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Conformal and covariant formulation of the Z4 system with constraint-violation damping
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We present a new formulation of the Einstein equations based on a conformal and traceless decom-
position of the covariant form of the Z4 system. This formulation combines the advantages of a conformal
decomposition, such as the one used in the BSSNOK formulation (i.e. well-tested hyperbolic gauges, no
need for excision, robustness to imperfect boundary conditions) with the advantages of a constraint-
damped formulation, such as the generalized harmonic one (i.e. exponential decay of constraint violations
when these are produced). We validate the new set of equations through standard tests and by evolving
binary black hole systems. Overall, the new conformal formulation leads to a better behavior of the
constraint equations and a rapid suppression of the violations when they occur. The changes necessary to
implement the new conformal formulation in standard BSSNOK codes are very small as are the additional

computational costs.
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L. INTRODUCTION

Numerical relativity has seen, over the last few years, a
truly remarkable development. Starting from the first simu-
lations showing that black-hole binaries could be evolved
for a few orbits [1-3], or that black holes could be pro-
duced from unstable stellar configurations using simple
gauges and without excision [4], new results have been
obtained steadily. As a result, it is now possible to simulate
binary black holes [5] and binary neutron stars [6] accu-
rately for dozens of orbits, from the weak-field inspiral,
down to the final black-hole ringdown (see also [7,8] for
recent reviews on binary black holes and neutron stars,
respectively). In addition, the progress in numerical rela-
tivity has also been accompanied by a comparable progress
of analytical approximation techniques, which have been
shown to be able to reproduce the numerical results to very
high precision both for binary black holes [9,10] and for
binary neutron stars [11]. Finally, numerical simulations
have now investigated scenarios never considered before
and that could lead to a new and deeper understanding of
the astrophysics of compact objects [12,13].

There are several reasons behind this rapid progress, and
the use of more accurate numerical techniques and the
availability of larger computational facilities are certainly
among the most important ones. None of these, however,
would be useful without the use of formulations of the
Einstein equations that are well-suited for numerical evo-
lutions. Most of the present three-dimensional (3D)
numerical-relativity codes implement either one of the
two formulations discussed below. The first and most
popular one is the conformal and traceless reformulation
of the 3 + 1 ADM equations [14], which is also known as
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the BSSNOK (or BSSN) formulation [15—17]. The second
formulation is instead based on the use of a fully 4D form
of the Einstein equations in coordinates that resemble the
harmonic ones and is therefore known as the Generalized-
Harmonic formulation (GH) [18].

There are several differences between these two formu-
lations, each having its own advantages and disadvantages.
One of the main advantages of BSSNOK is that, being
based on a conformal decomposition, it can separate po-
tential singular terms in the conformal factor. In addition, it
can count on well-tested and robust gauge conditions, such
as the singularity-avoiding slicing conditions of the
1 + log family [19]. Similarly, the spatial gauges can rely
on the hyperbolic Gamma-driver condition for the shift
vector [20] (or some recent variants for unequal-mass
binaries [21-23]), which removes to a large extent, the
gauge dynamics near the compact objects. When com-
bined, these two gauge choices eliminate the need to excise
a region of the computation domain inside the apparent
horizon, greatly simplifying the numerical infrastructure.
Finally, the use of the momentum constraint equations (but
not of the energy constraint) in the evolution of the dy-
namical variables, which is crucial for ensuring strong
hyperbolicity, provides BSSNOK with a certain ““forgive-
ness’’, so that the violation of the constraints does not grow
rapidly, even when boundary conditions which are
constraint-violating are used near the strong-field region.

In contrast, the GH formulation uses a generalized har-
monic gauge which cannot deal with the physical singu-
larity inside the apparent horizon. As a result, at least for
the gauges considered so far (see also [24,25]), it requires
the use of excision and thus of numerical techniques that
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are devised for handling a special region of the computa-
tional domain [26]. To its advantage, however, the GH
formulation leads to a set of equations whose principal
parts are wave equations and thus with very well-known
mathematical properties. In addition, the use of damping
terms allows for the dynamical control of the constraint
violations and thus for a powerful way of reducing them
when necessary. Of course, a solution with smaller con-
straint violations will intrinsically be a more accurate
solution to the Einstein equations.

Clearly, it would be useful to employ a formulation of
the Einstein equations that combines the best of both
worlds and thus that has the robustness and gauge con-
ditions of the BSSNOK formulation but, at the same time,
has well-defined mathematical properties and the possibil-
ity of dynamically controlling the constraint violations as
the GH formulation. As we will show, these properties are
met by a new conformal and covariant formulation of the
74 system with constraint-violation damping. This is ob-
tained by starting from the fully covariant Z4 formulation
[27] and by performing a conformal decomposition which
includes all the nonprincipal terms coming from the co-
variant form of the equations. In addition, damping terms
are included for controlling the constraints in the spirit of
the GH formulation. We will refer to this new formulation
as the conformal and covariant Z4 system, i.e. CCZ4, and
present tests of its behavior by considering evolutions in
vacuum of gauge waves in 1D and isolated and binary
black holes in 3D.

It should be remarked that this is not the first time that a
conformal decomposition of the Z4 system has been pro-
posed and indeed a very interesting attempt has been made
in Ref. [28], where it was named Z4c. Although the tests
presented in Ref. [28] were performed in spherical sym-
metry, they already highlighted the potential of a confor-
mal formulation of the Z4 system, especially in the
presence of matter (see also [29,30]). Unfortunately, we
were not able to obtain equally good results when evolving
the formulation of Ref. [28] in vacuum and in 3D; at the
same time, we did not find that our CCZ4 formulation is
more sensitive to boundary problems than the BSSNOK
one (this was a point raised in Ref. [28]).

The structure of the paper is as follows. In Sec. II, we
derive the full set of the CCZ4 equations starting from the
covariant form of the Z4 system. In Sec. III we introduce
the details of the numerical infrastructure and present a
numerical comparison between the CCZ4 and the
BSSNOK systems for a gauge-wave test and for binary
black-hole simulations. Finally, the conclusions are sum-
marized in Sec. I'V.

II. THE CONFORMAL COVARIANT Z4 SYSTEM

The Z4 formulation was introduced as a covariant ex-
tension of the Einstein equations [27], where the original
elliptic constraints are converted into algebraic conditions
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for a new four-vector Z e This formulation can be derived
from the covariant Lagrangian

L =gm[R,, +2V,7,] (1)

by means of a Palatini-type variational principle [31]. The
vector Z, measures the deviation from the Einstein field
equations. The algebraic constraints Z,, = 0 amount there-
fore to the fulfilling of the standard energy-momentum
constraints. In order to control these constraints, the origi-
nal system was supplemented with damping terms such
that the true Einstein solutions (i.e. the ones satisfying the
constraints) become an attractor of the enlarged set of
solutions of the Z4 system [32]. The Z4 damped formalism
can be written in covariant form as

R,, +V,Z2,+V,Z, +«n,Z,+n,2,
1
—(1+ K2)g,u1/n0'Z(r] = 87T<T,u1/ - Egp.vT): (2)

where n,, is the unit normal to the time slicing, 7, the
stress-energy tensor and 7' its trace, i.e. T = g,,T*". The
(constant) coefficients k; are free parameters related to
the characteristic time of the exponential damping of con-
straint violations. Assuming energy-momentum tensor
conservation, the Bianchi identities lead to the constraint-
propagation system

VN, Z,+ R, 2" ==V [n,Z,+n,Z, + K8 u,nsZ%].
3)

It has been shown in Ref. [32] that all the constraint-related
modes are damped when

K]>O K2>_1. (4)

The Z4 formulation can be rewritten as a Cauchy prob-
lem by performing the 3 + 1 decomposition of the space-
time, in which the line element reads

ds® = —a?di + y,(dx' + Bdi)(dy) + pidr),  (5)

where a is the lapse function, 3 is the shift vector and Yij
the intrinsic metric of the constant-time slices. The
Einstein equations within this decomposition lead to the
well-known ADM system [14], which is usually cast as a
system of evolution equations for the extrinsic curvature
K;; and the three-metric v, plus four elliptic equations for
the energy (or Hamiltonian) and the momentum con-
straints, involving space derivatives of the dynamical fields
vij and K;;. In the Z4 formulation, the energy-momentum
constraints become evolution equations for Z,,, modifying
the principal part of the ADM system and converting it
from weakly to strongly hyperbolic [33]. The 3 + 1 de-
composition of the Z4 formulation including the damping
terms reads

(0, = Lp)yij = —2aK;;, (6)
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where L is the Lie derivative along the shift vector ,é (C]
is the projection of the Z4 four-vector along the normal
direction, ® = n MZ" = aZ° and the following defini-
tions apply for matter-related quantities 7= n,n,T"",
Si = I’lVTl-V, Slj = le

Equations (6)—(9) must be complemented with suitable
gauge conditions that determine the system of coordinates
used during the evolution. Of all the possible options, the
most interesting ones are those which preserve the hyper-
bolicity of the full evolution system, such as the 1 + log
family and the Gamma-driver shift condition.

As a first step towards deriving the CCZ4 formulation,
we express the metric y;; in terms of a conformal metric
yij = ¢>y,;; with unit determinant ¢ = (det(y,;))""/°,
while the extrinsic curvature K;; is decomposed into its
trace K = K;;y" and in its trace-free components

1
= ¢2<Ku - §K711>

This allows us to write the three-dimensional Ricci tensor
as R;; R + Rl ;» thus splitting it into a part containing
conformal terms and another one containing space deriva-

tives of the conformal metric

(10)

- 1 - -~
_ _ &lm > > k k
R;;= 57 310, Vij + Veadpl™ + T

+ 7 [Zrl(l Jkm + f‘i‘{mf‘kj]]’ (11)

R = 5[6V.9,6 + 7,99,9) — 2,V/6%19)
(12)

where

T = 40,9 i (13)
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The conformal and covariant Z4 formulation (CCZ4) is
thus given by the following system of evolution equations

2
71]ak18 + :8 akylj’

9,%ij = ZaA + 2949, B —
(14)
a[ A — 2[ vlv a + a(R + V Z + V Z SWSij)]TF

+ ad;(K — 20) — 2aA A} + 24,0, B

2 . ~

a §Aijakﬂk + LAy, 3)
1 1 k k

06 = Lavk ~Lpap v pras. a6

9,K=—-ViV,a + a(R +2V,Z + K* - 20K)

| 2
a[® - EQ(R + ZviZ’ - AijAl] + §K2 - 2®K)

—Z0,a + BX9,0 — ak,(2 + k)0 — 87ar,
(18)

ad 2

. 2 .
+ 25/k’(a8k® - ®6ka - gaKZk) - 2A”6ja

9, = 2a(f§kAfk — 341

+ yMa,9,B" + lkak B+ Flakﬁk o,

2 .. . . o
+ 2K3<§ )7’/Zj8kﬁk - f//ijakB‘> + Bkakrl

—2ak¥7Z; — 167may's;, (19)
9, = —2a(K —20) + BXo,a, (20)
9B = fB' + B a8, 21
9,8 = o, 0" — gro, [ + gra, B — B,  (22)
where we have defined
=0 +2y7z, (23)
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Note that the choice made with the definition (23) is
equivalent, in the ADM context, to adding the momentum
constraint to the right-hand-side of the evolution equation
of T%. In the context of the Z4 formulation, this just
amounts to replacing the vector Z; by the quantities [ in
the set of basic fields to be evolved.

The gauge conditions (20)-(22) correspond, respec-
tively, to the standard ““1 + log” slicing condition and to
the original form of the gamma-driver shift condition,
where a generic gauge parameter f was introduced [20].
Note that in the Z4 formulation there is an additional
propagation speed and the standard BSSNOK choice of
f = 3/4 can then lead to weak hyperbolicity when the
lapse « is close to 1. This is why safer choices, such as
f =1, have been proposed in Ref. [28]. In this paper we
use f =3/4 to be as close as possible to a standard
BSSNOK formulation, but we also consider how the sys-
tem of equations reacts when switching to f = 1.

We also note that experimentation with black-hole
spacetimes and the emergence of unstable behaviors, has
induced us to introduce an extra parameter, ks, affecting
some quadratic terms in the evolution Eq. (19) for . As
discussed before, this equation corresponds to the evolu-
tion of Z;, so this is not just a gauge choice, but rather an
essential ingredient of the Z4 system. Indeed, the covari-
ance inherent to the conformal decomposition of the Z4
system is broken unless we take x3; = 1. For some of the
tests presented in this paper we retain a fully covariant
formulation (i.e. with k3 = 1). However, this is not pos-
sible for black-hole spacetimes, where nonlinear couplings
with the damping terms, which are important for reducing
the violations in the constraints, lead to numerical insta-
bilities. As a result, for black-hole spacetimes we have
resorted to a noncovariant and conformal formulation of
the Z4 system (i.e. with k3 = 1/2) (see discussion in
Sec. III B for details).

A number of remarks are important at this point. First,
although the structure of the CCZ4 formulation is very
similar to the BSSNOK one, there is an important differ-
ence in the evolution of the trace-free variable A; ;- In the
BSSNOK formulation, in fact, the Hamiltonian constraint
is assumed to be satisfied exactly and thus used to eliminate
the Ricci scalar from the right-hand-side of the evolution
equation for A, ; [20]. In the CCZ4 system, on the other
hand, the evolution of A; ; follows directly from (the trace-
free part of) the original ADM evolution equation for the
extrinsic curvature K;;, plus the extra terms in Z; and ©.
Second, the equivalent of the trace of the extrinsic curva-
ture in BSSNOK formulations is given by

KBSSNOK — g — 2@, 24)
again because the Hamiltonian constraint is assumed to

remove the Ricci scalar from the evolution equations in the
BSSNOK approach. In the CCZ4 system, we rather use
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(the trace part of) the ADM evolution equation for K;
modulo some Z; and © terms.

A closer look at the resulting CCZ4 system shows that it
is not fully equivalent to the Z4 system, modulo a re-
arrangement of the dynamical fields. There are two extra
fields which were not present in the Z4 system, namely
dety,; and trAij. These are not dynamical fields at the
continuum level, where the consistency constraints

j°

det')?ij = 1, trAij = O, (25)

hold by construction. But at the discrete level, these are just
two more constraints, which can be dealt with in many
different ways. For instance:

(1) Constrained approach. We could enforce (25) at
every integration step, by removing the trace of A; j
and rescaling y;; as it is usually done in BSSNOK
codes [34]. The remaining dynamical modes have
then the same characteristic structure of the original
74 system. This is the safest choice, and we will use
it in the tests presented in this paper.

(i) Relaxed approach. We could instead relax (25), en-
forcing it just on the initial/boundary data. In this
way the two extra dynamical modes propagate along
normal lines, as their evolution equations [i.e. the
trace of Egs. (14) and (15)] are trivial. Note that in
this case the trace of the first term in the evolution
Eq. (14) must be removed explicitly to avoid any
spurious numerical modes by evolving:

- ;1 -
0,%ij = _2a<Aij - g?’ijAlekl) + 2940, BF

- %%jﬁkﬁk + B*0, ¥
Moreover, in tests like the robust stability or the
gauge waves, it may be necessary to keep also under
control the trace of Aij' This can be achieved by
adding, for instance, a damping term proportional
to ¥; jtrAi ; to the evolution Eq. (15).

Finally, the ADM constraints are given by

H=R—-K;K7+ K> (26)

M; = y"(3,K;; — 9,K;; — I K + UK ). (27)

In the results presented below we compute the constraint
violations for both the BSSNOK and CCZ4 systems using
the ADM quantities computed from the evolution variables
corresponding to the two systems, allowing for the corre-
spondence (24).

ITII. NUMERICAL RESULTS

In this section we validate the robustness and accuracy
of the CCZ4 evolution system and compare it against the
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BSSNOK system in two different cases: the gauge-waves
test and black-hole spacetimes. In addition, we have per-
formed several evolutions with the robust-stability test to
ensure that the system is stable to linear perturbations,
recovering the expected results (see [35] for a discussion
of this test).

The numerical setup used in the simulations presented
here is the same one discussed in Ref. [36] and more
recently applied to the Llama code described in
Ref. [37]. The latter makes use of higher-order finite-
difference algorithms satisfying the summation-by-parts
rule (up to 8th order in space) and a multiblock structure
for the outer computational domain. More specifically, we
use a central cubical Cartesian patch containing multiple
levels of adaptive mesh refinement with higher-resolution
boxes. The Cartesian grid is surrounded by 6 additional
patches with the grid points arranged in a spherical-type
geometry, with constant angular resolution to best match
the resolution requirements of radially outgoing waves.
This allows us to move the outer boundary to a radius
where it is causally disconnected from the binary at a
tiny fraction of the computational cost which would be
necessary to achieve the same resolution with a purely
Cartesian code. The time evolution is based on the
method-of-lines with a 4th order Runge-Kutta algorithm.
Our general computational infrastructure is based on the
Cactus framework and we are using packages such as
TwoPunctures [38], AHFinderDirect [39] and of
SummationByParts [40], which are freely available
and part of the Einstein Toolkit. In addition, our evolutions
make use of the mesh-refinement driver Carpet [41],
which implements higher-resolution boxes with multiple
levels of adaptive mesh refinement.

A. Gauge waves

A classical test for different formulations of the Einstein
equations is offered by the “gauge-wave’ [35], in which a
fictitious one-dimensional pulse propagating along the
x-direction can be simulated by performing a conformal
transformation of the Minkowski metric in the two-
dimensional sector spanned by the (z,x) coordinates,
namely, using the line element

ds®> = h(x, t)(—dr* + dx?) + dy> + dz*. (28)

The solution of the pulse at any time is just given by the
advection of the initial profile of the gauge wave, which
can be set to be smooth and periodic by choosing a sine-
like initial data of the type [35]

hx,t=0)=1-A sin(?), (29)

with an amplitude A < 1. Although this test is apparently
trivial as it does not involve the solution of the Einstein
equations in a very nonlinear regime, it nevertheless
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represents a serious benchmark even for formulations as
robust as BSSNOK, which indeed does not pass it [42].

Following [42], we choose an amplitude of A = 0.1 in a
domain of L = 1 with three uniform resolutions hy/L =
{1/50,1/100, 1/200} and periodic boundary conditions.
Notice that the metric form (28) corresponds to an har-
monic slicing condition with zero shift, so we have to
change our preferred coordinate choice (i.e. the 1 + log
slicing with the Gamma-driver) to perform this test.
Furthermore, different implementations of the CCZ4 for-
mulation: one in which the constraints are damped with
coefficients k; = 1/L and k, = 0, and one in which the
constraints are undamped, i.e. k; = 0 = k,. We will refer
to these two cases as to “Z4d” and “Z4u’, respectively,
(Note that in these tests the shift is set to zero and hence we
do not need to specify a value for k5, which we take to be
one).

The infinity-norm of the Hamiltonian constraint relative
to simulations at the highest resolution is displayed in
Fig. 1 for the damped CCZ4 formulation (black solid
line), for the undamped CCZ4 formulation (blue dashed
line), and for the BSSNOK formulation (red dotted line).
Clearly, the BSSNOK and the CCZ4 formulation without
damping terms fail before 50 crossing times (BSSNOK
after 42 crossing times and Z4u after 56 crossing times) as
indicated by the an exponential increase in the violation of
the energy constraint. However, with the addition of the
damping terms, the CCZ4 formulation is able to accurately
evolve this solution for more than 1000 crossing times,
while preserving the profile of the pulse. Furthermore, we
have verified that the evolved solution converges to the
expected spatial-discretization order (i.e. either 4th or 8th
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FIG. 1 (color online). L-infinity norm of the Hamiltonian
constraint in the gauge-wave test, when performed with a
CCZ4 formulation with damping terms (black solid line), with
a CCZ4 formulation without damping terms (blue dotted line), or
with the BSSNOK formulation (red dashed line). Clearly, the
ZA4u and the BSSNOK formulations are unstable (cf. Fig. 5 of
Ref. [42]) and a similar behavior will be encountered also in
black-hole spacetimes (cf. Figure 4).
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order), with only a very small phase error when using the
8th order scheme.

Overall, this test shows that the dynamical control of the
energy constraint via the damping term «; is crucial to
attain a stable evolution, even in such a simple type of
spacetimes. We also note that this test is more demanding
for conformal formulations, where there is more than one
component of the metric which is nontrivial. This is con-
firmed by comparing our results with those in Ref. [43],
where the standard Z4 formulation, i.e. not implementing a
conformal decomposition, was able to pass this test with-
out the need of damping terms. The GH formulation also
passes this test.

B. Black-Hole spacetimes

Before considering black-hole binaries, we have tested
extensively our new CCZ4 formulation in the evolution of
single nonspinning black holes. This has allowed us to
determine how different choices for the damping coeffi-
cients k; and «, influence the solution and, in particular,
the violation of both the ADM and the Z,, constraints. In
this way we have concluded that most of the dynamics in
the evolution of the constraint equations comes from the
first damping coefficient, so that k, = O represents a sen-
sible choice and is the one that we will consider hereafter.
On the other hand, increasing values of «; produce lower
violations of the constraints and a value of «; = 0.1/M
seems optimal in this sense. Higher values, in fact, lead
only to marginal improvements of the solution, but also
tend to increase the stiffness of the damping terms.

An important and unexpected result obtained when im-
plementing the CCZ4 formulation in black-hole space-
times is that subtle and nonlinear couplings can occur,
leading to unstable evolutions also for those choices of
the coefficients that are perfectly stable in other space-
times. While, in fact, we have carried out stable evolutions
of the robust-stability test with the covariant and damped
CCZA4 formulation (i.e. with k3 = 1 and k; # 0), we were
not able to obtain stable evolutions of black-hole space-
times with k3 = 1, although the growth time of the insta-
bility does change with the values of «; (see discussion
around Fig. 4). Clearly, nontrivial couplings seem to ap-
pear between these coefficients, which depend on the
degree of nonlinearity and which deserve further investi-
gation to be properly understood.

On the whole, and as we will detail below, we have
found that accurate and stable evolutions of binary
black-hole spacetimes can be obtained with the damped
noncovariant Z4 systems (i.e. with k3 =1/2, k; =
0.1/M). On the other hand, covariant and conformal Z4
formulations that are either damped (i.e. with k3 =1,
k1 # 0), or undamped (i.e. with k3 = 1, x; = 0), have
been found to lead to unstable evolutions, although on
rather different timescales and with variable degree of
accuracy (see discussion below).
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The initial data of the binary black-hole evolutions is
obtained from a circular-orbit condition at the third post-
Newtonian order [44] and corresponds to an equal-mass
nonspinning binary with an initial coordinate separation of
D = 8M. The binary performs about 3.5 orbits before
merging and settles to an isolated spinning black hole after
t = 360M. To carry out a meaningful comparison, the
binary is evolved with the BSSNOK and the CCZ4 for-
mulations keeping the same choice for the gauges, namely,
the 1 + log slicing condition and the Gamma-driver shift
condition with f =3/4, n =2/M, and the same grid
setup. For the latter, in particular, we have considered three
different choices aimed at determining the influence of the
outer boundaries on the quality of the solution. This is a
point discussed in Refs. [28,29], where it was argued that
the Z4c formulation is more sensitive than the BSSNOK
one to incorrect (or constraint-violating) boundary condi-
tions. As a result, we consider three different classes of
simulations depending on the treatment of the outer bound-
ary: (i) multiblock padding and spherical outer boundary
which is causally disconnected (i.e. at ~2200M for a
simulation lasting ~800M); (ii) multiblock padding and
spherical outer boundary which is causally connected (i.e.
at ~350M); (iii) Cartesian outer boundary which is caus-
ally connected (i.e. at ~200M). For case (i) we reduce the
order of the finite-difference operator at the outer boundary
but, because it is causally disconnected, the initial condi-
tions are preserved there. For case (ii) instead, we impose
reflecting boundary conditions so as to ““stress’ the solu-
tion with data from the outer boundary which is constraint-
violating and injected mostly at the time of the reflection.
Finally, in case (iii) we have applied ordinary, outgoing
Sommerfeld boundary conditions to all variables, again
triggering violations in the constraint equations.

All the properties of the grid structure and the treatment
of the outer boundary are summarized in Table I, where A,
is the grid spacing on the coarsest Cartesian grid, which is
equal in all cases to the radial grid spacing in the angular
patches. N, is the number of cells in the angular direc-
tions in the angular patches, while R;, and R, are the inner
and outer radii of the angular patches, respectively. (In the
case of a Cartesian outer boundary, R, represents the
distance to the outer boundary along coordinate lines.)
Finally, N,., is the number of refinement levels (including
the coarsest) on the Cartesian grid, while 27y, indicates the
size of the cubical refinement boxes centered on each black
hole.

As final remark before discussing the results, we note
that all the rest being the same, at any given resolution the
CCZ4 system has a smaller violation of the constraints than
the BSSNOK one. At the same time, however, because the
violations of both the energy and momentum constraints
are part of the evolution equations in the CCZ4 system, the
latter is more strongly affected than BSSNOK one, for
which only the violations of the momentum constraint
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TABLE I

PHYSICAL REVIEW D 85, 064040 (2012)

Properties of the black-hole binaries simulated. The first column indicates the type of outer boundary and whether

causally connected. h, is the grid spacing on the coarsest Cartesian grid, which is equal in all cases to the radial grid spacing in the
angular patches. N, is the number of cells in the angular directions in the angular patches. R;;, and R, are the inner and outer radii of
the angular patches. Ny, is the number of refinement levels (including the coarsest) on the Cartesian grid, and 2ry, indicates the size of
the cubical refinement boxes centered on each black hole. The unit of the spacetime mass M is chosen such that each black hole has
mass 0.5M in both the single and binary black cases. Finally, the last three columns contain the relative difference in the £ = m = 2
gravitational-wave phase between evolutions carried out with either the BSSNOK formulation (¢g), the CCZ4 formulation with
damping terms (¢z4q), or the CCZ4 formulation without damping terms (¢ z4,)-

outer boundary ho/M Nyng Rin/M Roy/M Ny, Fiev/M (1 = bzaa/ b8) (1 — dzau/ b)) (1 — bzaa/ b740)
multiblock, caus. discon. 0.80 33 40.00 2192.80 6 (12, 6, 3, 1.5, 0.6) 0.0445 0.0465 0.00230
multiblock, caus. discon. 0.60 43 39.60 219240 6 (12, 6, 3, 1.5, 0.6) 0.0315 0.335 0.00175
multiblock, caus. discon. 0.48 53 39.84 2192.16 6 (12, 6, 3, 1.5, 0.6) 0.0245 0.0255 0.00135
multiblock, caus. discon. 0.40 65 40.00 219240 6 (12, 6, 3, 1.5, 0.6) - - -
multiblock, caus. con. 0.60 43 39.60 35040 6 (12, 6, 3, 1.5, 0.6) - - -
Cartesian, caus. con. 120 0 - 199.20 7 (110, 12, 6, 3, 1.5, 0.6) - - -

are included in the evolution system. As a result, the CCZ4
formulation requires a comparatively higher minimum-
resolution treshold in order to enter a convergent regime.

A first comparison of the behavior of the different for-
mulations is offered in Fig. 2, where we show the € = m =
2 mode of the gravitational waveform W, as extracted on a
sphere of coordinate radius r = 100M (see [37] for
details on the extraction procedure). Different lines refer
to simulations using either the noncovariant formulation
with damping terms, i.e. with k3 = 1/2 and x; = 0.1/M,
Kk, = 0 (Z4d, black solid line), or to the noncovariant
formulation without damping terms, i.e. with «3 = 1/2

0.08 LN O L B B
L Z4d J
0.04 |- e D41 1 .
1
L 1 4
- I BSSNOK ik 1
N
8
-~ 0
Zz
[
-0.04
F-0.04 | 7
[ _pog i v v 1 . ]
r 450 500 9
—-0.08 o b b v b b
100 200 300 400 500 600

t [M]

FIG. 2 (color online). Real part of the € = m = 2 mode of the
gravitational waveform W, for an equal-mass nonspinning
black-hole binary. Different lines refer to evolutions with the
noncovariant formulation with and without damping terms, i.e.
with k3 = 1/2 and k; = 0.1/M, k, = 0 (Z4d), or k3 = 1/2 and
K; = Kk, = 0 (Z4u). The two evolutions are indicated, respec-
tively, as Z4d and with a black solid line or as Z4u and with a
blue dotted line; the BSSNOK formulation is shown with a red
dashed line. Shown in the inset is a magnification of the merger.

and k; = k, = 0 (Z4u, blue dotted line). Also shown as
a reference is a simulation with the BSSNOK formulation
(red dashed line) using the same numerical setup. The
simulations refer to the highest resolution (i.e. hy/M =
0.48) and the grid having the multiblock padding and an
outer boundary at R, = 2192.16 M.

The first obvious thing to note is that all simulations
lead to a stable merger and ringdown at all the resolu-
tions considered. Furthermore, while a small phase dif-
ference is present between the Z4 and the BSSNOK
runs, this difference is very small and A¢ < 0.02 rad
over the whole simulation. As a comparison, the phase
difference between the Z4 and the Z4u simulations is
A¢ =< 0.002 rad (see Table I for the relative maximum
differences).

Although the phase differences between the waveforms
obtained with the two formulations is relatively small, it
also decreases with the resolution, thus indicating that
both formulations would yield the same phase evolution
in the continuum limit. The rate of convergence, how-
ever, is different when considering either the BSSNOK or
the CCZ4 formulation. This is shown in Fig. 3, where we
report the residuals in the phase evolutions at the high,
medium and low resolutions, respectively (these are in-
dicated as “HR”, “MR” and “LR”). The differences
between the low and medium resolutions are also scaled
to highlight the convergence order of the solution. More
specifically, the HR, MR and LR refer to simulations
with the coarsest resolutions of hy/M = 0.6, 0.48, 0.4
(cf. Table I). The convergence coefficients corresponding
to these resolutions and used for rescaling are CF4 =
3.0898, CF4 = 3.0898 of 4.5 in the BSSNOK case, and
CF8 = 7.1906 for a convergence factor of 8.5 in the Z4d
case. Note however that, as mentioned above, the CCZ4
formulation needs a higher resolution to enter the con-
vergence regime, while a triplet of resolutions with
ho/M = 0.8, 0.6, 0.48 would be enough to show con-
vergence at about 4th order for the BSSNOK runs.
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FIG. 3 (color online). Differences in the phase evolutions at
the high, medium and low resolutions, respectively, (these are
indicated as HR, MR and LR). The top panel refers to the
BSSNOK formulation, while the bottom one the the noncovar-
iant damped CCZ4 formulation (Z4d). The differences between
the low and medium resolutions are also scaled with the appro-
priate convergence coefficients (marked as CF4 and CF8, see
text) to highlight the convergence order of the solution; all the
data refers to simulations with a multiblock padding and causally
disconnected outer boundary. Note that at these resolutions the
CCZ4 formulation has larger phase errors, but due its higher
convergence factor, these errors are expected to decay at a faster
rate than for BSSNOK.

Beside this minimum resolution threshold, the addi-
tional computational expenses required by the CCZ4 for-
mulations are not significant. The difference with the
BSSNOK system consists in an additional evolution equa-
tion for the scalar variable ®, which would amount to
solving 25 evolution equations (instead of 24 as in
BSSN), implying around 4% higher computational costs.
However this is an over-estimate, as in reality the time
spent in computing the evolution equations depends on the
computational infrastructure. In our case, it is about half of
the total time of a binary black-hole simulation, while the
other half is dedicated to mesh-refinement, gravitational-
wave extraction and other analysis routines.

All in all, we find that for the highest resolutions used the
results of the BSSNOK runs converge at about 4th order
(top panel in Fig. 3), while the Z4d runs converge at about
8th order (bottom panel in Fig. 3); in both cases, the
convergence order is lost in the very final stages of the
merger. It is a present unclear why the two formulations
yield, with the same computational infrastructure, two
different convergence rates. It is possible that the
constraint-damping properties of the CCZ4 formulation
are able to suppress the small violations coming from the
reflections across refinement boundaries, that are a major

PHYSICAL REVIEW D 85, 064040 (2012)

source of error and one of the largest obstacles to attain
clean convergence. However, more efforts (and consider-
able computational costs) need to be invested to assess
whether this is the correct explanation.

A useful way to appreciate the different behavior of the
two formulations is shown in Fig. 4, which reports the
evolution of the L2-norm of the ADM energy (i.e. the
violation of the Hamiltonian constraint) for the covariant
CCZ4 formulation with and without damping (light-blue
dot-dashed line and magenta long-dashed line, respec-
tively), for the noncovariant CCZ4 formulation with and
without damping (black solid line and blue dotted line,
respectively), and for the BSSNOK formulation (red
dashed line). We also report the different values of coeffi-
cient f in the shift Eq. (21), which does change the growth
rate of the unstable simulations, but does not remove the
instability in the case of the fully covariant formulation.'
The data refers to simulations having a coarse resolution of
ho/M = 0.48 and outer boundary placed at R, =
2192.16 M, but similar behaviors have been seen also at
higher and lower resolutions.

Note that as the initial data settles and the evolution
proceeds, the CCZ4 formulation shows a violation of the
Hamiltonian constraint smaller than for the BSSNOK case
(the L2-norm being at least 1 order of magnitude smaller),
hence yielding a more accurate solution of the Einstein
equations. However, after this initial stage, the evolutions
with the CCZ4 formulation can be considerably different
according to the choice made for the parameters k3 and «;.
More specifically, the covariant and damped system (i.e.
k3 = 1, k; # 0) exhibits a very rapid violation of the
constraint at ~100M and inevitably leads to a code crash
(light-blue dot-dashed line in Fig. 4). Other variants of the
CCZ4 formulation, on the other hand, show a different
behavior. In particular, both of the undamped CCZ4 for-
mulations (i.e. k3 = 1/2, 1, k; = 0) lead to a successful
merger, which can be easily identifiable as the peak at
about =~ 350-380M, and which is due to larger local vio-
lations of the constraints as the merger takes place.? At the
same time, however, both implementations show a growth
of the constraint violation (blue dotted line and magenta
long-dashed line). This growth can be rather slow in the
case f = 1, but it is likely to yield unstable evolutions on
very long timescales. Finally, Fig. 4 shows that a non-
covariant and damped implementation of the CCZ4 for-
mulation (i.e. k3 = 1/2, k; # 0; black solid line) leads not
only to a stable merger and subsequent evolution, but it

'"We have performed simulations also with k3 = 1, x; =
0.1/M, f=1o0r k3=1, K, =0.1/M, f =3/4 and k3 = 1,
k; =0, f=3/4; in all cases we have found an instability
(although with different growth rates), which we do not report
to avoid overloading Fig. 4.

Note that the time of merger is a gauge dependent quantity
and can therefore take place at slightly different times in differ-
ent formulations.
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FIG. 4 (color online). L2-norm of the Hamiltonian constraint
for the noncovariant CCZ4 formulation with and without damp-
ing terms (black solid line and blue dotted line, respectively), for
the covariant CCZ4 formulation with and without damping terms
(light-blue dot-dashed line and magenta long-dashed line, re-
spectively), and for the BSSNOK formulation (red dashed line).
Also indicated are the different values of coefficient f in the shift
Eq. (21), which however do not introduce qualitatively different
behaviors. The data refers to the a simulations having a coarse
resolution of hy/M = 0.48 and outer boundary at R, =
2192.16M.

also provides a violation of the constraints which is at least
1 order of magnitude smaller than the corresponding one
obtained with the BSSNOK evolution (red dashed line).
This is one the main results of this paper and the ultimate
justification for investigating this new formulation of the
equations.

We note that the behavior of the constraints described
above for the CCZ4 formulation is indeed very similar to
what already experienced by many groups implementing
the GH formulation.® In that case, in fact, the addition of
the damping terms was crucial to achieve stable black-hole
evolutions [1,26,45]. Altogether, the evolution shown in
Fig. 4 already provides the needed evidence that the new
CCZA4 formulation, once suitable damping terms are added
and the boundary conditions do not play a role, represents a
considerable improvement over the standard BSSNOK
formulation. In what follows we will show that this con-
tinues to be the case also when the outer boundaries are
chosen to produce incorrect data, or when they are placed
very close to the merging binary.

Figure 5 reports with black solid lines the € = m = 2
mode of the gravitational waveform W, extracted at
r = 100M for simulations having a coarse resolution

3We recall that GH formulation can can be seen as a reduction
of the Z4 formalism [27].

|
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FIG. 5 (color online). Real part of the € = m = 2 mode of the
gravitational waveform W, (black solid line) extracted at r =
100M for simulations having a coarse resolution hy/M = 0.60
and an outer boundary which is causally connected and at R, =
350.40M. The top panel refers to a simulation using the non-
covariant and damped implementation of the CCZ4 formulation
(ie. k3 = 1/2, k; # 0), while the bottom one to a simulation
using the BSSNOK formulation; also shown are the correspond-
ing waveforms obtained when R, = 2192.40M (red dashed
lines).

ho/M = 0.60 and an outer boundary which is causally
connected and at R, = 350.40M (cf. Table I). The top
panel, in particular, refers to a simulation using the non-
covariant and damped implementation of the CCZ4 for-
mulation (i.e. Z4d, with k3 = 1/2, k; # 0), while the
bottom one to a simulation using the BSSNOK formula-
tion. Also shown with red dashed lines are the correspond-
ing waveforms obtained when the outer boundary is
causally disconnected and at R, = 2192.40M. As shown
more clearly in the two insets, the CCZ4 formulation yields
waveforms which are essentially identical and are unaf-
fected by the constraint-violating outer boundaries. This is
to be contrasted with the evolution performed with the
BSSNOK formulation and which shows strong signs of
reflection at # =~ 510M.

The reason behind this different behavior is to be found
in the different way in which the two formulations handle
the constraint-violations coming from the outer boundaries
and is best appreciated in Fig. 6, where we show again the
L2-norm of the ADM energy for the noncovariant and
damped implementation of the CCZ4 formulation (i.e.
74d with k3 = 1/2, k; # 0) and for the BSSNOK formu-
lation. Note that both suffer of a very large increase at
t ~ 250M when the waves from the initial gauge settling of
the binary, propagating at a speed of v, ~ V2, reach the
outer boundary at R, = 350.40M and lead to larger vio-
lations. Also note that this increase in the constraint
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FIG. 6 (color online). L2-norm of the Hamiltonian constraint
for the noncovariant and damped implementation of the CCZ4
formulation (i.e. Z4d with k3 = 1/2, k; # 0), and for the
BSSNOK formulation (red dashed line). The data refers to the
a simulations having a coarse resolution of 7y/M = 0.60 and
outer boundary placed at R, = 350.40M.

violation happens much earlier than the one associates with
the merger (which is at  ~ 350M). As evident from Fig. 6,
the CCZ4 is able to recover efficiently from this violation,
and the damping terms act in such a way that by ¢ ~ 400M
the violation is completely removed, with the Hamiltonian
constraint brought back to its minimum value. By contrast,
the evolution with the BSSNOK formulation never recov-
ers from the boundary contamination, leading to an in-
creasing violation responsible for the incorrect behavior
discussed in Fig. 5. The CZZ4 formulation experiences
another increase in the violation at ¢ ~ 750M, when the
gauge waves coming from the binary reach again the outer
boundary, but once again the constraint damping terms act
so as to remove the violation.

An additional and concluding evidence of the constraint-
damping properties of the CCZ4 formulation is shown is
Fig. 7, where we report the evolution of the L2-norm of the
Hamiltonian constraint (top panel) and of the root-mean-
square of the momentum constraint (bottom panel) for the
noncovariant and damped implementation of the CCZ4
formulation (i.e. Z4d with k3 = 1/2, k; # 0, black solid
lines), and for the BSSNOK formulation (red dashed lines).
The data refers to simulations performed with a plain
Cartesian outer boundary which is very close to the binary
and at Ry, = 199.20M (cf. Table I). As in the previous
figure, also here it is possible to detect the increase of the
constraint violations when gauge waves from the binary
have reached the outer boundary at t ~ 140M.

Also in this case, the damping terms in the equations
remove rapidly the violations, which decay exponentially
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FIG. 7 (color online). L2-norm of the Hamiltonian constraint
(top panel) and of the root-mean-square of the momentum
constraint (bottom panel) for the noncovariant and damped
implementation of the CCZ4 formulation (i.e. Z4d with k3 =
1/2, k; # 0, black solid lines), and for the BSSNOK formula-
tion (red dashed lines). The data refers to simulations having a
coarse resolution of hy/M = 1.20 and outer boundary at R, =
199.20M.

to their minimum values. Because the boundary is so close-
in, this behavior of rapid increase and exponential decay
takes place at least 3 times, both for the Hamiltonian and
momentum constraints. Any formulation of the Einstein
equations having this type of behavior is obviously prefer-
able over one in which the violations are trapped in the
computational domain and are not allowed to be damped.

IV. CONCLUSIONS

By starting from the Z4 formulation [27] and by includ-
ing all the nonprincipal terms coming from the covariant
form of the equations, we have introduced the CCZ4 for-
mulation, i.e. the conformal and covariant formulation of
the Z4 system, and proposed it as a new and effective way
to solve numerically the Einstein equations in arbitrary
spacetimes.

The new set of equations combines the most important
features of the commonly used formulations of the Einstein
equations employed in numerical-relativity calculations. In
particular, it is able to make use of well-tested and robust
gauge conditions which remove the need of excision and,
at the same time, it is able to control dynamically the
violation of the constraint equations and to rapidly sup-
press them when they occur.

We have validated the robustness of the CCZ4 evolution
system by performing a number of tests both in flat and in
black-hole spacetimes. We have thus found that the CCZ4
formulation without damping terms does not pass the
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standard gauge-advection test, in analogy with the behav-
ior of the BSSNOK formulation. However, when the damp-
ing terms are switched on, the new CCZ4 formulation
passes the test stably and accurately.

This ability of the formulation to control and damp
violations in the constraint equations has been confirmed
also through the simulation of nonspinning black-hole
binaries, which have been followed for about three orbits
before merging to a rapidly rotating black hole. Through a
series of simulations at different resolutions and with
different treatments of the outer boundary—handled either
with multiblocks and placed at a causally disconnected
distance, or with a Cartesian box and placed close to the
binary—we have shown that not all of the implementations
of the CCZ4 formulation lead to stable evolutions of binary
black-hole spacetimes.

Rather, we have found that the covariant form of the
CCZA4 formulation, in conjunction with the use of damping
terms, leads to exponentially growing modes that rapidly
destroy the numerical solution. Fortunately, the use of a
noncovariant formulation and of damping terms leads not
only to a stable evolution, but it also provides a violation of
the constraints which is at least 1 order of magnitude
smaller than the corresponding one obtained with the
BSSNOK evolution. A close comparison with simulations
performed with the BSSNOK formulation using the same
numerical setup, has also revealed that the CCZ4 formu-
lation can efficiently recover from large violations of the
constraints, with the damping terms rapidly removing con-
straint violations produced at the outer boundary. By
contrast, evolutions with the BSSNOK formulation expe-
riencing similar violations never recover from the bound-
ary contamination, leading to an increasing violation and
incorrect gravitational waves.

Because the changes necessary to implement the new
conformal formulation in BSSNOK codes and the addi-
tional computational costs are very small, we propose the
new formulation as a new standard for the numerical
solution of the FEinstein equations in generic 3D

PHYSICAL REVIEW D 85, 064040 (2012)

spacetimes. We expect, in fact, that a numerical solution
of the Einstein equations having smaller violations of the
constraints will also yield a more accurate modelling of the
gravitational-wave emission, both in vacuum and nonvac-
uum spacetimes.

At the same time, however, much remains to be done
to fully understand the role played by the damping co-
efficients in fully nonlinear regimes and in the covariant
form of the CCZ4 formulation. Our experience with
binary black-hole spacetimes has revealed, in fact, that
there are situations in which the damping of the con-
straints interferes negatively with a fully covariant form
of the CCZ4 formulation, leading to unstable evolutions.
In these cases, even small changes in the covariant
character of the equations (e.g., by using 3 = 0.9 in-
stead of k3 = 1) allows one to use nonzero damping
coefficients and hence to obtain a smaller violation of
the constraints. A systematic investigation of the space of
parameters k; X kp X k3 is difficult due to the large
computational costs of these simulations, but is clearly
needed for a deeper understanding of the behavior of the
CCZ4 formulation. Much of our future work will be
dedicated to elucidate this point.
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