach to go beyond the NLO in PN corrections
involving spin. The NNLO spin1-spin2 interaction sector
includes contributions from 51 diagrams, of which 45 are
pure spin1-spin2 diagrams, while further 6 arise from other
sectors, that contribute through the LO spin equations of
motion (EOM), that should first be taken into account here.
Of the pure spin1-spin2 diagrams, there are 39 new dia-
grams here, while 6 others already appeared at the NLO
spin1-spin2 sector, though they include new ingredients in
the worldline couplings. In particular, there are 7 two-loop
diagrams contributing. We note that, unfortunately, not all
of the benefits of the NRG fields apply for spin interac-
tions, as all possible diagram topologies are realized at
each order of G included, which was already illustrated in
the NLO spin interactions. Still, the NRG fields remain
advantageous, and thus there was no use of automated
computations in this work. Our final result can be reduced,
and a corresponding Hamiltonian may be derived.
An alternative derivation of the NNLO spin1-spin2
Hamiltonian can be found in [45].

Throughout this paper, we use c � 1, ��� �
diag½1;�1;�1;�1�, and the convention for the Riemann
tensor is R�

��� � @��
�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��.

Greek letters denote indices in the global coordinate frame,

while lowercase Latin letters from the beginning of the
alphabet denote indices in the local Lorentz frame. All
indices run from 0 to 3, while spatial tensor indices from
1 to 3, are denoted with lowercase Latin letters from the

middle of the alphabet. The notation
R
k � R

ddk
ð2�Þd is

used for abbreviation (boldface characters denote
d-dimensional vectors). The scalar triple product appears

here with no brackets, i.e. ~a� ~b � ~c � ð ~a� ~bÞ � ~c (as there
is in fact no ambiguity regarding the order in which the
product can be performed).
The paper is organized as follows. In Sec. II, we briefly

review the EFT approach for the binary inspiral with spin-
ning objects, and present the Feynman rules required for
the EFT computation with the NRG fields. In Sec. III,
we present the evaluation of the NNLO spin1-spin2
Lagrangian/Routhian, going over all contributing
Feynman diagrams, and giving the value of each diagram.
In Sec. IV, we present the NNLO spin1-spin2 Lagrangian/
Routhian EFT result, and explain how to derive from it the
NNLO spin1-spin2 Hamiltonian. In Sec. V, we summarize
our main conclusions. Finally, in Appendix A, we include
the tensor Fourier, one-loop and two-loop reduced integrals
required here, whereas in Appendix B, we give the LO spin
EOM that contribute here.

II. EFT APPROACH FOR BINARY INSPIRAL
WITH SPINNING OBJECTS

In this section, we present the ingredients required in
order to perform the EFT calculation of the NNLO spin1-
spin2 interaction in terms of NRG fields, namely, the
Feynman rules and the effective action from which they
are derived. Here, we review briefly and build on Secs. II
and III of [25] and references therein, following similar
notations and conventions as those that were used there.
First, we parametrize the metric in a nonrelativistic form

according to the Kaluza-Klein ansatz

d�2 ¼ g��dx
�dx� � e2	ðdt� Aidx

iÞ2 � e�2	
ijdx
idxj;

(1)

defining the set of nonrelativistic gravitational (NRG)
fields 	, Ai, 
ij � �ij þ �ij. Then, in terms of the NRG

fields the metric reads

g�� ¼ e2	 �e2	Aj

�e2	Ai �e�2	
ij þ e2	AiAj

 !

’ 1þ 2	þ 2	2 �Aj � 2Aj	� 2Aj	
2

�Ai � 2Ai	� 2Aj	
2 ��ij þ 2	�ij � �ij � 2	2�ij þ 2	�ij þ AiAj

 !
; (2)
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where we have written the approximation for the metric in
the weak-field limit up to the orders in the fields that are
required for this work.

The action describing the dynamics of the binary system
is given by

S ¼ Sg þ Spp; (3)

where Sg is the pure gravitational action, and Spp is the

worldline point-particle action for each of the two particles
in the binary.
We consider first the purely gravitational action. It is the

usual Einstein-Hilbert action plus a gauge-fixing term,
which we take as the fully harmonic gauge, i.e.

Sg ¼ SEH þ SGF ¼ � 1

16�G

Z
d4x

ffiffiffi
g

p
Rþ 1

32�G

Z
d4x

ffiffiffi
g

p
g���

���; (4)

where �� � �
�
�g�. The full explicit expression for the

Einstein-Hilbert action and for the fully harmonic gauge
fixing in terms of NRG fields was given in [43], where it
was obtained using Cartan’s method of 2-forms. Thus,
there is no need to expand for each required ingredient

specifically, and the propagators and self-gravitational ver-
tices can be obtained readily from the action.
The NRG scalar, vector, and 2-tensor field propagators

in the harmonic gauge are then given by

where Pij;kl � 1
2 ð�ik�jl þ �il�jk � 2�ij�klÞ. Here and henceforth, the Feynman rules are presented in position space. This

makes more sense considering the nature of the binary inspiral problem, in which the external positions of the particles are
given, rather than the usual external momenta in quantum field theory.

There are also time-dependent quadratic vertices, which result from the fact that the propagators are actually relativistic
rather than instantaneous. The Weyl rescaling present in the NRG parametrization eliminates undesired mixed quadratic
vertices, so that the 2-point functions between the three different fields are 0: h	Aii ¼ h	�jki ¼ hAi�jki ¼ 0. Thus, the

Feynman rules for the propagator correction vertices are given by

where the crosses represent the self-gravitational quadratic vertices, which contain two time derivatives.
There are also contributions from three-graviton vertices of cubic gravitational self-interaction. The Feynman rules for

the three-graviton vertices required for the NNLO of the spin1-spin2 interaction are given by

BINARY DYNAMICS FROM SPIN1-SPIN2 COUPLING AT . . . PHYSICAL REVIEW D 85, 064043 (2012)

064043-3



where the first three vertices are stationary, and can be read off the stationary Kaluza-Klein part of the EH action. The three
last vertices are time dependent, and each contain a single time derivative.

In the NNLO spin1-spin2 interaction, contributions from four-graviton vertices of quartic gravitational self-interaction
also appear. The Feynman rule for the four-graviton vertex required to the order considered here is given by

where this vertex is again stationary.
Now, we consider the worldline point-particle action.

This is given by

Spp ¼ SppðmÞ þ SppðSÞ; (18)

where SppðmÞ denotes the coupling of the point particles to

gravity without the inclusion of spin, and SppðSÞ the cou-

pling of the spin degrees of freedom of the particles to
gravity. Considering the gravitational coupling to the two
massive compact objects, we take the worldline action of a
point particle for each of the objects, so that we have

SppðmÞ ¼ �X2
i¼1

mi

Z
d�i; (19)

where finite-size effects are not taken into account here as
their contribution enters at higher orders [9]. We parame-
trize the worldline using the coordinate time t ¼ x0, i.e.
� ¼ t, so that we have for u� � dx�=d�: u0 ¼ 1,
ui ¼ dxi=dt � vi. Thus, the Feynman rules for the

one-graviton couplings to the worldline mass required for
the NNLO of the spin1-spin2 interaction are given by

where the heavy solid lines represent the worldlines and
the spherical black blobs represent the particles masses on
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the worldline. The ellipsis denotes higher orders in v,
beyond the order considered here.

For the two-graviton couplings to the worldline mass
required at this order, we have the following Feynman rule:

As expected, mass couplings do not play a major role in the
spin1-spin2 interaction.

Next, we consider the gravitational coupling to the two
spinning compact objects. Here, we are not concerned with
finite-size effects of spin, which are quadratic in the indi-
vidual spins, and hence are not relevant for the spin1-spin2
interaction (see [19] for spin1-spin1 effects). Thus, we
consider here only the part of the point particle action,
which is linear in the spin of the particles given by

SppðSÞ ¼ � 1

2

X2
i¼1

Z
d�iS

ab
i !�abu

�
i ; (24)

where !ab
� � eb�D�e

a
� are the Ricci rotation coefficients,

and this form for the couplings was introduced in [17],
following the Routhian in [46]. Since the spin degrees of
freedom are naturally formulated in terms of tetrads, here it

is more convenient to start from the standard Lorentz
covariant parametrization g�� � ��� þ h��, and the deri-

vation of the couplings to the worldline spins is not so
immediate as that of the couplings to the masses. Our
background reference tetrad, expanded in terms of h��,

is given by

ea� ¼ �a
� þ 1

2h
a
� � 1

8h
a
h


� þ 1

16h
a
h


�h�� þ � � � : (25)

Using this tetrad, and expanding up to the third order in
h��, which is the order required for the NNLO spin1-spin2

interaction, we obtain the following Lagrangian:

LppðSÞ ¼ 1
2S

abha�;bu
� þ 1

4S
abh�b

�
1
2ha�;� þ h��;a � ha�;�

�
u�

þ 1
8S

abha�

�
h�h


b;� þ h�bh

�
�;�

þ 3
2h

�
� ðh��;b � h�b;

�Þ
�
u� þ �� � : (26)

Now we should transform from the Lorentz covariant
parametrization to the NRG fields using Eq. (2) in order
to obtain the couplings to the worldline spin.
The Feynman rules for the one-graviton couplings to the

worldline spin are thus given by

where the (gray) oval blobs represent the spins on the worldlines. Note that here the full expressions for the one-graviton
spin couplings should be considered.

For two-graviton couplings to the worldline spin, the Feynman rules required for the NNLO spin1-spin2 interaction are:
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where the ellipsis denotes higher orders in v, beyond the
order considered here. The first coupling here was already
encountered at the NLO spin1-spin2 interaction, but as it is
extended here to a higher PN order, it becomes much more
complicated. Further, new couplings arise here, which are
also complex.

At the NNLO spin1-spin2 interaction, we also have to
include three-graviton spin couplings, that are encountered
for the first time. For three-graviton couplings to the world-
line spin, the Feynman rule required here is

where naturally the gravito-magnetic vector is involved in
this high-order field coupling LO contribution.

Two important features of the spin couplings can be
noticed very early on and should be stressed. First is the
fact that the spin, formally being a tensor, is derivative-
coupled unlike the scalar mass. This fact translates into the
requirement of higher-order tensor expressions for all the
integrals involved in the calculations (see Appendix A for
more details), which adds significantly to the complexity of
computations. Moreover, the derivative-coupling also al-
lows for time derivatives in the worldline couplings, which
are an additional complication in the spin computations.
The time derivatives also make the corresponding terms
scale at higher PN orders. The second notable feature is the
fact that the spin couplings contain Si0 entries, which
represent the redundant unphysical degrees of freedom
related with the spin tensor. These are taken at this stage
as independent degrees of freedom, yet eventually, possi-
bly even after the obtainment of the EOM, they are reduced
from the final result using some spin supplementary con-
dition (SSC). These will also yield contributions of higher
PN orders with respect to the Sij spin tensor components.
Both features make the PN order of the spin couplings
implicit. This makes the power counting, which is essential

in the EFT approach, more difficult with respect to the
nonspinning case.

III. SPIN1-SPIN2 INTERACTION AT FOURTH
POST-NEWTONIAN ORDER

In this section, we evaluate the relevant two-body effec-
tive action by its diagrammatic expansion. For the nPN
order in spin interactions, we need to consider Feynman

diagrams up to the Gdn�1e order, where dne is the ceiling
value of n. Thus in the NNLO spin1-spin2 potential, which
is evaluated at 4PN, we have diagram contributions up to
order G3, coming from all 12 possible topologies appear-
ing at these orders, as displayed in Figs 1–3 of [11]: one
topology at OðGÞ, two at OðG2Þ, and nine topologies at
OðG3Þ. Unfortunately, not all benefits of the NRG fields are
present in spin interactions, where in general all topologies
are realized at each new order of G included, unlike the
nonspinning case, where there is a reduction in the number
of topologies and diagrams. Hence, using the NRG fields,
the NLO spin interactions, for example, include the one-
loop diagrams, which are omitted from the 1PN potential.
Similarly, the NNLO spin1-spin2 here includes all G3

topologies, such as those with a single cubic vertex or a
quartic vertex, unlike the NNLO nonspinning case—the
2PN potential computed in [11].
For the construction of the Feynman diagrams, we use

the Feynman rules from Sec. II, which we PN expand, see
Secs. IVand Vof [25] for more detail. All in all, we have 51
diagrams contributing to the NNLO spin1-spin2 interac-
tion, 45 of which are pure spin1-spin2 diagrams. Six other
diagrams contribute through the LO EOM from spin inter-
actions, as both of the objects are considered spinning:
three appeared as spin-orbit diagrams at NLO, and three
are orbital interaction diagrams, which appeared at 2PN.
Of the pure spin1-spin2 diagrams, 39 are new diagrams,
while 6 others already appeared at the NLO spin1-spin2
sector, although they include new terms in the worldline
couplings.
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Here we denote ~r � ~x1ðtÞ � ~x2ðtÞ, r � j~rj, and ~n � ~r
r .

The spin is represented by a 3-vector defined by Sij �
�ijkSk. The labels 1 and 2 are used for the left and right
worldlines, respectively. The [1 $ 2] notation stands for
a similar term, whose value is obtained under the
interchange of particles labels. Note that under this ex-
change, ~n ! � ~n. Finally, a multiplicative factor of

R
dt is

suppressed and omitted from all diagram values.

A. Order G Feynman diagrams

For the NNLO spin1-spin2 interaction, we have 13 one-
graviton exchange diagrams to evaluate as shown in Figs. 1
and 2. Figure 1 contains seven pure spin1-spin2 diagrams,
whereas Fig. 2 contains diagrams which appeared in the
NLO spin-orbit sector or the 2PN orbital interaction sector.
Diagrams (a) and (b) in Fig. 1, appeared already in the
NLO spin1-spin2 evaluation, and they correspond to
diagrams (b) and (c), respectively, of Fig. 2 in [16]. The
NLO evaluation yielded spin-precession terms which were
then omitted, but do contribute at this order at the sub-
stitution of the LO spin-orbit precession, see Appendix B.
We note that the substitution of lower-order EOM in
higher-order PN Lagrangians and Hamiltonians is a well-
founded procedure, see, e.g. [47–49]. In diagram (b),

double-precession terms arise, but these will only contrib-
ute from the next PN order, so they are dropped here. In
principle, new diagrams are added in this sector by just
inserting further propagator correction vertices. Thus there
are three new diagrams [as diagrams (d) and (f) here also
correspond to (a1) and (a2), respectively, of Fig. 2 in [16]].
We note that unlike the diagrams of nonspinning interac-
tions, which require a tensor Fourier integral of order 2n
for n propagator correction vertices, here a tensor of order
2nþ 2 is required, due to the derivative-coupling of spin,
which makes the computations heavier. In particular, we
note diagram (c), which requires Fourier tensor integrals of
orders 5 and 6, see, e.g. Appendix A for these Fourier
integral tensors up to order 4. The expressions for the
orders 5 and 6 are too lengthy to be included here, as
they have 26 and 76 generic terms, respectively. Again,
new precession terms which arise at the evaluation at this
order are dropped at the use of the LO EOM of spin. We
stress that at the NNLO spin1-spin2 level, accelerations,
and precession terms are inevitable. Finally, we recall that
there are several ways to evaluate the diagrams including
time derivatives, differing by just total time derivatives.
The values of the one-graviton exchange diagrams are

then given in the following:

Fig: 1ðaÞ ¼ �G

r
_S0i1

_S0i2 þ G

r2
½ _S0i1 ðð ~S2 � ~nÞi � S0i2 ~v2 � ~n� vi

2S
0j
2 n

jÞ

� _S0i2 ðð ~S1 � ~nÞi � S0i1 ~v1 � ~n� vi
1S

0j
1 n

jÞ� � G

r3
½S0i1 S0i2 ð2 ~v1 � ~v2 � 3 ~v1 � ~n ~v2 � ~nÞ

þ S0i1 S
0j
2 ð2vi

2v
j
1 � 3vi

2n
j ~v1 � ~n� 3nivj

1 ~v2 � ~n� 3ninj ~v1 � ~v2Þ�; (36)

(a1) (a2) (c) (d1) (d2)(b)

FIG. 2. Feynman diagrams of order G that contribute to the NNLO spin1-spin2 interaction: One-graviton exchange of spin-orbit and
orbital interactions, which yield acceleration and precession terms. Since both objects are considered to be spinning here, these
diagrams contribute through the substitution of the LO spin-orbit and spin1-spin2 EOM, see Appendix B. Diagrams (a1), (a2), and (b)
should be included together with their mirror images.

(d) (e) (f) (g)(a) (b) (c)

FIG. 1. NNLO spin1-spin2 Feynman diagrams of order G: One-graviton exchange. The solid, dashed, and double lines represent the
	, Ai, and �ij fields, respectively.
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Fig:1ðbÞ ¼ G

2r

�
_S0i1

�
ð ~S2 � ~a2Þi � ð ~S2 � ~nÞi ~a2 � ~nÞ þ _S0i2 ðð ~S1 � ~a1Þi � ð ~S1 � ~nÞi ~a1 � ~nÞ�

� G

2r2

�
S0i1

�
ð ~S2 � ~v1Þi ~a2 � ~nþ ð ~S2 � ~nÞi ~a2 � ~v1 þ ð ~S2 � ~a2Þi ~v1 � ~nþ ð ~S2 � ~a1Þi ~v2 � ~n

þvi
2
~S2 � ~a1 � ~n� ni ~S2 � ~v2 � ~a1 � 3ð ~S2 � ~nÞi ~v1 � ~n ~a2 � ~n� 3ni ~S2 � ~a1 � ~n ~v2 � ~nÞ

þ _S0i1 ðð ~S2 � ~v1Þi ~v2 � ~n� 2ð ~S2 � ~v2Þi ~v2 � ~n� ð ~S2 � ~nÞiv2
2 þ vi

2
~S2 � ~v1 � ~n� ni ~S2 � ~v2 � ~v1

þ 3ð ~S2 � ~nÞið ~v2 � ~nÞ2 � 3ni ~S2 � ~v1 � ~n ~v2 � ~nÞ þ _~S1 � ~S2 ~v2 � ~n� _~S1 � ~v2
~S2 � ~n� _~S1 � ~n ~S2 � ~v2

� 3ð ~S1 � ~v2Þi � ~n ~v2 � ~nþ 3ð ~S1 � ~v2Þið ~v1 � ~nÞ2 þ 6ð ~S1 � ~v1Þi ~v1 � ~n ~v2 � ~nþ 6ð ~S1 � ~nÞi ~v1 � ~v2 ~v1 � ~n
� 3ni ~S1 � ~v2 � ~n ~v1 � 15ð ~S1 � ~nÞi ~v2 � ~nð ~v1 � ~nÞ2 þ 15ni ~S1 � ~v2 � ~n ~v1 � ~n ~v2 � ~n

��

� 3ð ~S1 � ~nÞi ~v2 � ~n ~a1 � ~n� 3ni ~S1 � ~a2 � ~n ~v1 � ~nÞ � _S0i2 ðð ~S1 � ~v2Þi ~v1 � ~n� 2ð ~S1 � ~v1Þi ~v1 � ~n
� ð ~S1 � ~nÞiv2

1 þvi
1
~S1 � ~v2 � ~n� ni ~S1 � ~v1 � ~v2 þ 3ð ~S1 � ~nÞið ~v1 � ~nÞ2

� 3ni ~S1 � ~v2 � ~n ~v1 � ~nÞ � _~S2 � ~S1 ~v1 � ~nþ _~S2 � ~v1
~S1 � ~nþ _~S2 � ~n ~S1 � ~v1 � 3

_~S2 � ~n ~S1 � ~n ~v1 � ~n�
� G

2r3

�
S0i1

�
ð ~S2 � ~v1Þi ~v1 � ~v2 � ð ~S2 � ~v1Þiv2

2 � 2ð ~S2 � ~v2Þi ~v1 � ~v2 � vi
1ð ~S2 � ~v2Þ � ~v1

� 3ð ~S2 � ~v1Þi ~v1 � ~n ~v2 � ~nþ 3ð ~S2 � ~v1Þið ~v2 � ~nÞ2 þ 6ð ~S2 � ~v2Þi ~v1 � ~n ~v2 � ~nþ 6ð ~S2 � ~nÞi ~v1 � ~v2 ~v2 � ~n
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The diagrams appearing in Fig. 2 already appeared in the
NLO spin-orbit interaction and the 2PN orbital interaction.
Diagrams (a1), (a2), and (b), correspond to diagrams (a3),
(b1), and (b2), respectively, in Fig. 2 of [25]. They yield
acceleration and precession terms. It can be easily seen,
that on substitution of the LO spin-orbit accelerations and
LO spin1-spin2 precessions, see Appendix B, NNLO
spin1-spin2 interaction terms are obtained. Diagrams (c),
(d1), and (d2) in Fig. 2 also correspond to diagrams (e), (b),
and (c), respectively, in Fig. 4 of [11]. Again one can easily
get convinced, that since both objects are considered to be
spinning here, on substitution of the LO spin1-spin2 accel-
erations, see Appendix B, NNLO spin1-spin2 interaction
terms are obtained.

The values of the one-graviton exchange diagrams,
which contribute through the substitution of EOM, are
then given by:
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As we noted already, there are several ways to evaluate
diagrams including time derivatives, as those appearing
here, e.g. from the NLO spin-orbit interaction. Though
these different evaluations lead to physically equivalent
potentials, one must consistently use the same NLO spin-
orbit potential corresponding to a specific evaluation in all
stages of the calculation, e.g. in the derivation of a corre-
sponding NNLO spin1-spin2 Hamiltonian, where the NLO
spin-orbit potential should be taken into account.

B. Order G2 Feynman diagrams

For the NNLO spin1-spin2 interaction, we have 25
diagrams at order G2 to evaluate: 9 two-graviton exchange
diagrams, and 16 cubic self-gravitational interaction dia-
grams as shown in Figs. 3 and 4, respectively, (all pure
spin1-spin2 diagrams). Here, only diagram (a) of Fig. 3
and diagram (a1) of Fig. 4 appeared already in the NLO
spin1-spin2 evaluation: they correspond to diagrams (a)
and (b), respectively, of Fig. 3 in [16]. All the rest are new
diagrams.
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The two-graviton exchange diagrams just factorize into
a product of two tensor Fourier integrals, see Appendix A.
We first encounter here two-graviton exchange diagrams,
which involve time derivatives, either from the spin cou-

plings or from propagator correction vertices. Precession
terms that arise here are delegated to higher orders.
The values of the two-graviton exchange diagrams are

given as follows:
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Fig : 3ðbÞ ¼ 2
G2m2

r4
f ~S1 � ~S2v

2
2 � ~S1 � ~v2

~S2 � ~v2 � 7 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~nþ S0i2 ½ð ~S1 � ~v2Þi � 7ni ~S1 � ~v2 � ~n�g; (50)

Fig: 3ðcÞ ¼ �G2m2

2r4
½ ~S1 � ~S2v

2
2 þ 4 ~S1 � ~S2 ~v1 � ~v2 þ ~S1 � ~v1

~S2 � ~v2 � ~S1 � ~v2
~S2 � ~v2 þ 11 ~S1 � ~S2ð ~v2 � ~nÞ2

� 16 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 13 ~S1 � ~v1
~S2 � ~n ~v2 � ~nþ 13 ~S1 � ~v2

~S2 � ~n ~v2 � ~n� 13 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n
� 4 ~S1 � ~n ~S2 � ~v2 ~v1 � ~nþ 15 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n� 13 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 63 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2
þ 78 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�; (51)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIG. 3. NNLO spin1-spin2 Feynman diagrams of order G2: Two-graviton exchange. These diagrams should be included together
with their mirror images.

(b1) (b2)(a1) (a2) (a3) (a4)

(c1) (c2) (c3) (d1) (d2) (e1) (e2) (f)

(a5) (a6)

FIG. 4. NNLO spin1-spin2 Feynman diagrams of order G2: Cubic self-gravitational interaction. These diagrams should be included
together with their mirror images.
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Fig: 3ðdÞ ¼ �G2m2

2r4
½ ~S1 � ~S2v

2
2 � 4 ~S1 � ~S2 ~v1 � ~v2 þ 4 ~S1 � ~v1

~S2 � ~v2 þ 5 ~S1 � ~v2
~S2 � ~v1 � ~S1 � ~v2

~S2 � ~v2

� 5 ~S1 � ~S2ð ~v2 � ~nÞ2 þ 16 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 13 ~S1 � ~v1
~S2 � ~n ~v2 � ~n� 20 ~S1 � ~v2

~S2 � ~n ~v1 � ~n
þ 7 ~S1 � ~v2

~S2 � ~n ~v2 � ~n� 13 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n� 16 ~S1 � ~n ~S2 � ~v2 ~v1 � ~nþ 5 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n
� 13 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 15 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2 þ 78 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�; (52)

Fig: 3ðeÞ ¼ 2
G2m2

r4
½4 ~S1 � ~S2v

2
2 � 2 ~S1 � ~v2

~S2 � ~v2 � 3 ~S1 � ~S2ð ~v2 � ~nÞ2 þ 3 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n
� 6 ~S1 � ~n ~S2 � ~nv2

2 � 3 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n�; (53)

Fig: 3ðfÞ ¼ �2
G2m2

r4
½ ~S1 � ~S2v

2
2 � ~S1 � ~S2ð ~v2 � ~nÞ2 þ ~S1 � ~n ~S2 � ~v2 ~v2 � ~n� ~S1 � ~n ~S2 � ~nv2

2 � 3 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n�;
(54)

Fig: 3ðgÞ ¼ �2
G2m2

r4
½ ~S1 � ~S2v

2
2 � 2 ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v1

~S2 � ~v2 � ~S1 � ~v2
~S2 � ~v2 � 3 ~S1 � ~S2ð ~v2 � ~nÞ2

þ ~S1 � ~S2 ~v1 � ~n ~v2 � ~nþ 3 ~S1 � ~n ~S2 � ~v2 ~v1 � ~nþ 3 ~S1 � ~n ~S2 � ~v2 ~v2 � ~nþ 7 ~S1 � ~n ~S2 � ~n ~v1 � ~v2

� 5 ~S1 � ~v2 � ~n ~S2 � ~v1 � ~nþ S0i1 ð2ð ~S2 � ~v2Þi � 3ð ~S2 � ~nÞi ~v2 � ~n� 4ni ~S2 � ~v2 � ~nÞ�; (55)

Fig: 3ðhÞ ¼ �2
G2m2

r4
½S0i1 ðS0i2 þ ð ~S2 � ~v2Þi � 4niS0j2 n

j � 4ni ~S2 � ~v2 � ~nÞ�; (56)

Fig: 3ðiÞ ¼ �G2m2

r4
½ ~S1 � ~S2 ~v1 � ~v2 þ ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� ~S1 � ~n ~S2 � ~v1 ~v2 � ~n� ~S1 � ~n ~S2 � ~n ~v1 � ~v2

þ ~S1 � ~v2 � ~n ~S2 � ~v1 � ~nþ S0i1 ðð ~S2 � ~nÞi ~v2 � ~nþ 2ni ~S2 � ~v2 � ~nÞ�: (57)

The cubic self-gravitational interaction diagrams all require the application of one-loop tensor integrals, see
Appendix A. First, one applies the one-loop tensor integrals, which are required here up to order 4, and then the
Fourier tensor integrals. Here, we first encounter time derivatives, arising from the spin couplings, propagator correction
vertices, and time dependent cubic self-gravitational vertices.

The values of the cubic self-gravitational interaction diagrams are then given by

Fig: 4ða1Þ ¼ 3
G2m2

r4
½ ~S1 � ~S2 � 2 ~S1 � ~n ~S2 � ~n�v2

2

�G2m2

r4
½S0i1 ðð ~S2 � ~v1Þi � ð ~S2 � ~v2Þi þ 4ð ~S2 � ~nÞi ~v2 � ~n� 4ni ~S2 � ~v1 � ~nÞ

� S0i2 ð4ð ~S1 � ~v1Þi � 4ð ~S1 � ~v2Þi � 16ð ~S1 � ~nÞi ~v1 � ~nþ 4ð ~S1 � ~nÞi ~v2 � ~nþ 12ni ~S1 � ~v2 � ~nÞ�; (58)

Fig: 4ða2Þ ¼ �2
G2m2

r4
½3 ~S1 � ~S2v

2
2 � 3 ~S1 � ~v2

~S2 � ~v2 � 4 ~S1 � ~S2ð ~v2 � ~nÞ2 þ 4 ~S1 � ~v2
~S2 � ~n ~v2 � ~n

� 8 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~nþ S0i2 ð3ð ~S1 � ~v2Þi � 4ð ~S1 � ~nÞi ~v2 � ~n� 8ni ~S1 � ~v2 � ~nÞ�; (59)

Fig: 4ða3Þ ¼ 2
G2m2

r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v2

~S2 � ~v1 � 4 ~S1 � ~v1 � ~n ~S2 � ~v2 � ~nþ S0i1 ðð ~S2 � ~v2Þi � 4ni ~S2 � ~v2 � ~nÞ�;
(60)
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Fig: 4ða4Þ ¼ G2m2

2r4
½3 ~S1 � ~S2v

2
2 þ 3 ~S1 � ~S2 ~v1 � ~v2 þ 2 ~S1 � ~v1

~S2 � ~v2 � ~S1 � ~v2
~S2 � ~v1 � 3 ~S1 � ~v2

~S2 � ~v2

þ 4 ~S1 � ~S2ð ~v2 � ~nÞ2 � 12 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 8 ~S1 � ~v1
~S2 � ~n ~v2 � ~nþ 4 ~S1 � ~v2

~S2 � ~n ~v1 � ~n
þ 8 ~S1 � ~v2

~S2 � ~n ~v2 � ~n� 8 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n� 8 ~S1 � ~n ~S2 � ~v2 ~v1 � ~nþ 12 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n
� 8 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 4 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n� 36 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2
þ 48 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�; (61)

Fig: 4ða5Þ ¼ G2m2

r4
½ ~S1 � ~v1

~S2 � ~v2 þ ~S1 � ~v2
~S2 � ~v1 � 4 ~S1 � ~v1

~S2 � ~n ~v2 � ~n� 4 ~S1 � ~v2
~S2 � ~n ~v1 � ~n� 4 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n

� 4 ~S1 � ~n ~S2 � ~v2 ~v1 � ~n� 4 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 þ 24 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�; (62)

Fig:4ða6Þ ¼G2m2

2r4
½ ~S1 � ~S2v2

2� ~S1 � ~S2 ~v1 � ~v2þ 6 ~S1 � ~v1
~S2 � ~v2þ 7 ~S1 � ~v2

~S2 � ~v1� 5 ~S1 � ~v2
~S2 � ~v2� 4 ~S1 � ~S2ð ~v2 � ~nÞ2

þ 4 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 24 ~S1 � ~v1
~S2 � ~n ~v2 � ~n� 28 ~S1 � ~v2

~S2 � ~n ~v1 � ~nþ 16 ~S1 � ~v2
~S2 � ~n ~v2 � ~n

� 24 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n� 24 ~S1 � ~n ~S2 � ~v2 ~v1 � ~nþ 12 ~S1 � ~n ~S2 � ~v2 ~v2 � ~nþ 8 ~S1 � ~n ~S2 � ~nv2
2

� 24 ~S1 � ~n ~S2 � ~n ~v1 � ~v2� 4 ~S1� ~v2 � ~n ~S2� ~v2 � ~n� 36 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2þ 144 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�;
(63)

Fig : 4ðb1Þ ¼ �G2m2

2r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v2

~S2 � ~v1 � 4 ~S1 � ~v1 � ~n ~S2 � ~v2 � ~nþ S0i2 ðð ~S1 � ~v1Þi � 4ni ~S1 � ~v1 � ~nÞ�;
(64)

Fig : 4ðb2Þ ¼ �G2m2

2r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v2

~S2 � ~v1 � 4 ~S1 � ~v1 � ~n ~S2 � ~v2 � ~nþ S0i1 ðð ~S2 � ~v2Þi � 4ni ~S2 � ~v2 � ~nÞ�;
(65)

Fig: 4ðc1Þ ¼ �G2m2

r4
½ ~S1 � ~S2v

2
2 � 5 ~S1 � ~v2

~S2 � ~v2 þ 8 ~S1 � ~S2ð ~v2 � ~nÞ2 þ 16 ~S1 � ~v2
~S2 � ~n ~v2 � ~nþ 24 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n

þ 8 ~S1 � ~n ~S2 � ~nv2
2 � 4 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n� 72 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2�; (66)

Fig: 4ðc2Þ ¼ G2m2

r4
½11 ~S1 � ~S2v

2
2 � 5 ~S1 � ~v2

~S2 � ~v2 � 4 ~S1 � ~S2ð ~v2 � ~nÞ2 þ 4 ~S1 � ~v2
~S2 � ~n ~v2 � ~n

� 12 ~S1 � ~n ~S2 � ~nv2
2 � 16 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n�; (67)

Fig: 4ðc3Þ ¼ �G2m2

r4
½ ~S1 � ~S2 ~v1 � ~v2 þ ~S1 � ~v1

~S2 � ~v2 þ 4 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 4 ~S1 � ~v2
~S2 � ~n ~v1 � ~n

� 4 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 4 ~S1 � ~v1 � ~n ~S2 � ~v2 � ~nþ 4 ~S1 � ~v2 � ~n ~S2 � ~v1 � ~n�; (68)
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Fig: 4ðd1Þ ¼ G2m2

2r4
½2 ~S1 � ~S2v

2
2 � ~S1 � ~S2 ~v1 � ~v2 þ ~S1 � ~v2

~S2 � ~v1 � 2 ~S1 � ~v2
~S2 � ~v2 � 4 ~S1 � ~S2ð ~v2 � ~nÞ2

þ 4 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 4 ~S1 � ~v2
~S2 � ~n ~v1 � ~nþ 4 ~S1 � ~v2

~S2 � ~n ~v2 � ~n� 4 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n
� S0i2 ðð ~S1 � ~v1Þi � 2ð ~S1 � ~v2Þi � 4ð ~S1 � ~nÞi ~v1 � ~nþ 4ð ~S1 � ~nÞi ~v2 � ~nþ 4ni ~S1 � ~v2 � ~nÞ�; (69)

Fig : 4ðd2Þ ¼ G2m2

2r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v2

~S2 � ~v1 � 4 ~S1 � ~v1 � ~n ~S2 � ~v2 � ~nþ S0i1 ðð ~S2 � ~v2Þi � 4ni ~S2 � ~v2 � ~nÞ�;
(70)

Fig: 4ðe1Þ ¼ �G2m2

r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v1

~S2 � ~v2 � 2 ~S1 � ~v2
~S2 � ~v1 þ 2 ~S1 � ~v2

~S2 � ~v2

þ 4 ~S1 � ~S2ð ~v2 � ~nÞ2 � 4 ~S1 � ~S2 ~v1 � ~n ~v2 � ~nþ 4 ~S1 � ~v1
~S2 � ~n ~v2 � ~nþ 8 ~S1 � ~v2

~S2 � ~n ~v1 � ~n
� 12 ~S1 � ~v2

~S2 � ~n ~v2 � ~nþ 4 ~S1 � ~n ~S2 � ~v1 ~v2 � ~nþ 4 ~S1 � ~n ~S2 � ~v2 ~v1 � ~n� 8 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n
� 4 ~S1 � ~n ~S2 � ~nv2

2 þ 4 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 4 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~n
þ 24 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2 � 24 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�; (71)

Fig : 4ðe2Þ ¼ �G2m2

r4
½ ~S1 � ~S2 ~v1 � ~v2 � ~S1 � ~v2

~S2 � ~v1 � 4 ~S1 � ~S2 ~v1 � ~n ~v2 � ~nþ 4 ~S1 � ~v2
~S2 � ~n ~v1 � ~n�; (72)

Fig: 4ðfÞ ¼ �G2m2

r4
½2 ~S1 � ~S2v

2
2 þ 2 ~S1 � ~S2 ~v1 � ~v2 þ 3 ~S1 � ~v1

~S2 � ~v2 þ ~S1 � ~v2
~S2 � ~v1 þ 4 ~S1 � ~v2

~S2 � ~v2

� 8 ~S1 � ~S2 ~v1 � ~n ~v2 � ~n� 12 ~S1 � ~v1
~S2 � ~n ~v2 � ~n� 4 ~S1 � ~v2

~S2 � ~n ~v1 � ~n� 24 ~S1 � ~v2
~S2 � ~n ~v2 � ~n

� 12 ~S1 � ~n ~S2 � ~v1 ~v2 � ~n� 12 ~S1 � ~n ~S2 � ~v2 ~v1 � ~n� 24 ~S1 � ~n ~S2 � ~v2 ~v2 � ~n� 12 ~S1 � ~n ~S2 � ~nv2
2

� 12 ~S1 � ~n ~S2 � ~n ~v1 � ~v2 � 8 ~S1 � ~v2 � ~n ~S2 � ~v2 � ~nþ 72 ~S1 � ~n ~S2 � ~nð ~v2 � ~nÞ2
þ 72 ~S1 � ~n ~S2 � ~n ~v1 � ~n ~v2 � ~n�: (73)

C. Order G3 Feynman diagrams

For the NNLO spin1-spin2 interaction, we also have 13
diagrams at order G3: 3 are three-graviton exchange dia-
grams, 3 are factorizable diagrams with one-loops, and 7
are two-loop diagrams, as shown in Fig. 5. All of which are
new spin1-spin2 diagrams. The three-graviton exchange
diagrams, constructed with either one-, two-, or three-
graviton spin couplings, corresponding to diagrams (a1),
(a2), and (b), just factorize into a product of three Fourier
tensor integrals. We then have diagrams (c), (d1), and (d2),
which factorize into a product of a one-loop diagram and a
one-graviton exchange.

The values of these simpler diagrams are given by

Fig :5ða1Þ ¼ 2
G3m1m2

r5
ð5 ~S1 � ~S2 � 13 ~S1 � ~n ~S2 � ~nÞ; (74)

Fig :5ða2Þ¼G3m1m2

r5
ð25 ~S1 � ~S2�57 ~S1 � ~n ~S2 � ~nÞ; (75)

Fig : 5ðbÞ ¼ G3ðm2
1 þm2

2Þ
r5

ð11 ~S1 � ~S2 � 27 ~S1 � ~n ~S2 � ~nÞ;
(76)

Fig : 5ðcÞ ¼ �G3ðm2
1 þm2

2Þ
r5

ð9 ~S1 � ~S2 � 17 ~S1 � ~n ~S2 � ~nÞ;
(77)

Fig : 5ðd1Þ ¼ �8
G3m1m2

r5
ð3 ~S1 � ~S2 � 5 ~S1 � ~n ~S2 � ~nÞ;

(78)

Fig : 5ðd2Þ ¼ �4
G3m1m2

r5
ð ~S1 � ~S2 � 2 ~S1 � ~n ~S2 � ~nÞ;

(79)
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As for the two-loop diagrams, with two cubic verti-
ces or one quartic vertex, corresponding to diagrams (e)
through (i), they contain two-loop Feynman integrals,
where we have to deal with three kinds of two-loop
integrals:

(1) Factorizable two-loops, as in diagrams (e) and (h),
which factorize into a product of two one-loops,
such that each one-loop can be performed
separately.

(2) Nested two-loops, or recursively one-loops, as in
diagrams (f1), (f2), and (i), on which a one-loop is
nested in a one-loop, so that they should be per-
formed successively, first the nested one-loop, then
the outer one-loop.

(3) Irreducible two-loops, as in diagrams (g1) and (g2),
which can be formally reduced, using an integration
by parts method [50], to a sum of integrals of the two
previous kinds, i.e. to a sum of factorizable and
nested two-loops.

The factorizable two-loop diagrams yield here purely short

distance contributions, of the form �ð2Þð ~rÞ, which are con-
tact interaction terms that cancel out. For all other two-loop
diagrams, calculations should be made, keeping the dimen-
sion d general, and the limit d ! 3 is only taken in the end.
For the irreducible two-loop diagrams, which are the most
complicated to evaluate here, irreducible two-loop tensor
integrals of order 4 are encountered, compared to the
NNLO orbital interaction, i.e. the 2PN potential, which
requires only the irreducible two-loop scalar integral.
These are reduced using the integration by parts method
[50], see Appendix A. The expressions for the irreducible
two-loop tensor integrals reductions contain explicit poles
in d ¼ 3, see Appendix A, but these cancel out in the
dimensional regularization.

The values of the two-loop diagrams are then given by

Fig : 5ðeÞ ¼ 0; (80)

Fig : 5ðf1Þ ¼ 12

5

G3ðm2
1 þm2

2Þ
r5

ð3 ~S1 � ~S2 � 5 ~S1 � ~n ~S2 � ~nÞ;
(81)

Fig : 5ðf2Þ ¼ 1

5

G3ðm2
1 þm2

2Þ
r5

ð3 ~S1 � ~S2 � 5 ~S1 � ~n ~S2 � ~nÞ;
(82)

Fig : 5ðg1Þ ¼ 4
G3m1m2

r5
ð ~S1 � ~S2 � 3 ~S1 � ~n ~S2 � ~nÞ; (83)

Fig: 5ðg2Þ ¼ 4
G3m1m2

r5
ð7 ~S1 � ~S2 � 20 ~S1 � ~n ~S2 � ~nÞ; (84)

Fig : 5ðhÞ ¼ 0; (85)

Fig : 5ðiÞ ¼ � 8

5

G3ðm2
1 þm2

2Þ
r5

ð3 ~S1 � ~S2 � 5 ~S1 � ~n ~S2 � ~nÞ:
(86)

IV. SPIN1-SPIN2 ROUTHIAN AND HAMILTONIAN
AT FOURTH POST-NEWTONIAN ORDER

Summing up all of the contributions from the Feynman
diagrams, we obtain the NNLO spin1-spin2 interaction
Routhian. Here, we give the result with the accelerations
and precessions dependent terms, and we do not substitute
in the S0i dependent terms, using the SSC, so that the S0i

entries are left as independent degrees of freedom, and the
additional contributions of the field corrections in the S0i

entries are not taken into account explicitly in this form.
We also rearrange terms that should be taken with 1 $ 2.
Our NNLO spin1-spin2 interaction Routhian for a binary
system of compact spinning objects is then given by

(e)

(a1) (a2) (b) (c)

(h) (i)

(d1) (d2)

(f1) (f2) (g1) (g2)

FIG. 5. NNLO spin1-spin2 Feynman diagrams of order G3. Diagrams (a1), (b), (c), (d1), (d2), (f1), (f2), and (i) should be included
together with their mirror images.
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Now we can substitute in the lower order EOM, i.e. the accelerations and precessions from the orbital and spin
interactions, which start contributing at this order, as given in Appendix B. This is a common procedure for higher order
PN corrections [47–49]. The time derivatives on the temporal spin components, i.e. _S0i, are more complicate beyond the
leading PN contribution from the spin-orbit sector, since they contain contributions from several sectors at distinct PN
orders, as one would expect from just naively differentiating S0i � Sv. Therefore, in a few terms, where they are found, we
shifted the time derivatives from them to the other variables, which are physical ones, neglecting total time derivatives.
Keeping only possible spin1-spin2 terms up to the PN order considered here, and again rearranging terms that should be
taken with 1 $ 2, the expression for the NNLO spin1-spin2 Routhian narrows down, and we obtain:
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From this, one can derive the NNLO spin1-spin2
Hamiltonian essentially following similar steps to those
reported in Sec. VI of [25]. These include (1) Legendre
transforming with respect to the velocities, (2) substituting
in the covariant SSC, including the tetrads corresponding
to the metric for a binary of spinning black holes in

harmonic coordinates, up to order G2, and (3) mapping
the position and spin from ‘‘covariant’’ to canonical
variables, where these mappings should be extended to
higher orders. In fact, it may be possible to eliminate the
Si0 degrees of freedom using the covariant SSC at the
level of the action, and get a reduced Routhian result. In
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a forthcoming paper, this derivation will be shown in full
detail, and the resulting Hamiltonian will be compared
with the NNLO spin1-spin2 Hamiltonian obtained via the
ADM canonical formalism in [45]. Alternatively, from
this result the EOM can be computed directly, using the
full spin algebra as in, e.g. [46], see Appendix B, and
then like the steps mentioned above for the obtainment of
the Hamiltonian one should (1) substitute in the covariant
SSC, including the tetrads up to order G2, and (2) map
the position and spin from covariant to canonical varia-
bles to get to canonical EOM.

V. CONCLUSIONS

In this paper, we calculated the NNLO spin1-spin2
potential for a binary of compact spinning objects at the
4PN order. Such high PN orders are required for the
successful detection of gravitational radiation. We have
performed the calculation using the EFT approach and in
terms of the NRG fields. Here, we first demonstrate the
ability of the EFT approach to go beyond the NLO in
PN corrections of spin effects. The NNLO spin1-spin2
interaction sector includes contributions from 51 dia-
grams, of which 45 are pure spin1-spin2 diagrams, while
a further 6 arise from other sectors, but contribute
through the LO spin EOM, that should be taken
into account here for the first time. Thus, we first
encounter here diagrams, that are not pure spin1-spin2
diagrams, but still contribute to the interaction. 39 new
diagrams appeared here, while 6 others contained new
ingredients.

Two features of the spin couplings present the main
difficulties. First, the fact that the spin, formally being a
tensor, is derivative-coupled unlike the scalar mass. This
calls for higher-order tensor expressions for all integrals
involved in the calculations, which add significantly to the
complexity of computations. In particular, for the irreduc-
ible two-loop diagrams, which are the most complicated
to compute here, irreducible two-loop tensor integrals up
to order 4 are encountered. Moreover, the derivative-
coupling also allows for time derivatives in the worldline
spin couplings, which are an additional complication in
spin computations. The time derivatives also make the
corresponding terms scale at higher PN orders. The sec-
ond obstacle is the fact that the spin couplings contain Si0

entries, which represent the redundant unphysical degrees
of freedom related with the spin tensor. These are taken as
independent degrees of freedom throughout the calcula-
tion, yet eventually, possibly even after the obtainment of
the EOM, they are reduced from the final result using
some SSC. The Si0 entries also yield contributions of
higher PN orders with respect to the Sij spin tensor
components. Both features make the PN order of the
spin couplings implicit, compared to the mass couplings,
and the power counting, which is essential in the EFT

approach, is more difficult with respect to the nonspinning
case.
Moreover, unfortunately, not all of the good attributes of

the NRG fields pass on to spin interactions. In particular,
all possible diagram topologies are realized at each order
of G included, as was already illustrated in the NLO spin
interactions. Also the derivation of the spin couplings is
more convenient in terms of the standard Lorentz covariant
parametrization, and is not so simple and immediate as for
the mass couplings. Still, the NRG fields remain advanta-
geous over other parametrizations, and thus there was no
use of automated computations in this work. However, for
calculations beyond this order with or without spin effects,
it is clear that automated computations utilizing the NRG
fields should be implemented, and would be most powerful
and efficient.
Our final result here can be reduced, and a NNLO

spin1-spin2 Hamiltonian may be derived from it. In a
forthcoming paper, this derivation will be shown in full
detail, and the resulting Hamiltonian will be compared
with the NNLO spin1-spin2 Hamiltonian obtained via the
ADM canonical formalism in [45]. Alternatively, the
EOM can be computed directly from our final result.
Future work may shed more light on the equivalence of
the ADM canonical formalism and the EFT approach in
the treatment of spinning bodies, and may result in im-
provement in both.
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APPENDIX A: DIMENSIONAL REGULARIZATION
AND FEYNMAN INTEGRALS

Throughout the computation of the contributing
Feynman diagrams, we encounter in general two types of
momentum integrals that need to be evaluated: Fourier
integrals that arise from the Fourier transforms of the
propagators, and loop integrals, which arise from the cubic
and quartic self-gravitational interaction. Both types of
integrals are evaluated using dimensional regularization
[50]. In order to evaluate the Fourier integrals, one should
use the d-dimensional master formula for the scalar inte-
gral given by
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I �
Z ddk

ð2�Þd
eik�r

ðk2Þ� ¼ 1

ð4�Þd=2
�ðd=2� �Þ

�ð�Þ
�
r2

4

�
��d=2

: (A1)

This formula can easily be derived using Schwinger (or alpha) parameters [50]. Differentiating the above with respect
to r, yields the following d-dimensional master formulas for the tensor Fourier integrals:

Ii �
Z ddk

ð2�Þd
kieik�r

ðk2Þ� ¼ i

ð4�Þd=2
�ðd=2� �þ 1Þ

�ð�Þ
�
r2

4

�
��d=2�1=2

ni; (A2)

Iij �
Z ddk

ð2�Þd
kikjeik�r

ðk2Þ� ¼ 1

ð4�Þd=2
�ðd=2� �þ 1Þ

�ð�Þ
�
r2

4

�
��d=2�1

�
1

2
�ij þ ð�� 1� d=2Þninj

�
; (A3)

Iijl �
Z ddk

ð2�Þd
kikjkleik�r

ðk2Þ� ¼ i

ð4�Þd=2
�ðd=2� �þ 2Þ

�ð�Þ
�
r2

4

�
��d=2�3=2

�
1

2
ð�ijnl þ �ilnj þ �jlniÞ þ ð�� d=2� 2Þninjnl

�
;

(A4)

Iijlm �
Z ddk

ð2�Þd
kikjklkmeik�r

ðk2Þ� ¼ 1

ð4�Þd=2
�ðd=2� �þ 2Þ

�ð�Þ
�
r2

4

�
��d=2�2

�
1

4
ð�ij�lm þ �il�jm þ �im�jlÞ

þ �� d=2� 2

2
ð�ijnlnm þ �ilnjnm þ �imnjnl þ �jlninm þ �jmninl þ �lmninjÞ

þ ð�� d=2� 2Þð�� d=2� 3Þninjnlnm
�
: (A5)

Actually, for this paper, the tensor Fourier integrals of orders 5 and 6 were required. We did not include here the lengthy
expressions for them, containing 26 and 76 generic terms, respectively.

In order to evaluate the loop integrals, one should use the d-dimensional master formula for one-loop scalar integrals
given by

J �
Z ddk

ð2�Þd
1

½k2��½ðk� qÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2Þ

�ð�Þ�ð�Þ
�ðd=2� �Þ�ðd=2� �Þ

�ðd� �� �Þ ðq2Þd=2����: (A6)

This formula can easily be derived using Feynman and Schwinger parameters [50]. Similarly, one can also derive the
following d-dimensional master formulae for the one-loop tensor integrals:

Ji �
Z ddk

ð2�Þd
ki

½k2��½ðk� qÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 1Þ�ðd=2� �Þ

�ðd� �� �þ 1Þ ðq2Þd=2����qi; (A7)
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Jij �
Z ddk

ð2�Þd
kikj

½k2��½ðk� qÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2� 1Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 1Þ�ðd=2� �Þ

�ðd� �� �þ 2Þ ðq2Þd=2����

�
�
d=2� �

2
q2�ij þ ð�þ �� d=2� 1Þðd=2� �þ 1Þqiqj

�
; (A8)

Jijl �
Z ddk

ð2�Þd
kikjkl

½k2��½ðk� qÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2� 1Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 2Þ�ðd=2� �Þ

�ðd� �� �þ 3Þ ðq2Þd=2����

�
�
d=2� �

2
q2ð�ijql þ �ilqj þ �jlqiÞ þ ð�þ �� d=2� 1Þðd=2� �þ 2Þqiqjql

�
; (A9)

Jijlm �
Z ddk

ð2�Þd
kikjklkm

½k2��½ðk� qÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2� 2Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 2Þ�ðd=2� �Þ

�ðd� �� �þ 4Þ ðq2Þd=2����

�
�ðd=2� �Þðd=2� �þ 1Þ

4
q4ð�ij�lm þ �il�jm þ �jl�imÞ

þ ð�þ �� d=2� 2Þðd=2� �þ 2Þ d=2� �

2
q2ð�ijqlqm þ �ilqjqm þ �imqjql þ �jlqiqm þ �jmqiql þ �lmqiqjÞ

þ ð�þ �� d=2� 2Þð�þ �� d=2� 1Þðd=2� �þ 2Þðd=2� �þ 3ÞqiqjqlqmÞ: (A10)

In addition, we encounter irreducible two-loop tensor integrals up to order 4. These can be reduced, using an integration
by parts method [50], to a sum of factorizable and nested two-loops, as explained in Sec. III C. The required irreducible
two-loop tensor integrals reductions are given byZ

k1k2

ki1k
j
2

k21ðp� k1Þ2k22ðp� k2Þ2ðk1 � k2Þ2

¼ 1

d� 3

Z
k1k2
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j
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j
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þ 1

d� 4

�
2

ki2k
j
2
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2
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j
2
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��

; (A11)
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2
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It should be noted that these expressions contain explicit
poles in d ¼ 3, but these cancel out in the dimensional
regularization.

APPENDIX B: ACCELERATIONS AND
PRECESSIONS

In the diagrams of Figs. 1 and 2, there appear spin-orbit

accelerations ~aðSOÞ and precessions
_~SðSOÞ, _S0iðSOÞ, and spin1-

spin2 precessions
_~SðS1S2Þ, _S0iðS1S2Þ, that should be substituted

in the spin1-spin2, and spin-orbit diagram values, respec-
tively. LO spin1-spin2 accelerations ~aðS1S2Þ should also be

substituted in the orbital interaction diagrams. This is in
addition to the required substitution of the Newtonian ac-
celeration ~aðNÞ. We note that the time derivatives on the

temporal spin components, i.e. _S0i, are more complicated
beyond the leading PN contribution from the spin-orbit
sector, since they contain contributions from several sectors
at distinct PN orders, as one would expect from just naively
differentiating S0i � Sv. Therefore, in a few terms where

they are found, we shifted the time derivatives from them to
the other variables, which are physical ones, neglecting total
time derivatives. Thus, the required EOM of spin effects are
derived here from the LO spin-orbit Routhian in [25], and
the LO spin1-spin2 Routhian in [16]. The accelerations are
derived from the Euler-Lagrange equations or by applying
the variation principle on the Routhian, namely,

�
R
dtR

�x�
¼ 0:

The accelerations required for the NNLO spin1-spin2
potential are then:

~a 1ðNÞ ¼ �Gm2

r2
~n; (B1)

~a1ðS1S2Þ ¼ � 3G

m1r
4
½ð ~S1 � ~S2 � 5 ~S1 � ~n ~S2 � ~nÞ ~n

þ ~S1 � ~n ~S2 þ ~S2 � ~n ~S1�; (B2)

ai1ðSOÞ ¼
G

r3
m2

m1

½2ð ~S1� ~v1Þi�3ð ~S1� ~v2Þi�3ð ~S1� ~nÞið ~v1 � ~n� ~v2 � ~nÞ�3nið ~S1� ~v1 � ~n�2 ~S1� ~v2 � ~nÞþS0i1 �3niS0j1 n
j�

þG

r3
½4ð ~S2� ~v1Þi�3ð ~S2� ~v2Þi�6ð ~S2� ~nÞið ~v1 � ~n� ~v2 � ~nÞ�3nið2 ~S2� ~v1 � ~n� ~S2� ~v2 � ~nÞ�S0i2 þ3niS0j2 n

j�;
(B3)

where we have written them for particle 1, and for particle
2, the equations should just be taken with the particle labels
exchanged, i.e. 1 $ 2. For the last equation here the van-
ishing of the spin precession

_~S at Newtonian order is used.
The precessions are obtained using Hamilton’s equa-

tions for the Routhian [46], namely:

_~S ¼ f ~S;Rg; _S0i ¼ fS0i;Rg;

where the reduced spin algebra is just obtained from the
full spin algebra, e.g. in [46], such that:

fSi; Sjg ¼ ��ijkSk;

fSi; S0jg ¼ ��ijkS0k;

fS0i; S0jg ¼ �ijkSk:

(B4)

BINARY DYNAMICS FROM SPIN1-SPIN2 COUPLING AT . . . PHYSICAL REVIEW D 85, 064043 (2012)

064043-23



The precessions required for the NNLO spin1-spin2 potential are (also given for particle 1, with 1 $ 2 for particle 2):

_~S 1ðS1S2Þ ¼
G

r3
ð ~S1 � ~S2 � 3 ~S1 � ~n ~S2 � ~nÞ; (B5)

_Si1ðSOÞ ¼
Gm2

r2
½ ~S1 � ~nð ~v1 � 2 ~v2Þi � ~S1 � ð ~v1 � 2 ~v2Þni þ �ijkS

0j
1 n

k�; (B6)

_S 0i
1ðSOÞ ¼ �Gm2

r2
ð ~S1 � ~nÞi; (B7)

where in the last equation for _S0i1ðSOÞ only the leading PN order contribution is considered here.
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