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We derive the equations of motion, the periastron shift, and the gravitational radiation damping for

quasicircular compact binaries in a massive variant of the Brans-Dicke theory of gravity. We also study the

Shapiro time delay and the Nordtvedt effect in this theory. By comparing with recent observational data,

we put bounds on the two parameters of the theory: the Brans-Dicke coupling parameter !BD and

the scalar mass ms. We find that the most stringent bounds come from Cassini measurements of the

Shapiro time delay in the Solar System that yield a lower bound !BD > 40 000 for scalar masses

ms < 2:5� 10�20 eV [or Compton wavelengths �s ¼ h=ðmscÞ> 5� 1010 km], to 95% confidence. In

comparison, observations of the Nordtvedt effect using lunar laser ranging experiments yield !BD > 1000

for ms < 2:5� 10�20 eV. Observations of the orbital period derivative of the quasicircular white dwarf-

neutron star binary PSR J1012þ 5307 yield !BD > 1250 for ms < 10�20 eV (�s > 1:2� 1011 km). A

first estimate suggests that bounds comparable to the Shapiro time delay may come from observations of

radiation damping in the eccentric white dwarf-neutron star binary PSR J1141� 6545, but a quantitative

prediction requires the extension of our work to eccentric orbits.
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I. INTRODUCTION

General relativity (GR) occupies a well-earned place
next to the standard model as one of the two pillars of
modern physics. All observational evidence to date sup-
ports GR as the correct classical theory of gravitation, but
there are countless attempts at developing alternative theo-
ries of gravity. Two of the main motivations for these
efforts are the desire to formulate a fully quantizable theory
of gravity, and the quest to uncover the mechanisms under-
lying the dark energy problem in cosmology. In addition,
the vast majority of tests of GR that have been carried out
to date are in the weak-field, low energy regime, but it is
widely believed that GR may indeed break down at higher
energies. The direct observation of gravitational waves
with Earth- and space-based detectors will mark the
dawn of a new era, allowing us to probe gravity in the
dynamical, strong-field regime. For these reasons,
the study of gravitational radiation in modified theories
of gravity has become a central issue.

One of the most popular and simple alternative theories
of gravity is scalar-tensor theory, in which gravity is me-
diated by both a scalar and a tensor field, coupled together
in a nontrivial manner through the presence of a nonmini-
mal coupling term in the action [1–3]. The existence of

scalar partners to the graviton is predicted in all extra-
dimensional theories, and scalar fields play a crucial role
in modern cosmology. Scalar-tensor theories are consis-
tent, have a well-posed Cauchy problem, and respect many
of the symmetries of GR. They are also conformally
equivalent to GR (if the coupling with matter is nonstan-
dard), allowing us to employ the same techniques used to
solve the Einstein field equations as long as we work in the
Einstein frame [1,3]. Finally, generic scalar-tensor theories
can be shown to be equivalent to fðRÞ theories [4,5]. A
good account of the motivations behind scalar-tensor theo-
ries, including their historical development, can be found
in [1,3].
String theory suggests the existence of massive but light

scalar fields (‘‘axions’’) with masses possibly as small as
the Hubble scale (�10�33 eV). If we do indeed live in a
‘‘string axiverse,’’ CMB observations, galaxy surveys and
measurements of black hole spins may offer exciting ex-
perimental opportunities to set constraints on the mass of
these scalars [6,7].
Here we are interested in the possibility of constraining

the mass and coupling of massive scalars via present
(electromagnetic) and future (gravitational-wave) observa-
tions of compact binaries. Until recently, calculations of
gravitational radiation damping in scalar-tensor theories
(see e.g. [8–11]) have focused mostly on the massless
case. Because of the interest of light scalars in cosmology
and high-energy physics, this restriction has been dropped
in more recent work. For example it has been shown that

*justin.alsing@seh.ox.ac.uk
†berti@phy.olemiss.edu
‡cmw@wuphys.wustl.edu

PHYSICAL REVIEW D 85, 064041 (2012)

1550-7998=2012=85(6)=064041(20) 064041-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.064041


resonant, superradiant effects induced by light, massive
scalars may produce ‘‘floating orbits’’ when small compact
objects inspiral into rotating black holes, leaving a distinct
signature in gravitational waves [12,13].

A commonly held belief is that only mixed binaries
(i.e., binaries whose members have different gravitational
binding energy) can produce significant amounts of scalar
gravitational radiation. There are two reasons for this. The
first is that, under standard assumptions, dipole radiation is
produced due to violations of the strong equivalence
principle when the binary members have unequal
‘‘sensitivities’’: s1 � s2. These sensitivities are defined in
Eq. (11), and they are related to the gravitational binding
energy of each binary member. In other words, dipole
radiation is produced when the system’s center of mass is
offset with respect to the center of inertia (see e.g. [3]), so
that mixed binaries and eccentric binaries would be the best
target to constrain scalar-tensor theories. The second reason
is the black hole no-hair theorem, i.e. the fact that black hole
solutions in scalar-tensor theories are the same as inGR (see
[14] and references therein). Building on earlier work by
Jacobson [15], Horbatsch and Burgess recently pointed out
that slowly varying scalar fields may violate the no-hair
theorem, so that even black hole-black hole binaries may
produce dipole radiation [16]. They also developed a for-
malism to test generic scalar-tensor theories using binary
pulsars [17].

For all these reasons, a study of gravitational radiation in
massive scalar-tensor theories is quite timely. In this paper
we derive the period derivative due to scalar and tensor
radiation in theories with a massive scalar field. For sim-
plicity we focus on circular binaries, but (as we will see
below) the generalization of our results to eccentric bi-
naries would be of great observational interest.1

For the reader’s convenience, here we give an executive
summary of our main results. Consider a compact binary in
circular orbit with component masses mi and sensitivities
si (i ¼ 1, 2). Then the period derivative due to the emission
of scalar and tensor gravitational waves in the massive
Brans-Dicke (BD) theory is

_P

P
¼ � 8

5

�m2

r4
�1 ��m

r3
�DS2; (1)
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where � is the Heaviside function, r is the separation
of the binary members, ms is the mass of the scalar field,

m ¼ m1 þm2 and� ¼ m1m2=m are the total and reduced
masses of the system, S � s2 � s1 and furthermore

� ¼ 1

2þ!BD

;

G ¼ 1� �ðs1 þ s2 � 2s1s2Þ;
� ¼ 1� 2

s1m2 þm1s2
m

:

Note that scalar dipole radiation is emitted only when the
binary’s orbital frequency !>ms and the difference in
sensitivities S � 0, while scalar quadrupole/monopole ra-
diation is emitted only when 2!>ms and it also vanishes
for two black holes (since in that case s1 ¼ s2 ¼ 1=2 and
� ¼ 0). This result is only strictly valid in the limit of a
very massive (msr � 1) or very light (msr � 1) scalar.
However corrections due to an intermediate mass scalar
always enter with at least a factor of the small parameter �,
so this should be a relatively good approximation for the
full range of scalar masses.
In addition to deriving the orbital period derivative due

to gravitational radiation, we also revisit the calculations of
the Shapiro time delay and of the Nordtvedt effect in the
massive Brans-Dicke theory. As we will see, the presence
of the massive scalar does not allow a straightforward
implementation of the parametrized post-Newtonian
(PPN) formalism. By comparing our results for the orbital
period derivative, Shapiro time delay and Nordtvedt pa-
rameter against recent observational data, we put con-
straints on the parameters of the theory: the scalar mass
ms and the Brans-Dicke coupling parameter !BD. Our
bounds are summarized in Fig. 1.
We find that the most stringent bounds come from the

observations of the Shapiro time delay in the Solar System
provided by the Cassini mission (these bounds were al-
ready studied by Perivolaropoulos, although he used a
slightly different notation [18]). From the Cassini obser-
vations we obtain!BD > 40 000 forms < 2:5� 10�20 eV,
to 95% confidence. Observations of the Nordtvedt effect
using the lunar laser ranging experiment yield a slightly
weaker bound of !BD > 1000 for ms < 2:5� 10�20 eV.
Observations of the orbital period derivative of the circular
white-dwarf-neutron-star (WD-NS) binary system PSR
J1012þ 5307 yields !BD > 1250 for ms < 10�20 eV.
The limiting factor here is our ability to obtain precise
measurements of the masses of the component stars as well
as of the orbital period derivative, once kinematic correc-
tions have been accounted for. However, there is consid-
erably more promise in the eccentric binary system PSR
J1141� 6545. This system has allowed for remarkably
precise measurements of the orbital period derivative, of
the component star masses, and of the periastron shift,
making it a promising candidate for constraining alterna-
tive theories of gravity. Unfortunately the system has
non-negligible eccentricity. Generalizing our result for

1We will be working in units ℏ ¼ c ¼ G ¼ 1 throughout the
paper. Greek indices will span both spatial and time components
0, 1, 2, 3. Roman indices run over the spatial components 1, 2, 3
only. We will adopt the metric signature ð�;þ;þ;þÞ.
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the orbital period derivative to eccentric binaries is a
significant (but worthy) algebraic undertaking.

The plan of the paper is as follows. In Sec. II we
describe and motivate the Brans-Dicke theory with a
massive scalar field. In Sec. III we perform a post-
Newtonian expansion of the field equations. In Sec. IV
we deal with the Shapiro time delay. In Sec. V we proceed
to obtain the equations of motion of a binary system as
well as the periastron shift. In Sec. VI we discuss the
Nordtvedt effect. In Sec. VII we give details of the deri-
vation of the gravitational radiation damping of a compact
binary system due to scalar and tensor gravitational radia-
tion. In Sec. VIII we use these results to put bounds on
the parameters of the theory. In Sec. IX we point out
possible future extensions of our work. Appendix A
outlines a step-by-step derivation of the post-Newtonian
expansion of the scalar field and of the metric.
Appendix B provides details on certain integrals that
appear in the calculation of the energy flux. Finally,
Appendix C contains a short summary of compact binary
observations relevant to this work.

II. THE BRANS-DICKE THEORY WITH A
MASSIVE SCALAR FIELD

A. The generic scalar-tensor theory with
a single scalar field

A general class of scalar-tensor theories containing a
single scalar field in addition to the tensor field was studied
by Bergmann and Wagoner [8,19]. We can characterize the
Bergmann-Wagoner theory via the following postulates:

(1) The principle of general covariance is imposed,
leading to tensorial equations.

(2) The field equations are derived from the action

S ¼
Z
ðLG þLMÞd4x; (3)

where LG and LM are the Lagrangian densities for the
gravitational and matter fields, respectively.
(3) We postulate that the long-range forces of nature are

mediated by the three lowest spin bosons and assume that
the electromagnetic field is the only vector field. This
leaves a scalar degree of freedom � and a tensor degree
of freedom (the metric g��) to describe the dynamics of the

gravitational field.
(4) The field equations are of at most of second differ-

ential order, and the tensor and scalar fields are nonmini-
mally coupled; this leads us to the general form

LG ¼ ð�gÞ1=2½hð�ÞRþ lð�Þg���;��;� þ �ð�Þ� (4)

for the gravitational Lagrangian density, where hð�Þ, lð�Þ,
and �ð�Þ are arbitrary functions of the scalar field �.
(5) We postulate a principle of mutual coupling, in

which the matter Lagrangian density depends on the gravi-
tational fields according to

LM ¼ LMðc 2ð�Þg��;�Þ; (5)

where c ð�Þ is a fourth arbitrary function of �, and �
represents the collective matter fields. This guarantees
consistency with the strong equivalence principle [1].
Now let us make the conformal transformation g�� !

c 2ð�Þg��, and in doing so move into a conformal frame in

which the matter fields do not couple directly (but only
indirectly, via the metric) to the scalar field; this is com-
monly referred to as the Jordan frame [1,3]. Furthermore,
without loss of generality we can redefine the scalar field
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FIG. 1 (color online). Left panel: Lower bound on ð!BD þ 3=2Þ as a function of the mass of the scalar ms from the Cassini mission
data (solid black line; cf. [18]), period derivative observations of PSR J1141� 6545 (dashed red line) and PSR J1012þ 5307 (dot-
dashed green line), and lunar laser ranging experiments (dotted blue line). Vertical lines indicate the masses corresponding to the
typical radii of the systems: 1 AU (solid black line) and the orbital radii of the two binaries (dashed red and dot-dashed green lines).
Right panel: Upper bound on � as a function of ms. Line styles are the same as in the left panel. Note that the theoretical bounds on the
coupling parameters are !>�3=2 and � < 2.
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such that hð�Þ ! �. These two redefinitions recast the
action into the form

S ¼ 1

16�

Z �
�R�!ð�Þ

�
g���;��;� þMð�Þ

�
ð�gÞ1=2d4x

þ
Z

LMðg��;�Þd4x; (6)

which has the additional advantage that the resulting weak-
field equations for g�� and � decouple from one another.

The generic theory now contains two undetermined func-
tions: the cosmological function Mð�Þ and the coupling
function !ð�Þ (in the language of [20]). The effect of the
coupling function on compact binary dynamics has been
studied extensively, and it can lead to interesting conse-
quences if ‘‘spontaneous scalarization’’ occurs [11,21–24].
Here we focus on the cosmological function, which has
three major effects in the generic theory. First, in the
resulting field equations for g�� it plays the role of a

cosmological constant. Second, it endows the scalar with
mass: this manifests itself most clearly in the fact that
solutions for � for isolated systems contain Yukawa-like
terms e�msr=r, where ms is the mass of the scalar field,
which in turn gives the field a characteristic range
‘� 1=ms [20]. Finally, the cosmological function may
introduce nonlinearities in the dynamics of the scalar
field.

B. The matter action and the field equations

Let us now turn to the matter action. Throughout this
paper we will make the assumption that all bodies in our
system can be treated as point masses. Einstein, Infeld, and
Hoffmann (EIH) [25] developed a method for obtaining the
equations of motion for a system of gravitating pointlike
masses. In their approach, one begins by obtaining the
local gravitational field of a single body (in a comoving
frame), under the assumption that the body is small and
nearly spherical. One then proceeds to match the interbody
gravitational fields onto the obtained local field of the
single body under inspection; imposing self-consistency
yields the EIH equations of motion. The same equations of
motion can be obtained with significantly less effort, albeit
at the sacrifice of some rigor, by taking the stress-energy
tensor to be a distribution of delta functions and neglecting
any infinite self-energy terms as they arise [20]. In scalar-
tensor theory, however, we must deal with the additional
complication that the inertial mass and internal structure of
a gravitating body will depend on the local value of the
scalar field (i.e. the local value of the effective gravitational
‘‘constant’’). Variations in internal structure may act back
on the motion of the body, leading to violations of the
(weak) equivalence principle. Eardley [26] showed that
these effects could be accounted for by simply supposing
that the masses of the bodies are in general functions of the

scalar field, such that the matter action for a system of
pointlike masses can be written as

SM ¼ �X
a

Z
mað�Þd�a; (7)

where the particles (labeled by a) have inertial masses
mað�Þ, and �a is the proper time of particle a measured
along its worldline x�a . The distributional stress-energy
tensor T�� and its trace T hence take the form

T��ðx�Þ ¼ ð�gÞ�1=2
X
a

mað�Þ u
�u�

u0
	4ðx� � x�aÞ; (8)

T ¼ g��T
�� ¼ �ð�gÞ�1=2

X
a

mað�Þ
u0

	4ðx� � x�aÞ: (9)

Far from the system, the scalar will take on its cosmolog-
ically imposed value, denoted by �0. The relationship
between the effective gravitational constant, G, and
the scalar field � is therefore (in our chosen system of
units) G ¼ �0=�. In the post-Newtonian limit, we
expand � about its asymptotic value and define the
small perturbation ’ such that � ¼ �0 þ ’. In this
case, we can write the variation of the inertial masses
ma with � as

mað�Þ ¼ maðlnGÞ
¼ mað�0Þ

�
1þ sa

�
’

�0

�
� 1

2
ðs0a � s2a þ saÞ

�
’

�0

�
2

þO

��
’

�0

�
3
��

; (10)

where we have defined the ‘‘first and second sensitivities’’
sa and s0a to be2

sa ¼ �@ðlnmaÞ
@ðlnGÞ

���������0

; s0a ¼ � @2ðlnmaÞ
@ðlnGÞ2

���������0

: (11)

The full action is now given by

S ¼ 1

16�

Z �
�R�!ð�Þ

�
g���;��;� þMð�Þ

�
ð�gÞ1=2d4x

�X
a

Z
mað�Þd�a: (12)

By varying the action (12) with respect to the tensor and
scalar fields, respectively, we obtain the full field equations
of the generic theory described above:

2White dwarfs typically have sensitivities sa � 10�4, neutron
stars have sensitivities sa � 0:2, and black holes have sa ¼ 1=2:
see [27] for detailed calculations.
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R�� � 1

2
g��R� 1

2
��1Mð�Þg�� ¼ 8���1T�� þ!ð�Þ��2

�
�;��;� � 1

2
g���;
�

;


�
þ��1ð�;�� � g��hg�Þ;

hg�þ�dMð�Þ
d� � 2Mð�Þ

ð3þ 2!ð�ÞÞ ¼ 1

3þ 2!ð�Þ
�
8�T� � d!ð�Þ

d�
�;
�

;


�
;

(13)

where we have defined T� ¼ T � 2� @T
@� and hg is the

curved space d’Alembertian, defined by

hg ¼ ð�gÞ�1=2@�ðð�gÞ1=2g��@�Þ: (14)

A detailed derivation of this result can be found in [1].

C.Massive Brans-Dicke theory: The field equations and
their weak-field limit

As we recalled earlier, the effects of a generic coupling
function on the dynamics of compact binaries have been
studied fairly extensively by Damour and Esposito-Farése
[11,21–24]. Here we are primarily interested in the effects
of a nonzero mass of the scalar field. In the limit where
ms ! 0, our final result for the dipolar and quadrupolar
flux can be shown to match Eq. (6.40) in [21] (the mono-
pole contribution vanishes for circular orbits).

It would be interesting to study a theory with generic
functional forms for both !ð�Þ and Mð�Þ, but for sim-
plicity here we will consider a constant coupling function:
!ð�Þ ¼ !BD ¼ const, as in the usual Brans-Dicke theory
[28]. The scalar field equation then reduces to

hg�þ�dMð�Þ
d� � 2Mð�Þ
3þ 2!BD

¼ 8�T�

3þ 2!BD

: (15)

In order to get a handle on the effects of the cosmological
function Mð�Þ, let us expand the metric about a
Minkowski background ��� and the scalar field around

its (cosmologically determined) constant background
value �0. Closely following the method of [20], we define
small perturbations ’, h��, and ��� such that

� ¼ �0 þ ’; g�� ¼ ��� þ h��;

g�� ¼ ��� � h��; ��� ¼ h�� � 1

2
h��� �

�
’

�0

�
���:

(16)

Let us also expand Mð�Þ in a Taylor series about �0:

Mð�Þ ¼ Mð�0Þ þM0ð�0Þ’þ 1
2M

00ð�0Þ’2 þ 	 	 	 : (17)

We require that the expanded field equations are consistent
at all orders in ðv=cÞn. Substituting the weak-field perturba-
tions (16) into the field equations (13) and (14) and examin-
ing the leading-order terms under the assumption of
asymptotic flatness, we find that Mð�0Þ ¼ M0ð�0Þ ¼ 0.
We are therefore left with the quadratic term that endows
the scalar field with mass. To see this, let us substitute
Mð�Þ ¼ 1

2M
00ð�0Þ’2 into the scalar field equation, yielding

hg��m2
sð���0Þ ¼ 8�T�

3þ 2!BD

; (18)

where we have defined the mass of the scalar field

m2
s � � �0

3þ 2!BD

M00ð�0Þ: (19)

We will see shortly that ms is precisely the parameter ap-
pearing in Yukawa-type corrections �e�msr to the
Newtonian gravitational potential, as well as the ordinary
mass parameter in the Klein-Gordon equation. Since the
scalar field is expected to be small, we will neglect cubic
and higher-order terms inMð�Þ that would introduce addi-
tional nonlinearities into the scalar field equation.
In summary, with our choice of coupling and cosmo-

logical functions, the field equations of the massive
Brans-Dicke theory read

R�� � 1

2
g��R¼ �3þ 2!BD

4�0�
m2

sð���0Þ2g�� þ 8�

�
T��

þ!BD

�2

�
�;��;� � 1

2
g���;
�

;


�

þ 1

�
ð�;�� � g��hg�Þ; (20)

hg��m2
sð���0Þ ¼ 8�T�

ð3þ 2!BDÞ : (21)

D. The weak-field limit

Let us use the weak-field perturbations (16) to obtain
the field equations in the weak-field limit. Expanding the
left-hand side of (20) and imposing the harmonic gauge
condition ���

;� ¼ 0 we find

R���1

2
g��R¼�1

2
h����þ

’;��

�0

����h�

�
’

�0

�
; (22)

where h� is the flat-space d’Alembertian, and we ne-

glected quadratic and higher-order terms. The tensor field
equation can hence be written as

h��
�� ¼ �16����; (23)

where ��� ¼ ��1
0 T�� þ t��. We have collected the qua-

dratic and higher-order terms in the perturbations ’ and
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��� into the gravitational stress-energy pseudotensor t��.

By virtue of the gauge condition on ���, we have the useful
result that

���
;� ¼ 0: (24)

Following a similar procedure for the scalar field equation,
we expand hg� in the weak-field perturbations:

hg� ¼
�
1þ 1

2
�þ ’

�0

�
�

’

�0

� ���
’;��

�0

� ’;
’
;


�2
0

þOð�3; �2’;’2� 	 	 	Þ: (25)

Substituting this back into the scalar field equation we find,
as anticipated, the standard Klein-Gordon equation

ðh� �m2
sÞ’ ¼ �16�S; (26)

where we have defined the source S as

S��ð6þ4!BDÞ�1

�
T�2�

@T

@�

��
1�1

2
�� ’

�0

�

� 1

16�

�
���’;��þ��1

0 �;
�
;
�m2

s�
�1
0 ’2�1

2
m2

s�’

�
þOð�3;�2’;�’2;’3Þ: (27)

III. POST-NEWTONIAN EXPANSION OF THE
MASSIVE BRANS-DICKE THEORY

Wewill now perform a post-Newtonian expansion of the
scalar and tensor fields. This will allow us to derive the
Shapiro time delay (Sec. IV), the equations of motion and
periastron shift of compact binaries (Sec. V), the Nordtvedt
effect (Sec, VI), and will be required for the derivation of
the period derivative due to gravitational radiation
(Sec. VII). Before we proceed, it will be convenient to
define some auxiliary combinations containing !BD that
show up repeatedly throughout the calculation:

� � 1

2þ!BD

; (28)


 � 1þ!BD

2þ!BD

; (29)


 � 1

3þ 2!BD

: (30)

Furthermore, for our choice of units the cosmologically
imposed �0 is given by

�0 ¼ 4þ 2!BD

3þ 2!BD

: (31)

Very closely following the method described in [20]
(see Appendix A for details) we obtain

�

�0

¼ �
X
a

ma

ra
ð1� 2saÞe�msra þ �2

X
a�b

mamb

rarab
ðsa þ 2s0a � 2s2aÞ � e�msrað1� 2sbÞe�msrab

þ 1

2
�2
X
a;b

mamb

rarb
� ð1� 2saÞe�msrað1� 2sbÞe�msrb � �

X
a�b

mamb

rarab
ð1� 2saÞe�msra��1

0

� ð1þ 
ð1� 2sbÞe�msrabÞ � 1

2
�
X
a

mav
2
a
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ð1� 2saÞe�msra � 1

2
�
X
a

@2

@t2

�
e�msra

ms

�
ð1� 2saÞ þOð6Þ; (32)

g00 ¼ �1þ 2��1
0

X
a

ma

ra
ð1þ 
ð1� 2saÞe�msraÞ � 2��2

0

X
a;b

mamb

rarb
ð1þ 
ð1� 2saÞe�msraÞ

� ð1þ 
ð1� 2sbÞe�msrbÞ � 2
X
a�b

mamb

rarab
½��2

0 ð1þ 
e�msraÞ � ð1þ 
ð1� 2sbÞe�msrabÞ

� ���1
0 saðe�msra þ ð1� 2sbÞe�msrabÞ � �2ðsa þ 2s0a � 2s2aÞð1� 2sbÞe�msrae�msrab�

�X
a

mav
2
a

ra

�
1þ 2
þ �sae

�msra þ 1

2
�ð1� e�msraÞ

�
þX

a

ma�ð1� 2saÞ

� @2

@t2

�ð2þmsraÞð1� e�msraÞ � 2msra
2m2

sra

�
þOð6Þ; (33)

g0i ¼ �2ð1þ 
ÞX
a

mav
i
a

ra
� 1

2

X
a

ma�
�1
0 � @2

@t@xi

�
ra þ 2
ð1� 2saÞ e

�msra þmsra � 1

m2
sra

�
þOð5Þ; (34)
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gij ¼ 	ij þ 2��1
0 	ij

X
a

ma

ra
ð1� 
ð1� 2saÞe�msraÞ þOð4Þ:

(35)

In the limit ms ! 0, the above results reduce to those
obtained in the massless Brans-Dicke case [9].

Substituting these results into (27) we find an expression
for the source S in the near zone, to Oð2Þ:

Sðx�Þ¼


2

X
a

ma

�
ð1�2saÞ

�
1�1

2
v2
a� 1

�0

X
b

mb

rb

�

þ�

�
2s0a�2s2aþ2sa�1

2

�X
b

mbð1�2sbÞ
rb

e�msrb

�

�	4ðx��x�aÞ:

IV. SHAPIRO TIME DELAY

Using the post-Newtonian expansion of the metric, we
can derive an expression for the Shapiro time delay of a
light ray passing near a massive body. We note first that the
PPN formalism is not viable when dealing with theories
that contain massive fields. In fact, Newtonian order terms
are modified by the presence of massive fields, in the sense
that the Newtonian potential acquires a Yukawa-like cor-
rection of the form

~Uðx; tÞ ¼ 1

�0

Z �ðx0; tÞ
jx� x0j ð1þ 
e�msjx�x0jÞd3x0: (36)

The impact of this fact for our current purpose is signifi-
cant: the above potential cannot be expanded in powers of
1=r, and the coefficients of modified post-Newtonian po-
tentials in the post-Newtonian metric are not constants, but
they have a spatial dependence. Nonetheless, we can use
the derived metric to obtain an expression for the equations
of motion of a photon, and use this to obtain an expression
for the Shapiro delay. We will closely follow the method
described in [20]. A similar calculation was carried out by
Perivolaropoulos [18]; he used a different definition of the
mass of the scalar field, but his results are consistent with
those derived here.

For a photon traveling along a null geodesic,

g��u
�u� ¼ 0: (37)

To requisite order, Oð2Þ, the equation of motion can be
written as

� 1þ hð2Þ00 þ ð	ij þ hð2Þij Þuiuj ¼ 0; (38)

where hðnÞ�� is the OðnÞ order correction to the metric.
Specializing to a single spherically symmetric source of
mass M (and negligible sensitivity) at the origin, the post-
Newtonian corrections to the metric are [from Eqs. (33)
and (35)]

hð2Þ00 ¼2��1
0

M

r
ð1þ
e�msrÞ¼2 ~U;

hð2Þij ¼2��1
0

M

r
ð1�
e�msrÞ	ij¼2Uð1�
e�msrÞ	ij:

(39)

Substituting these into (38), the equation of motion for
the photon now reads

� 1þ 2 ~Uþ ð1þ 2ð1� 
e�msrÞUÞjuj2 ¼ 0: (40)

The unperturbed Newtonian trajectory of the photon will
simply be xiðtÞ ¼ xie þ niðt� teÞ, where the photon is
emitted from xe in direction n at time te. Let us now
parametrize the post-Newtonian correction to the trajec-
tory by xiPNðtÞ, where the corrected trajectory is then given
by xiðtÞ ¼ xie þ niðt� teÞ þ xiPNðtÞ. Substituting this into
the above, we find that the post-Newtonian correction to
the trajectory satisfies

n 	 dxPN

dt
¼ dxkPN

dt
¼ �2U: (41)

Integrating with respect to time, we obtain

xkPNðtÞ ¼ �2
Z t

te

Udt0: (42)

The time taken for the photon to travel from xe to some
other point x and back again is hence given by

�t ¼ 2jx� xej þ 4
Z t

te

Udt0: (43)

The travel time correction 	t due to the Shapiro delay
corresponds to the second term on the right-hand side.
Performing the integration, we find for the Shapiro delay
term

	t ¼ 4M ln

�ðre þ re 	 nÞðrp � rp 	 nÞ
r2b

�
; (44)

where the photon is emitted from re in direction n, travels
to rp and back again,M is the mass of the body causing the

time delay and rb is the impact parameter of the photon
with respect to the source. The mass appearing in (44) is
not a measurable quantity; what is actually measured is the
Keplerian mass MK ¼ Mð1þ 
e�msrÞ, where r should be
thought of as a fixed quantity which depends on how the
Keplerian mass of the body was determined. In terms of
MK we have

	t ¼ 4MK

1þ 
e�msr
ln

�ðre þ re 	 nÞðrp � rp 	 nÞ
r2b

�

¼ 2ð1þ ~
ÞMK ln

�ðre þ re 	 nÞðrp � rp 	 nÞ
r2b

�
; (45)

where in the second line we have defined

~
 ¼ 1� 
e�msr

1þ 
e�msr
: (46)
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In the case of the Solar System, the r appearing in the
definition of ~
 should be set to 1 AU, since this is the scale
associated with the determination of the Keplerian mass of
the Sun. In any metric theory of gravity where the PPN
formalism can be applied in a straightforward manner, the
obtained expression for the Shapiro delay is identical to
(45), only with ~
 replaced by the PPN parameter 
 (see for
example [20]). We can therefore compare ~
 directly with
the observational constraints on 
 from Shapiro time-delay
measurements to obtain an exclusion region in the (!BD,
ms) plane. In Sec. VIII B we will do precisely this, compar-
ing the derived expression for ~
 to the constraints on 

from time-delay measurements obtained by the Cassini
mission.

Note that in the limit wherems ! 1, ~
 ! 1, i.e. the GR
value of the PPN parameter 
. In the limit where ms ! 0
we have instead ~
 ! 
 ¼ ð1þ!BDÞ=ð2þ!BDÞ, i.e. the
value of 
 in the massless Brans-Dicke theory.

V. EQUATIONS OF MOTION AND
PERIASTRON ADVANCE

Armed with the post-Newtonian expansion of the fields,
we are now in a position to obtain the EIH equations of
motion. From (7), the matter Lagrangian for the ath body
in the system is given by

La ¼ mað�Þð�g00 � 2g0iv
i
a � gijv

i
av

j
aÞ1=2: (47)

To obtain an n-body action we follow the procedure de-
tailed after Eq. (11.90) of [20]. We substitute the post-
Newtonian expressions for the metric and scalar fields
obtained in the previous section and use the expansion of
mað�Þ in (10). We first make the gravitational terms in La

manifestly symmetric under interchange of all pairs of
particles, then we take one of each such term generated
in La, and sum over a. To Oð4Þ we find

LEIH ¼ �X
a

ma

�
1� 1

2
v2
a � 1

8
v4
a

�
þ 1

2

X
a�b

mamb

rab

�
�
Gab þ 3Babv

2
a �

X
c�a

Dabc

mc

rac

� 1

2
ðGab þ 6BabÞva 	 vb

� 1

2
Gabðva 	 nabÞðvb 	 nabÞ

�
; (48)

where we have defined

nab¼ ra�rb
rab

;

Gab¼1�1

2
�½1�ð1�2saÞð1�2sbÞe�msrab�;

Bab¼1

3
ð2
þ1Þþ1

6
�½1�ð1�2saÞð1�2sbÞe�msrab�;

(49)

and

Dabc ¼ 1� 1
2�½2� ð1� 2saÞð1� 2sbÞe�msrab � ð1� 2saÞð1� 2scÞe�msrac�

þ 1
4�

2½1� ð1� 2saÞð1� 2sbÞe�msrab � ð1� 2saÞð1� 2scÞe�msrac

þ ð1� 4ðsa þ s0a � s2aÞÞð1� 2sbÞð1� 2scÞe�msrabe�msrac�: (50)

Now let us specialize to a two-body system with the center of mass at the origin; to this end let us define

r ¼ r2 � r1; m ¼ m1 þm2; 	m ¼ m2 �m1; � ¼ m1m2

m
: (51)

We also write G12 ¼ G and B12 ¼ B. With this specialization made, the equations of motion are found to be

a ¼ �mr

r3

�
~G � 3~GB

m

r
� 1

2
ð~G � 3 ~BÞv2 � 1

2
ðD211 þ ~D211Þm1

r
� 1

2
ðD122 þ ~D122Þm2

r
� 2G ~G

�

r

þ ðG þ 2~GÞ�
m
v2 � 1

2
ð4G � ~GÞ�

m
ðv 	 nÞ2

�
þmðr 	 vÞv

r3

�
~G þ 3Bþ ðG � 3~GÞ�

m

�
; (52)

where

~G ¼ 1� 1
2�½1� ð1� 2s1Þð1� 2s2Þð1þmsrÞe�msr�;

~B ¼ 1
3ð2
þ 1Þ þ 1

6�½1� ð1� 2s1Þð1� 2s2Þð1þmsrÞe�msr�;
(53)

and

~D122 ¼ 1� �½1� ð1� 2s1Þð1� 2s2Þð1þmsrÞe�msr� þ 1
4�

2½1� 2ð1� 2s1Þð1� 2s2Þð1þmsrÞe�msr

þ ð1� 4ðs1 þ s01 � s21ÞÞð1� 2s2Þ2ð1þ 2msrÞe�2msr�: (54)
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With the equation of motion in hand, we can view the
post-Newtonian corrections together with the scalar
Yukawa-like terms as perturbations of the Keplerian orbit
and employ the method of osculating elements [20] to
obtain an expression for the periastron advance of the
binary system. In contrast to the massless Brans-Dicke
case (treated in [20]), the integrals that appear in this
perturbation expansion cannot be written in closed form,
so an expansion in powers of the eccentricity e is required
to obtain closed-form expressions. Fortunately for our
current purposes we will only require the result in the
two limiting cases of very light and very massive scalars.
In the former limit msr � 1, the periastron advance re-
duces to the massless Brans-Dicke result [20]

_! ¼ 6�m

að1� e2ÞPPG�1; (55)

where a and e are the semimajor axis and eccentricity, P is
the period, and P is given by

P ¼ GBþ 1

6
G2 � 1

6

m1D211 þm2D122

m
: (56)

In the limit of a very massive scalar msr � 1 the expres-
sion for the periastron advance reduces instead to the
familiar GR result:

_! ¼ 6�m

að1� e2ÞPG: (57)

VI. NORDTVEDT EFFECT

Scalar-tensor theories of gravity predict that massive
bodies with a significant amount of gravitational self-
energy do not follow geodesics of the background metric;
in fact, massive bodies with different gravitational self-
energies will follow different trajectories, leading to direct
violation of the strong equivalence principle. This is known
as the Nordtvedt effect and leads to detectable effects in the

Solar System. Most notably, it leads to a polarization of the
Moon’s orbit around the Earth [20,29], which can be con-
strained using lunar ranging experiments. Let us look at
how this effect arises in the massive Brans-Dicke theory.
The effect is usually parametrized by the Nordtvedt

parameter �N, which can be determined directly from the
PPN metric of a given theory, and it turns out to be some
simple combination of PPN parameters. However, as we
have seen previously, in the case of the massive Brans-
Dicke theory the PPN formalism is not directly applicable.
However we can extract an ‘‘effective’’ Nordtvedt parame-
ter from the equations of motion. To do this, let us consider
the relative acceleration of a pair of bodies A and B, aAB ¼
aA � aB, in the field of a third body C, with
rAB � rAC and rAC ’ rBC. The Nordtvedt effect will result
in an anomalous difference in the accelerations of A and B
toward C, proportional to the difference in the specific
gravitational self-energies of the two bodies A and B
[20,29,30]. Since the sensitivity sa of a body is related to
its gravitational self-energy �a by sa ¼ �a=ma (in the
weak-field limit), the extra term arising in aAB due to the
Nordtvedt effect will be proportional to the difference in
sensitivities S ¼ sB � sA.
To Newtonian order, the n-body Lagrangian (48) is

given by

LEIH ¼ �X
a

ma

�
1� 1

2
v2
a

�
þ 1

2

X
a�b

mamb

rab
Gab; (58)

and the n-body equations of motion are hence

aa ¼ �X
b�a

mb

r2ab
Gabr̂ab � 1

2

X
b�a

mb

r2ab
�ð1� 2saÞð1� 2sbÞ

�msrabe
�msrab r̂ab: (59)

The relative acceleration of two bodies A and B in the field
of a third body C is then

aAB ¼ aB � aA

¼ GABðmA þmBÞ
r2AB

r̂AB � GBCmC

r2BC
r̂BC þ GACmC

r2AC
r̂AC þ 1

2

�
mA þmB

rAB
�ð1� 2sAÞð1� 2sBÞmse

�msrAB

�
r̂AB

� 1

2

mC

r2BC
�ð1� 2sBÞð1� 2sCÞmsrBCe

�msrBC r̂BC þ 1

2

mC

r2AC
�ð1� 2sAÞð1� 2sCÞmsrACe

�msrAC r̂AC: (60)

Regrouping terms together appropriately and assuming that rAB � rAC, rAC ’ rBC, we can rewrite this as

a AB ¼ �m�r̂AB
r2AB

þ 1

�0

�
mCr̂AC
r2AC

�mCr̂BC
r2BC

�
þ ½�ð1� 2sCÞð1þmsrACÞe�msrAC�ðsB � sAÞmCr̂AC

r2AC

¼ �m�r̂AB
r2AB

þ 1

�0

�
mCr̂AC
r2AC

�mCr̂BC
r2BC

�
þ �NS

mCr̂AC
r2AC

; (61)
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where the first term is the Newtonian acceleration between
the two bodies, the second term is the tidal correction to the
orbit of the system (A, B), and the final term (proportional
to S ¼ sB � sA) is the difference in the accelerations of A
and B toward the third body C due to the Nordtvedt effect
(cf. [20]). In the second line we have rewritten the third
term in the conventional form from which the Nordtvedt
parameter is usually defined; we can then simply read off
the effective Nordtvedt parameter

�N ¼ �ð1þmsrÞð1� 2sCÞe�msr; (62)

where r is now taken to be the distance from C to the
system (A, B). Note that if the Sun were replaced by a black
hole (sC ¼ 1=2), there would be no Earth-Moon Nordtvedt
effect. In Sec. VIII C we will compare the effective �N to
the measured value of the Nordtvedt parameter provided
by lunar laser ranging experiments to obtain bounds on
(!BD, ms).

VII. GRAVITATIONAL RADIATION FROM
COMPACT BINARIES

A. Tensor radiation

In this section we will very closely follow the general
method described in [20]. The power radiated in gravita-
tional waves due to tensor radiation in the Brans-Dicke
theory is given by

_E ¼ � R2

32�
�0

�I
�ijTT;0�

ij
TT;0d�

�
; (63)

where the angular brackets represent an average over one

orbital period and �ijTT is the transverse-traceless (TT) part
of �ij.

In order to obtain a formal solution to the linearized
tensor wave equation (23), we simply fold the source ���

with the retarded Green’s function of the flat-space
d’Alembertian operator

Gðt� t0;R� r0Þ ¼ 	ðt� t0 � jR� r0jÞ
jR� r0j ; (64)

with the result

���ðt;RÞ ¼ 4
Z
N

���ðt� jR� r0j; r0Þ
jR� r0j d3r0: (65)

Here the integral over t0 has been carried out immediately,
and the spatial integration regionN is over the near zone.
If we make the assumption that the field point is in the
radiation zone, such that jr0j � jRj, and make the slow-
motion approximation, we can expand the r0 dependence
of the integrand and write

���¼ 4

R

X1
m¼0

1

m!

@m

@tm

Z
M

���ðt�R;r0Þðn 	r0Þmd3r0; (66)

where n ¼ R=R, and the integration is now over M,
which is the intersection of the world tube of the near

zone with the constant time hypersurface tM ¼ t� R
[31]. For the purpose of obtaining the power loss due to
gravitational radiation, we are ultimately interested in
���

;0. Because of our choice of gauge �00;0 ¼ ��0
;0 ¼ 0,

and hence we only require the spatial components �ij,
which are given (to leading order) by

�ij¼ 4

R

Z
�ijðt�R;r0Þd3r0 ¼ 2

R

@2

@t2

Z
�00ðt�R;r0Þr0ir0jd3r0:

(67)

Here we have written the monopole moment of �ij as the
time derivative of the quadrupole moment of �00, by ex-
ploiting the conservation law ���

;� together with the slow-

motion approximation. There can be no contribution from
the dipole moment of �00 in (67) to order Oðmv

R Þ, since the
time derivative @x

@t � v. The quadrupole moment of �ij only

comes in at higher order, and hence we only require the
leading-order contribution from �00:

�00 ¼ 1

2
ð1þ 
ÞX

a

ma	
3ðr0 � raÞ: (68)

Substituting this into (67) we obtain

�ij ¼ ð1þ 
ÞR�1 d2

dt2
X
a

mar
i
ar

j
a: (69)

Specializing to a two-body system with the center of mass
at the origin using (51), we obtain to the requisite order

�ijðt;RÞ ¼ 2ð1þ 
ÞR�1�

�
vivj � ~Gm

rirj

r3

�
; (70)

where we have used (52) to replace €ri (to leading order)
where necessary.
We now need to project (70) onto the TT gauge by

applying the projector

�ðn̂Þij;kl ¼ 	ik	jl � 1
2	ij	kl � nink	jl þ 1

2nknl	ij

þ 1
2ninj	kl þ 1

2ninjnknl; (71)

which satisfies �ij;kl�kl;nm ¼ �ij;nm [32] to �kl:

�ijTT ¼ �ðn̂Þij;kl�kl: (72)

The result is

_E ¼ � R2

32�
�0

�I
�ij;kl�

ij
;0�

ij
;0d�

�
: (73)

We now note that the only n̂ dependence in the integrand of
(73) is contained in the �ij;kl. Performing the integral over

the solid angle we findI
�ij;kld� ¼ 2�

15
ð11	ik	jl � 4	ij	kl þ 	il	jkÞ; (74)

where we have used the identity
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I
ni1ni2 	 	 	ni2ld� ¼ 4�	ði1i2	i3i4 	 	 		i2l�1i2lÞ

ð2lþ 1Þ!! : (75)

Substituting this result back into (73) we obtain

_E ¼ � R2

32�
�0

2�

15
h12�ij;0�ij;0 � 4�ii;0�

i
i;0i: (76)

At this point wewill specialize to a circular orbit, which we
will parametrize by

r1¼ rcosð!ðt�RÞÞ; r2¼ rsinð!ðt�RÞÞ; r3¼0; (77)

v1¼�vsinð!ðt�RÞÞ; v2¼vcosð!ðt�RÞÞ; v3¼0;

(78)

where! is the orbital frequency. In addition, let us suppose
that the mass of the scalar is either sufficiently large or

sufficiently small that variations of ~G over an orbital period

can be neglected. Then ~G will reduce to the massless
Brans-Dicke value in the limit of a low-mass scalar [9],
or to the GR value in the limit of a very massive scalar.
With these two approximations made, we perform the
average over one period and obtain the final result for
the power emitted in tensor gravitational waves in the
Brans-Dicke theory:

_E ¼ � 8

15

G2�2m2v2

r4
ð12� 6�Þ: (79)

Using the relation ð _P=PÞ ¼ � 3
2 ð _E=EÞ as well as the

Newtonian result (following from the virial theorem) that
E ¼ T þ V ¼ � 1

2�v2 to eliminate v, we finally obtain

the fractional period decay due to the emission of tensor
gravitational radiation

_P

P
¼ � 8

5

G2�m2

r4
ð12� 6�Þ: (80)

We stress again that this result is only valid in the
limit where ms is such that either e�msr 
 1, in which
case G reduces to the massless Brans-Dicke value [9], or
e�msr ! 0, in which case G reduces to the GR value.

B. Scalar radiation

The general expression for the radiated power due to
scalar radiation in Brans-Dicke theory is [20]

_E ¼ � R2

32�
��1

0 ð4!BD þ 6Þ
�I

’;0’;0d�

�
; (81)

where the angular brackets represent the average over one
orbital period.

We can solve Eq. (26) by using the retarded Green’s
function for the massive wave operator h�m2

s :

Gðt� t0;R�r0Þ¼	ðt� t0 �jR�r0jÞ
jR�r0j ��ðt� t0 �jR�r0jÞ

�msJ1ðms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2�jR�r0j2p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2�jR�r0j2p Þ
; (82)

where J1 is the Bessel function of the first kind, and � is
the Heaviside function (see [33] for a detailed derivation of
this result). Now we can write the general solution to (26)
as ’ ¼ ’B þ ’m, where

’Bðt;RÞ¼4
ZZ

N

Sðt0;r0Þ	ðt� t0 �jR�r0jÞ
jR�r0j d3r0dt0;

’mðt;RÞ¼�4
ZZ

N

msSðt0;r0ÞJ1ðms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2�jR�r0j2p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2�jR�r0j2p
��ðt� t0 �jR�r0jÞd3r0dt0

¼�4
Z
N

d3r0

�
Z 1

0

J1ðzÞSðt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR�r0j2þð z

ms
Þ2

q
;r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jR�r0j2þð z
ms
Þ2

q dz;

(83)

the spatial integration is over the near zone N , and

in the last line we have made the substitution z ¼
ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2 � jR� r0j2p
.

Taking the field point to be in the radiation zone
(jRj � jr0j) and making the slow-motion approximation,
we can expand the r0 dependence of the integrand and write
the general solutions (83) as

’B ¼ 4

R

X1
m¼0

1

m!

@m

@tm

Z
M

d3r0Sðt� R; r0Þðn 	 r0Þm; (84)

’m ¼ � 4

R

X1
m¼0

1

m!

@m

@tm

Z
M

d3r0ðn 	 r0Þm

�
Z 1

0
dz

Sðt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð z

ms
Þ2

q
; r0ÞJ1ðzÞ

ð1þ ð z
msR

Þ2Þðmþ1Þ=2 : (85)

We are now in a position to substitute the post-Newtonian
expression for the source S into (84) and (85) and obtain an
expression for the gravitational waveform ’ðt;RÞ in the
far-field, slow-motion limit. We must first specialize to a
two-body system with the center of mass at the origin,
using (51). Performing the integration and retaining terms

up to orderOðmv2

R Þ andOðm2

Rr0Þ in the monopole (m ¼ 0) and

quadrupole (m ¼ 2) terms, and Oðmv
R Þ in the dipole terms

(m ¼ 1), we obtain (modulo time-independent terms that
are uninteresting, as we ultimately require ’;0 in order to

calculate the radiated power)
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’B ¼ 2
R�1�

�
�ðn 	 vÞ2 � 1

2
�v2 � ~G�m

ðn 	 rÞ2
r3

� ð2� �Þ�0 m
r
� ð2�� ð2� �Þ�0Þm

r
e�msr

� 2Sðn 	 vÞ
�
; (86)

’m ¼ �2
R�1�

�
�I3½ðn 	 vÞ2� � 1

2
�I1½v2�

� �I3

�
~Gm

ðn 	 rÞ2
r3

�
� ð2� �Þ�0I1

�
m

r

�

� ð2�� ð2� �Þ�0ÞI1
�
m

r
e�msr

�
� 2SI2½ðn 	 vÞ�

�
:

(87)

Here we have defined

� � 1� 2
s1m2 þm1s2

m
; �0 � 1� s1 � s2;

� � G�0 � �ðð1� 2s1Þs02 þ ð1� 2s2Þs01Þ;
(88)

and the terms In½fðtÞ� represent the integrals

In½fðtÞ� ¼
Z 1

0

fðt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð z

ms
Þ2

q
ÞJ1ðzÞ

ð1þ ð z
msR

Þ2Þðn=2Þ dz; (89)

where the integration over z has yet to be performed, and it
is understood that the time-dependent terms in (86) and (87)
[replacing fðtÞ in (89)] are the components of r and v. As in

the calculation of the tensor component, we assume that ~G
is approximately constant over an orbital period (~G ! G),
and we specialize to a circular orbit parametrized by (77).
Taking the partial time derivative of ’ we find

’;0 ¼ 2
R�1Gm�

�
2S

�
niri

r3
� I2

�
niri

r3

��

� 4�

�
ninjvirj

r3
� I3

�
ninjvirj

r3

���
;

(90)

where we have used (52) to replace €ri (to leading order)
where necessary. The first and second terms represent the
dipole and quadrupole contributions respectively; note that
there is no monopole contribution to leading order in the
circular orbit case. Substituting this into (81) and performing
the integration over the solid angle via the identity (75), we
obtain

_E ¼ �G2m2�2�

�
2

3
S2

�
ri

r3
� I2

�
ri

r3

���
ri

r3
� I2

�
ri

r3

��
þ 8

15
�2

�
rivj

r3
� I3

�
rivj

r3

���
rivj

r3
� I3

�
rivj

r3

��

þ 8

15
�2

�
rivj

r3
� I3

�
rivj

r3

���
rjvi

r3
� I3

�
rjvi

r3

���

¼ �G2�2m2�

r4

�
2

3
S2ð1� 2Z2ðR;ms;!Þ þW2ðR;ms;!ÞÞ þ 8

15
�2v2ð1� 2Z3ðR;ms; 2!Þ þW3ðR;ms; 2!ÞÞ

�
; (91)

where in the second line we have performed the average over one orbital period and we have defined

ZnðR;ms;!Þ � cosð!RÞCnðR;ms;!Þ þ sinð!RÞSnðR;ms;!Þ;
WnðR;ms;!Þ � jCnðR;ms;!Þj2 þ jSnðR;ms;!Þj2;

CnðR;ms;!Þ �
Z 1

0
cos

�
!R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msR

�
2

s �
J1ðzÞ

ð1þ ð z
msR

Þ2Þn=2 dz;

SnðR;ms;!Þ �
Z 1

0
sin

�
!R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msR

�
2

s �
J1ðzÞ

ð1þ ð z
msR

Þ2Þn=2 dz:

(92)

To get the total power radiated we must perform the integrals in the limit R ! 1 in which they have closed-form
solutions. The evaluation of these integrals is discussed in Appendix B. Performing the integrals, we obtain

_E ¼ �G2m2�2�

r4

�
8

15
�2v2

�
4!2 �m2

s

4!2

�
2
�ð2!�msÞ þ 2

3
S2 !

2 �m2
s

!2
�ð!�msÞ

�
: (93)

Using again ð _P=PÞ ¼ � 3
2 ð _E=EÞ, and E ¼ � 1

2
Gm�
r ¼ � 1

2�v2, we can eliminate v and find for the fractional period
derivative due to scalar radiation:

ALSING et al. PHYSICAL REVIEW D 85, 064041 (2012)

064041-12



_P

P
¼ � 96

5

G2�m2

r4
�2

12
�

�
4!2 �m2

s

4!2

�
2
�ð2!�msÞ � 2G�m

r3
S2�

!2 �m2
s

!2
�ð!�msÞ: (94)

Combining this with the result for the tensor gravitational
radiation contribution (80), we finally obtain the result
quoted in Eq. (1) of the introduction.

VIII. OBTAINING BOUNDS ON ð!BD; msÞ
In this section we compare our results for the period

derivative of compact binaries, the Shapiro delay and the
Nordtvedt effect against recent observational data to draw
exclusion plots in the two-dimensional parameter space of
the theory, ðms;!BDÞ. Figure 1 in the introduction summa-
rizes our main results.

A. Bounds from _P in compact binaries

Because of the presence of the difference in sensitivities
(S ¼ s1 � s2) in the dipole contribution to the period
decay (1), the best candidate systems for drawing exclu-
sion plots in the ð!BD; msÞ plane are mixed binaries.
WD-NS binaries are particularly suitable due to the large
difference in sensitivities (�10�4 and �0:2 for WDs and
NSs, respectively [27]). To our knowledge, there are three
such systems for which accurate measurements of _P and
the other necessary parameters have been made (to date):
PSRs J0751þ 1807, J1012þ 5307, and J1141� 6545. A
summary of the observations and the relevant references
are provided in Appendix C.

In principle, there are two more systems that are of
interest to our current purposes: PSR J1738þ 0333 [34]
and PSR J1802� 2124 [35]. Both of these systems have
very small eccentricities, which means that the result de-
rived in this paper can be used ‘‘out of the box,’’ with no
need to generalize our calculation to eccentric binaries. In
the case of PSR J1738þ 0333, a relatively accurate mea-
surement of _P has been achieved (with error �30%), but
the masses of the component stars have yet to be deter-
mined [34]. PSR J1802� 2124 is in precisely the opposite
situation: the masses of the components have been mea-
sured to reasonable precision, but a precise measurement
of _P has yet to be achieved. This is anticipated in the near
future [35].

The general approach to obtaining bounds on ð!BD; msÞ
using observations of the period derivative of mixed bi-
naries is as follows. First, we need to write (1) in terms of
the observables relevant to the system under inspection.
For circular binaries, the relevant observables are the stel-
lar masses (including the mass ratio q) and the period.
Recasting (1) into these observables we obtain

_P ¼ _PGR

�
G�4=3 �1

12
þ 5

96
m�ð2=3Þ

�
2�

P

��2=3
2S2�D

�
; (95)

where _PGR is the prediction from GR, given by

_PGR ¼ � 192�

5

qm5=3

ð1þ qÞ2
�
2�

P

�
5=3

: (96)

For mildly eccentric binaries, provided the eccentricity is
small enough, we can get approximate bounds using the
results obtained here for the circular case. In these instan-
ces, we can use the measured periastron shift _!, period,
and the mass ratio q of the binary. Recasting (1) in terms of
these observables (using the results for the periastron ad-
vance quoted in Sec. V and Kepler’s third law to eliminate
m and r) we obtain

_P ¼ _PGR

�
G2

P�5=2

�1

12
þ 5

16

2�

P _!
S2 �D

2

�
; (97)

where

_PGR ¼ � 4qP

ð1þ qÞ2
8

15
ffiffiffi
3

p
�
P

2�

�
3=2

_!5=2: (98)

With the predicted _P written in terms of the relevant set of
parameters, we are in a position to compare it to observa-
tions; the predicted _P and observed _Pobs are consistent to
n� confidence provided that

j _Pobs � _Pð�;msÞj � n�; (99)

where � is the combined uncertainty of _Pobs and the
predicted _P, and where we should remember that the latter
is uncertain due to uncertainties in the observables (such as
stellar masses and period). In order to obtain an upper
bound on � (and hence a lower bound on!BD) to 95% con-
fidence for a range of scalar masses, in Fig. 1 we simply
plot the contour in the ð!BD; msÞ plane associated with
j _Pobs � _Pð�;msÞj ¼ 2�.
The presence of dipole radiation in mixed binaries sug-

gests that these should be the best candidates for obtaining
the most stringent bounds on ð!BD; msÞ. However, it is
worth looking into the bounds that could be obtained
from observations of neutron-star–neutron-star (NS-NS)
binaries. Since the sensitivities of the two component stars
are nearly identical in this case (S ’ 0: cf. [27]), the
expression for the period derivative reduces to

_P ¼ _PGR

�1

12
: (100)

Expanding to linear order in � we can write this as

_P ¼ _PGRð1þ ��Þ; (101)

where
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� ¼ �2

12

�
4!2 �m2

s

4!2

�
2
�ð2!�msÞ � 5

6

þ 1

3
ð1� 2s1Þð1� 2s2Þ: (102)

We can also write the observed period derivative as

_Pobs ¼ _PGRð1þ 	Þ; (103)

where 	 is the fractional deviation of the observed value
from the GR prediction. Applying the condition (99) to the
above two equations we find that the predicted _P is con-
sistent with the observed _Pobs to 2� confidence provided
that

j��� 	j � 2�; (104)

where � is now the combined uncertainty of � and the
observed deviation from GR, 	. Since the correction � in
the above is of order unity, we conclude that bounds
competitive with the most stringent bounds obtained here
(from the Cassini Shapiro delay measurements, and
those that are expected from a rigorous analysis of
PSR J1141� 6545) could only be obtained from a _P
measurement to a precision of �0:01%. Since the current
best measurements of _P for NS-NS binaries are not yet
close to this precision, we conclude that the bounds that
would be obtained by analyzing such systems would be
significantly weaker than the most stringent bounds
obtained here. For NS-NS systems for which _P has been
measured to a precision of �1% (such as PSR J0737�
3039 [36]), we would expect to obtain relatively weak
bounds, comparable to those obtained here from the qua-
sicircular WD-NS binary PSR J1012þ 5307.

B. Bounds from Cassini time-delay data

The Shapiro delay has been measured in the Solar
System to remarkable precision by radio tracking of the
Cassini spacecraft in 2002 [37]. In theories containing only
massless fields, these observations are tantamount to a
measurement of the PPN parameter 
. This has been
measured to be


Cassini ¼ 1þ ð2:1� 2:3Þ � 10�5 ¼ 1þ 	� �: (105)

As discussed in Sec. IV, the mass of the scalar in the
massive Brans-Dicke theory prohibits us from using the
PPN formalism in the conventional manner, and the con-
cept of constant PPN parameters breaks down (see also
[18]). In Sec. IV we derived an expression for the Shapiro
delay in the massive Brans-Dicke theory, and we defined a
quantity ~
 which is analogous to the PPN parameter 
 (at
least in the context of Shapiro delay) and can be directly
compared to the measured value of 
 to obtain an exclu-
sion region in the ðms;!BDÞ plane. Comparing the derived
expression for ~
 (46) with the Cassini measurement of 

(105), we require that


< emsr
2�� 	

ð2þ 	� 2�Þ (106)

to 95% confidence. The resulting bounds on � and!BD are
plotted in Fig. 1 by solid black lines (cf. also [18]).
We find that !BD > 40 000 for a range of scalar masses

ms < 2:5� 10�20 eV, to 95% confidence. This is around
1 order of magnitude more stringent than the bounds
provided by the observations of gravitational radiation
damping in binary systems. In the limit 1=ms � 1AU,
!BD can take on any value (as long as !BD >�3=2).

C. Bounds from lunar laser ranging observations

The most precise measurement of the Nordtvedt effect to
date comes from the lunar laser ranging experiment [38]

�LLR
N ¼ ð0:6� 5:2Þ � 10�4 ¼ 	� �: (107)

Comparing this observed value to Eq. (62) and neglecting
the small sensitivity of the Sun, we require that

j�ð1þmsrÞe�msr � 	j � 2� (108)

to 95% confidence, from which we obtain exclusion re-
gions in the ðms;!BDÞ plane. These are displayed in Fig. 1
by dotted blue lines.

IX. CONCLUSIONS

In this paper we set constraints on massive Brans-Dicke
(or Bergmann-Wagoner) theories with an action of the
form (6) with !ð�Þ ¼ !BD, assuming that only a mass
term is present in the expansion of Mð�Þ around some
cosmologically imposed value �0. In particular we com-
puted the orbital period derivative for quasicircular bi-
naries. From an observational standpoint it will be
important to generalize our work to eccentric (and possibly
spinning) binaries that could yield more stringent con-
straints on scalar-tensor theories. It will also be interesting
to explore possible bounds on massive scalar-tensor
theories that could result from Earth- and space-based
gravitational-wave observations of compact binaries, along
the line of Refs. [39–41].
A second obvious generalization of our work will con-

sist of relaxing our assumptions on the form of !ð�Þ and
Mð�Þ. More generic assumptions on these functions are
necessary for a deeper understanding of binary dynamics in
the context of modified gravity models that try to explain
cosmological observations. It will be interesting to verify
whether time-varying boundary conditions on the scalar
field may lead to interesting binary dynamics [16].
Last but not least, full numerical relativity simulations of

compact binaries in scalar-tensor theories are under inves-
tigation by several groups (see e.g. [42,43]). Numerical
progress in evolving binary dynamics in alternative theo-
ries is important, as it could reveal strong-field effects that
may be inaccessible to post-Newtonian or perturbative
calculations.
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APPENDIX A: POST-NEWTONIAN EXPANSIONOF
THE SCALAR FIELD AND OF THE METRIC

Here we provide details of the derivation of the post-
Newtonian expansions (32)–(35). We follow very closely
the method outlined in [20]. For our current purposes, we
must solve the field equations (20) and (21) to the follow-
ing orders:

’�Oð2Þ þOð4Þ; h00 �Oð2Þ þOð4Þ;
h0i �Oð3Þ; hij �Oð2Þ: (A1)

We will do this in a number of steps, as described in the
following.

1. Step 1: ’ to order Oð2Þ
To the lowest order, the scalar field equation (21)

reduces to

ðr2 �m2
sÞ ’�0

¼ 8�
��1
0 T�: (A2)

Expanding the modified stress-energy tensor T� to lowest
order we obtain

T� ¼ X
a

mað2sa � 1Þ	3ðx� xaÞ

¼ � 1

4�

X
a

mað2sa � 1Þðr2 �m2
sÞ e

�msra

ra
: (A3)

Substituting this into (A2), we find the solution for ’ to
Oð2Þ

’

�0
¼ �

X
a

ma

ra
e�msrað1� 2saÞ: (A4)

2. Step 2: h00 to Oð2Þ
The 00 component of the tensor field equation (20) to

Oð2Þ is given by

R00 ¼ � 1

2
r2h00 ¼ 8�

�
T00 þ T

2

�
� 1

2
r2

�
’

�0

�
: (A5)

In a similar fashion to (A3), we write for the stress-energy
tensor (to lowest order)

T¼�T00¼�X
a

ma	
3ðx�xaÞ¼ 1

4�

X
a

mar2

�
1

ra

�
: (A6)

Substituting this along with the derivedOð2Þ expression for
’ into (A5), we obtain the Oð2Þ solution for h00:

h00 ¼ 2��1
0

X
a

ma

ra
½1þ 
ð1� 2saÞe�msra�: (A7)

3. Step 3: hij to Oð2Þ
The ij component of the Ricci tensor toOð2Þ is given by
Rij ¼ �1

2ðr2hij � h00;ij þ hkk;ij � hki;kj � hkj;kiÞ: (A8)

Imposing the gauge condition

h�i;� � 1

2
h��;i ¼

�
’

�0

�
;i
; (A9)

we can write the ij component of tensor field equation (20)
to Oð2Þ as

r2hij ¼ 8���1
0 T	ij þ 	ijr2

�
’

�0

�
: (A10)

Using Eq. (A6) for the stress-energy tensor and substituting
the derived Oð2Þ expression for ’ into the expression
above, we obtain the solution for hij to Oð2Þ:

hij ¼ 	ij2�
�1
0

X
a

ma

ra
½1� 
ð1� 2saÞe�msra�: (A11)

4. Step 4: h0i to Oð3Þ
The 0i component of the Ricci tensor toOð3Þ is given by
R0i ¼ �1

2ðr2h0i � h0k
;k
;i þ hkk;0i � hki

;k
;0Þ: (A12)

Imposing the further gauge condition

h
�
0;� � 1

2
h
�
�;0 ¼ � 1

2
h00;0 þ

�
’

�0

�
;0

(A13)

this reduces to

R0i ¼ � 1

2
r2h0i þ 1

2

�
’

�0

�
;0i

� 1

12
hkk;0i: (A14)

We can hence write the 0i component of the tensor field
equation (20) to Oð3Þ as

� 1

2
r2h0i ¼ 8���1

0 T0i þ 1

2

�
’

�0

�
;0i

þ 1

12
hkk;0i: (A15)

The 0i component of the stress-energy tensor to lowest
order is given by

GRAVITATIONAL RADIATION FROM COMPACT BINARY . . . PHYSICAL REVIEW D 85, 064041 (2012)

064041-15



Ti
0¼�X

a

mav
i
a	

3ðx�xaÞ¼ 1

4�

X
a

mav
i
ar2

�
1

ra

�
: (A16)

In order to write the ’;00 term in the form r2�, we must

find a particular solution tor2� ¼ e�msr=r. Taking care to
ensure that the chosen solution � is such that the correct
limit is obtained as ms ! 0, we write

r2

�
e�msra þmsra � 1

m2
sra

�
¼ e�msra

ra
: (A17)

Noting also that r2ðra=2Þ ¼ ra, we can rewrite the second
and third terms in (A15) as

hkk;0i¼
6

�0

X
a

ma@i@0

�
ra
2
�
ð1�2saÞe

�msraþmsra�1

m2
sra

�
;

�
’

�0

�
;0i
¼�

X
a

mað1�2saÞ@i@0
�
e�msraþmsra�1

m2
sra

�
: (A18)

Substituting these into (A15), we obtain the solution for h0i
to Oð3Þ given in Eq. (34).

5. Step 5: ’ to Oð4Þ
Expanding hg’ to Oð4Þ and recalling the definition of

��� in Eq. (16), we obtain

hg� ¼
�
1þ 1

2
�þ ’

�0

�
h�

’

�0

� ���
’;��

�0

� ’;
’
;


�2
0

:

(A19)

The scalar field equation (21) to Oð4Þ can hence be written
as

ðr2�m2
sÞ ’�0

¼8�
��1
0 T�

�
1�1

2
�� ’

�0

�

þ
�
’

�0

�
;00

þ
�
r ’

�0

�
2
: (A20)

Expanding the modified stress-energy tensor to the re-
quired order we find

T� ¼ X
a

ma

�
ð2sa � 1Þ þ 1

2
ð1� 2saÞv2

a

� 3

4
ð1� 2saÞ��

�
2s0a � 2s2a þ 3

2

�
’

�0

�
: (A21)

In a similar fashion to step 4, we wish to write the’;00 term

in the form ðr2 �m2
sÞ�, and we require a particular solu-

tion to ðr2 �m2
sÞ� ¼ e�msr=r such that the correct limit is

obtained as ms ! 0. To this end we write

ðr2 �m2
sÞ
�
1� e�msr

2ms

�
¼ e�msr

r
; (A22)

and hence write the second term on the right-hand side of
Eq. (A20) as

�
’

�0

�
;00

¼ ðr2 �m2
sÞ�

X
a

mað1� 2saÞ@0@0
�
1� e�msr

2ms

�
:

(A23)

The third term on the right-hand side of Eq. (A20) can be
rewritten (to the required order) as�
r ’

�0

�
2 ¼ 1

2
ðr2 �m2

sÞ
�
’

�0

�
2 �

�
’

�0

�
ðr2 �m2

sÞ
�
’

�0

�
:

(A24)

Substituting the above along with the derived Oð2Þ expres-
sions for ’, h00, and hij into (A20), we obtain the result

given in Eq. (32).

6. Step 6: h00 to Oð4Þ
The 00 component of the tensor field equation (20) to

Oð4Þ is given by

R00 ¼ � 1

2
r2h00 þ

�
’

�0

�
;00

þ 1

2
rh00r ’

�0

� 1

2
ðrh00Þ2

þ 1

2
h00r2h00 � ’

�0

r2h00

¼ 8���1
0

�
1� ’

�0

��
T00 � 1

2
g00T

�

þ
�
1� ’

�0

���
’

�0

�
;00

þ 1

2
g00hg

�
’

�0

��
; (A25)

where we have used the gauge conditions (A9) and (A13)
to reduce the expression for R00 into a convenient form.
The term involving the stress-energy tensor on the right-
hand side is given (to the required order) by

T00 � 1

2
g00T ¼ 1

2

X
a

ma	
3ðx� xaÞ

�
1þ 3

4
v2
a þ 5

4
�

þ 1

2
ð2sa þ 1Þ

�
’

�0

��
: (A26)

Using this along with

ðr2h00Þ2 ¼ 1

2
r2h200 � h00r2h00;�

r2 ’

�0

�
2 ¼ 1

2
r2

�
’

�0

�
2 � ’

�0

r2 ’

�0

;
(A27)

Equation (A25) can be rewritten as

2��1
0

X
a

mar2

�
1

ra

��
1þ 3

2
v2
a þ 5

4
�þ

�
sa � 1

2

�
’

�0

�

þr2 ’

�0

þ
�
1

2
�� h00

�
r2 ’

�0

�r2

�
’

�0

�
2

� 1

2
r2h200 þ 2h00r2h00 � 2

’

�0

r2h00

� 1

2

�
’

�0

�
;00

þ 2
’

�0

r2 ’

�0

¼ r2h00: (A28)
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Using Eq. (A17) to rewrite the term involving ’;00 in the

formr2�, and substituting in the derivedOð2Þ expressions
for h00, hij, and ’, and the Oð4Þ expression for ’, we

obtain the result presented in Eq. (33). Note that there are
two contributions to the term involving the second time
derivative in Eq. (33): one contribution from ’ [to Oð4Þ]
and one from ’;00.

APPENDIX B: EVALUATION OF INTEGRALS
CnðR;ms;!Þ AND SnðR;ms;!Þ ARISING IN THE

DERIVATION OF THE PERIOD DERIVATIVE DUE
TO SCALAR RADIATION

In reaching the final expression for the power emitted in
scalar gravitational radiation (94), we were required to
evaluate the integrals CnðR;ms;!Þ and SnðR;ms;!Þ de-
fined in (92). In this Appendix we give details of the
evaluation of these integrals.

Since we are interested in the gravitational radiation in
the far zone, we only need to determine the asymptotic

behavior of these integrals for R ! 1. Substituting u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=msRÞ2

p
into (92) we obtain

CnðR;ms;!Þ ¼ msR
Z 1

1
du

cosð!RuÞ
un�1

J1ðmsR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p ;

SnðR;ms;!Þ ¼ msR
Z 1

1
du

sinð!RuÞ
un�1

J1ðmsR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p :

(B1)

We will discuss the evaluation of Cn only, as the evaluation
of Sn proceeds in exactly the same way. To begin with,
let us choose some � such that msR� � 1 while
!R�2 � 1 and split up the integral into an integration
from 1 to 1þ �2=2 and from 1þ �2=2 to 1. In the first
integral, as the argument of the cosine is nearly constant we
can approximate

msR
Z 1þ�2=2

1
du

cosð!RuÞ
un�1

J1ðmsR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p


 cosð!RÞð1� J0ðmsR�ÞÞ; (B2)

with the zeroth order Bessel function J0 given by its
asymptotic value

J0ðmsR�Þ �
ffiffiffiffi
2

�

s
cosðmsR�� �=4Þffiffiffiffiffiffiffiffiffiffiffiffi

msR�
p : (B3)

For the second integral, we can approximate the Bessel
function J1 by its asymptotic value

J1ðxÞ �
ffiffiffiffi
2

�

s
cosðx� 3�=4Þffiffiffi

x
p ; (B4)

and hence the integral can be approximated by

ffiffiffiffi
2

�

s ffiffiffiffiffiffiffiffiffi
msR

p Z 1

1þ�2=2
du

cosð!RuÞ
un�1

cosðmsR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1

p
�3�=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2�13
4
p :

(B5)

Performing an integration by parts exactly cancels the
corresponding boundary term in (B2); this is not surpris-
ing, since we expect that the result should not depend on
the value of �. In analyzing the above integral, then, we can
neglect all terms arising from the lower end point [since a
full analysis will show that they will exactly cancel the
terms arising from the upper end point in (B2)]. We are
interested in the leading asymptotic behavior of the above
integral; we hence require the asymptotic behavior of
integrals of the type

I ¼ 1

4

ffiffiffiffi
2

�

s ffiffiffiffiffiffiffiffiffi
msR

p Z 1

1þ�2=2

du

un�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 13

4
p e�ðuÞ; (B6)

where

�ðuÞ ¼ iRðn1!uþ n2ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
Þ � in23�=4; (B7)

with n1;2 ¼ �1. The part of the integration contour which

gives the dominant contribution is determined by �ðuÞ and
the relative sizes of ! and ms. Let us deal with the two
cases !>ms and !<ms in turn.

1. ! >ms

For n1 ¼ �n2, �ðuÞ has a stationary point at a ¼
!=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

s

p
and we can apply the method of stationary

phase (see e.g. [44]). Since only a small region around
the stationary point contributes to the integral, expanding
the exponent around a gives the leading-order behavior

I � 1

4

ffiffiffiffi
2

�

s ffiffiffiffiffiffiffiffiffi
msR

p e�ðaÞ

an�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 13

4
p

Z þ	

�	
dseð1=2Þ�00ðaÞs2

� 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

s

p
!

�
n�1

eiRn1
ffiffiffiffiffiffiffiffiffiffiffiffi
!2�m2

s

p
ein1�: (B8)

For n1 ¼ n2, �ðuÞ no longer has any stationary points in
the integration domain, so the leading-order behavior is
obtained by integration by parts. Since the integrand goes
to zero at the upper end point þ1, the only contribution
will come from the lower end point, which as we have
discussed must exactly cancel with the corresponding
terms from (B2). The complete leading-order behavior of
CnðR;ms;!Þ [and similarly SnðR;ms;!Þ] for !>ms is
hence given by

CnðR;ms;!Þ�cosð!RÞ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2�m2
s

p
!

�
n�1

cos

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2�m2

s

q �
;

SnðR;ms;!Þ�sinð!RÞ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2�m2
s

p
!

�
n�1

sin

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2�m2

s

q �
:

(B9)
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2. !<ms

The case!<ms is somewhat more subtle. Now the first
derivative of �ðuÞ can vanish only on the imaginary axis.
We must therefore consider the analytic properties of �ðuÞ
and use the method of steepest descent [44]. The central
idea behind this method is to deform the integration con-
tour in such a way that it follows lines of constant phase
(lines of steepest descent), in the hope that along the new
contour the integral may be evaluated asymptotically. First,
we must take care of the fact that �ðuÞ is not analytic in the
complex plane, owing to the fact that the square root term
makes it double valued. Working on a two-sheeted
Riemann surface we can still apply the method of steepest
descent, provided the deformed contour does not include
either of the branch points that appear on the real axis at
u ¼ �1. Since we are extending our exponent into the

complex plane, we must first fix the branch of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
that we are using. This will then determine the constant
phase contours and the location of the saddle points. The
asymptotic behavior obtained in the end will of course be
independent of the choice of branch. Writing u ¼ wþ iv

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
¼ Uþ iV, we define the principal branch of

the square root to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
¼

8>>>><
>>>>:

Uþ iV w; v > 0;

U� iV w > 0; v < 0;

�U� iV w; v < 0;

�Uþ iV w < 0; v > 0:

(B10)

The second branch of the square root is then simply the
negative of (B10).

For n1 ¼ n2, there are no saddle points in the principal
Riemann sheet, so we proceed with a straightforward in-
tegration by parts. As before, since the integrand vanishes
at the upper end point þ1 the only contribution comes
from the lower end point, and this will exactly cancel the
corresponding contribution from (B2).

The case n1 ¼ �n2 is somewhat more challenging. In
the principal Riemann sheet, we find two saddle points on

the imaginary axis at u ¼ b� ¼ �i!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s �!2
p

. At these
saddle points the imaginary axis intersects another constant

phase contour that closes on the real axis at u ¼
�ms=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s �!2
p

.
Let us consider the case n1 ¼ þ1. The original integra-

tion contour runs along the real axis from 1þ �2=2 toþ1.
We now deform the contour by going along constant phase
lines in the direction in which the real part of the exponent
�ðuÞ decreases (see Fig. 2). Starting from the lower end
point 1þ �2=2, we follow the contour C1 with phase !�
ms� into the lower half of the complex plane, and then
through the branch cut onto the second sheet of the
Riemann surface. On this sheet there are no saddle points,
and our constant phase contour approaches ð!�ms�Þ=
ðmsþ!Þ� i1. We can then connect it to the imaginary

axis by a path C2 parametrized by tþ iT, with t running
from ð!�ms�Þ=ðms þ!Þ to 0 and constant T � 1. The
contribution from this path vanishes as T ! 1. The inte-
gration contour then follows C3 along the imaginary axis
through the branch cut onto the first sheet, through the

saddle point at b� ¼ �i!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s �!2
p

and toward �1.
From there it can be closed onto the positive real axis by
the path C4 (analogous to C2) that ultimately makes no
contribution. Since the integrand vanishes as u ! þ1 the
upper end point of the integration is once again unimpor-
tant. For the case n1 ¼ �1, we can proceed in a similar
fashion, only this time the deformed contour will pass
through the saddle point bþ.
We now have all of the ingredients we need to evaluate

the integral. Since our deformed contour together with the
original contour does not include any of the branch points,
we can still apply the Cauchy theorem and approximate the
integration along the contour C1 þ C2 þ C3 þ C4 to ob-
tain the asymptotic behavior of I as R ! 1. The two
crucial regions of the deformed contour are the lower end
point on the contour C1 and the saddle point on the
imaginary axis (b� for n1 ¼ þ1 or bþ for n1 ¼ �1).
Even though the contribution from the saddle point is

FIG. 2 (color online). Deformed integration contour C1 þ
C2 þ C3 þ C4 along lines of steepest descent for �ðuÞ ¼
iRð!u�ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
Þ þ i3�=4 (corresponding to n1 ¼ þ1,

n2 ¼ �1) on the two sheets of the Riemann surface associated

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p
. Here only the saddle point on the negative

imaginary axis contributes.
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subdominant, it does give the asymptotic behavior of the
original integrals (92) that we require; recall again that the
contribution from the lower end point will be exactly
canceled by the contribution from (B2). Integrating
through the saddle point b� along the imaginary axis and
parametrizing u ¼ iðb� þ tÞ, we obtain

I� � 1

4

ffiffiffiffi
2

�

s ffiffiffiffiffiffiffiffiffi
msR

p e�ðb
Þ

bn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
 � 134

q Z 	

�	
dtie�ð1=2Þ�00ðb
Þt2

�� 1

2

�



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s �!2
p

i!

�
n�1

e�R
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

s�!2
p

; (B11)

where I� corresponds to n1 ¼ �1. The complete leading-
order behavior of CnðR;ms;!Þ [and similarly
SnðR;ms;!Þ] for !<ms is then given by

CnðR;ms;!Þ � cosð!RÞ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
s �!2

p
!

�
n�1

� e�R
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

s�!2
p in�1 þ ð�iÞn�1

2
;

SnðR;ms;!Þ � sinð!RÞ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
s �!2

p
!

�
n�1

� e�R
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

s�!2
p in�1 � ð�iÞn�1

2
: (B12)

APPENDIX C: OBSERVATIONAL DATA ON
COMPACT BINARIES USED IN THIS PAPER

1. PSR J1012þ 5307

PSR J1012þ 5307 is a 5.3 ms pulsar in a 14.5 hr qua-
sicircular binary system with a low-mass WD companion
[45]. The relevant parameters for this system are listed in
Table I. The parameter values are taken directly from [46].
The mass ratio and individual masses were determined in
[47], and the intrinsic period derivative, corrected for
Doppler effects, was determined in [46].

Using the parameters listed in Table I and Eq. (96), the
value of the period derivative predicted by GR is given by

_PGR¼�192�

5

qm5=3

ð1þqÞ2
�
2�

P

�
5=3¼�1:1ð2Þ�10�14: (C1)

Using the method described in Sec. VIII A we obtain the
bound on � (and hence !BD) as a function of the scalar
mass which is displayed in Fig. 1 by a solid green line. In
particular, we find a lower bound !BD > 1250 for ms <
10�20 eV. The limiting factor here is our ability to obtain a
precise value for the intrinsic period derivative, once
Doppler effects have been accounted for.

2. PSR J0751þ 1807

PSR J0751þ 1807 is a millisecond pulsar in a 6 hr
circular binary system with a helium WD companion
[48]. The period derivative has been measured to �15%
precision, after kinematic corrections have been made.
However, the determination of the masses of the stars in
this system has proved to be more of an issue. Assuming
GR to be true, Nice et al. [49] used combined observations
of the Shapiro delay and orbital period derivative to con-
strain the masses of the component stars to a precision of
�10%. Unfortunately, in the context of using the measured
period derivative to constrain modified theories of gravity,
we cannot assume GR in the calculation of the masses. The
solution to this issue is to use only the observations of the
Shapiro delay to constrain the masses, and use these
masses in conjunction with the observed _P to compare
theory with predictions. The problem with this is that using
the Shapiro delay alone provides a very weak constraint
on the masses, with�100% uncertainty for each of the two
components. Nonetheless, we could perform an analysis
similar to that done for PSR J1012þ 5307. Given the large
uncertainties associated with this system, however, we
expect that the bounds obtained from such an analysis
would be very weak and would not provide us with any
further insight, and for this reason we have neglected this
system.

3. PSR J1141� 6545

PSR J1141� 6545 is a 394 ms pulsar in a moderately
eccentric binary system with a WD companion [50]. The
relevant parameters for this system are displayed in
Table II and are taken directly from [51]. The masses of
the WD and NS were determined by [51].
This system is comfortably the most useful in the con-

text of putting bounds on ð!BD; msÞ, and in constraining
alternative theories of gravity using observations of the

TABLE I. Parameters relevant to the binary system PSR
J1012þ 5307 [46].

Period, P (days) 0.604 672 713 55(3)

Period derivative (observed), _Pobs 5:0ð1:4Þ10�14

Period derivative (intrinsic), _Pintr �1:5ð1:5Þ10�14

Mass ratio, q 10.5(5)

NS mass, m1 (M�) 1.64(22)

WD mass, m2 (M�) 0.16(2)

Eccentricity, e (10�6) 1.2(3)

TABLE II. Parameters relevant to the binary system PSR
J1141� 6545 [51].

Period, P (days) 0.197 650 959 3(1)

Period derivative (observed), _Pobs �4:03ð25Þ10�13

Period derivative (intrinsic), _Pintr �4:01ð25Þ10�13

Mass ratio, q 1.245(14)

NS mass, m1 (M�) 1.27(1)

WD mass, m2 (M�) 1.02(1)

Eccentricity, e 0.171 884(2)

Periastron advance, _! (�yr�1) 5.3096(4)
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orbital period derivative in general. _P has been measured to
remarkable precision, currently �6%, and this is expected
to improve further to �2% by 2012 [51]. The other neces-
sary parameters for our purposes, the masses and the
periastron shift, have also been measured to excellent
precision, so the total uncertainty in the system is
(relatively) very small. Unfortunately this system does
not have negligible eccentricity, so the result for _P derived
here does not strictly hold. In order to do a full and accurate
analysis of this system, the result (1) must be generalized to
cover eccentric binaries. For the moment we present a
rather crude analysis of this system where we neglect the
eccentricity, to find at least a ball park estimate of the

bounds that we may expect to obtain once a full
analysis is performed. Using the above parameters and
Eq. (98), the value of the period derivative predicted by
GR is given by

_P GR¼� 4q

ð1þqÞ2
8

15
ffiffiffi
3

p
�
P

2�

�
3=2

_!5=2¼�3:440ð3Þ10�13:

(C2)

Using the method described in Sec. VIII A, we obtain the
bound on � (and hence !BD) displayed in Fig. 1 by a solid
blue line. Once we account for eccentricity in a proper way,
this system is very likely to provide the most stringent
bounds among all of the binaries observed so far.
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