
Impulsive gravitational waves of massless particles in extended theories of gravity

Morteza Mohseni

Physics Department, Payame Noor University, 19395-3697 Tehran, Iran
(Received 8 November 2011; published 27 March 2012)

We investigate the vacuum pp-wave and Aichelburg-Sexl-type solutions in fðRÞ and the modified

Gauss-Bonnet theories of gravity with both minimal and nonminimal couplings between matter and

geometry. In each case, we obtain the necessary condition for the theory to admit the solution and examine

it for several specific models. We show that the wave profiles are the same or proportional to the general

relativistic one.
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I. INTRODUCTION

Extensions of the general theory of relativity in which
functions of some geometric quantity are coupled either
minimally or nonminimally to the matter part of the usual
action for gravity have been widely studied recently,
mainly as part of current efforts to explain the Universe
with its observed late-time accelerated expansion [1–3].
The so-called fðRÞ gravity comprises the largest subset of
models constructed in this way, see Refs. [4–6] for reviews.
In these models, a priori arbitrary functions of the scalar
curvature of spacetime are included in the gravitational
action in its various metric, Palatini, or metric-affine
formulations. The fðRÞ function can also be coupled non-
minimally to the matter Lagrangian, as suggested in
Refs. [7,8]. An interesting consequence of such nonmini-
mal coupling is the emergence of extra forces making the
trajectories of otherwise-free particles nongeodesic [9].
Another well-known class consists of the so-called F ðGÞ
gravity models, in which a function of the Gauss-Bonnet
invariant, G, is added to the Einstein-Hilbert action [10].
More general modified Gauss-Bonnet theories of gravity
with nonminimal coupling have also been suggested
[11,12], see also Ref. [13].

Various aspects of the above-mentioned models
have been studied in recent years, including black
hole solutions and their thermodynamics and cosmo-
logical solutions with accelerated expansion. There
is now a huge amount of literature on this, and a selection
is listed in Refs. [4–6,14]. Massless and massive
gravitational-wave solutions have been presented, too
[15]. The issue of linearized fðRÞ gravity has been
studied in Refs. [16–18]. Compared with general relativ-
ity, several new features arise in this context, namely, the
appearance of extra polarization modes and a nonlinear
dispersion law, see, e.g., Ref. [19].

Different models introduced in this context have
been examined against several theoretical or observational
criteria. As an example, the study by Dolgov and
Kawasaki [20] has shown that certain fðRÞ models

accommodate ghosts and hence are ruled out by the con-
sequent instability. One can also mention constraints com-
ing from solar system effects such as planetary orbits or
bending of light [21], and the bounds coming from impos-
ing the energy conditions [22], in this regard.
The aim of the present work is to find classes of these

extended theories of gravity which admit plane-fronted-
parallel rays gravitational-wave solutions the same or
similar to the general relativistic vacuum or Aichelburg-
Sexl solutions [23]. One motivation behind this work is
the recent interest in gravitational pp waves in general,
and in gravitational shock waves of various sources, in
particular. In fact, in the context of general relativity, the
problem has been studied by boosting the Kerr metric in
Refs. [24,25] by boosting the Kerr-Newman metric in
Ref. [26], in the presence of a nonvanishing cosmological
constant [27], for motion in Schwarzschild-Nordström
and Schwarzschild-de Sitter spacetimes [28], for particles
with arbitrary multipoles in Ref. [29], for motion in
Nariai universe [30], and for motion in the presence of
electromagnetic fields in Ref. [31]. A reason for interest
in such solutions lies in their role in the scattering of
particles off of each other at ultrahigh energies [32,33].
Extensions of the Aichelburg-Sexl solution outside the
context of general relativity have also been of interest,
namely, in the framework of the brane-induced gravity
[34] and in the context of the ghost-free model of massive
gravity [35].
Second, and at the same time, this study aims to put

forward a new criterion for testing extended gravity mod-
els. The basic idea is that the gravitational radiation by
moving particles, massless ones in the present case, is
detectable, at least in principle, and whether a given
model admits the plane wave solution distinguishes it
from other models. For models admitting the solution,
the explicit form of the wave profile provides further
information.
In the next sections, after a brief review of the

Aichelburg-Sexl solution of general relativity, we apply
the above ideas to several well-known extended theories of
gravity including minimal and nonminimal fðRÞ gravities
and F ðGÞ gravity.*m-mohseni@pnu.ac.ir
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II. THE AICHELBURG-SEXL SOLUTION

The Aichelburg-Sexl (AS) solution, first introduced in
Ref. [23], represents the gravitational field of a massless
particle moving in an otherwise empty space. It belongs to
the general class of plane-fronted gravitational waves with
parallel rays, or pp wave, solutions. The general form of a
pp-wave line element may be written as

ds2 ¼ �dudv� Kðu; x; yÞdu2 þ dx2 þ dy2; (1)

in which u ¼ t� z and v ¼ tþ z are the null coordinates,
and Kðu; x; yÞ is obtained from the field equations. For the
vacuum, the field equation results in the two-dimensional
Laplace equation to be satisfied by Kðu; x; yÞ.

The AS solution may be obtained by inserting the
energy-momentum tensor of a massless particle in the
Einstein equation. Starting with the action for the coupled
gravity-massless particle system,

S ¼ 1

16�G

Z ffiffiffiffiffiffiffi�g
p

Rd4xþ
Z ffiffiffiffiffiffiffi�g

p
Lpd

4x; (2)

one obtains

G�� ¼ 8�GT��; (3)

where

R ¼ ��
�g

��ð@���
�� � @��

�
�� þ �

�
���

�
�� � �

�
���

�
��Þ

is the scalar curvature, G�� is the Einstein tensor, and

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ðLp

ffiffiffiffiffiffiffi�g
p Þ

�g��

is the energy-momentum tensor. The above action is
expressed in a system of units in which c ¼ 1. For conve-
nience, we also set 8�G ¼ 1. For a massless particle of
momentum p with

L p ¼ p

2

Z
g�� _x

� _x��4ðx� xð�ÞÞd� (4)

in which _x� ¼ dx�

d� , we have

T�� ¼ p
Z

�4ðx� xð�ÞÞ _x� _x�d�; (5)

where x�ð�Þ corresponds to the trajectory of the particle
which has to be a null geodesic of the spacetime under
consideration. Thus, we can take x�ð�Þ to be of the form
(�, 0, 0, zð�Þ ¼ �) which is null and satisfies the geodesic
equation in the spacetime described by Eq. (1). Inserting
these together with the ansatz given by Eq. (1) into Eq. (3)
and making use of the following relation�

@2

@x2
þ @2

@y2

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
¼ 2��ðxÞ�ðyÞ;

we obtain

KASðu; x; yÞ ¼ � p

�
�ðuÞ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
(6)

which upon substitution in Eq. (1), describes a
gravitational-shock wave propagating with the speed of
light along the z direction.

III. GRAVITATIONALWAVES IN NONMINIMAL
fðRÞ GRAVITY

We start with the following action [9]:

S ¼
Z ffiffiffiffiffiffiffi�g

p �
1

2
fðRÞ þ ð1þ 	FðRÞÞLm

�
d4x (7)

in which fðRÞ and FðRÞ are arbitrary functions of R. This
represents an extension of the general theory of relativity
in which the matter field Lagrangian densityLm is coupled
nonminimally with the geometric structure FðRÞ, and the
coupling constant 	 controls the strength of the coupling.
This reduces to the usual fðRÞ theories of gravity for
	 ¼ 0, which in turn reduces to general relativity by
choosing fðRÞ ¼ R.
The field equation associated with the above action reads

E��¼r�r�f
0ðRÞ�g��hf0ðRÞþ2	ðr�r��g��hÞ

�LmF
0ðRÞ�2	F0ðRÞLmR��þð1þ	FðRÞÞT��;

(8)

wherermeans covariant differentiation,h ¼ r�r�, R��

is the Ricci tensor, and E�� ¼ f0ðRÞR�� � 1
2 fðRÞg��.

Now, let us examine the above field equation to see if
the vacuum pp-wave solution is admitted in this model.
For vacuum, the last three terms in the right-hand side of
Eq. (8) vanish, and if we insert the ansatz (1) into the
resulting equation, we will reach the following relations:

f0ð0Þ
�
@2

@x2
þ @2

@y2

�
Kðu; x; yÞ � fð0ÞKðu; x; yÞ ¼ 0; (9)

and

fð0Þ ¼ 0: (10)

Thus, the vacuum pp-wave solution is admitted only if the
above condition holds. This condition is in fact among the
requirements needed to constrain the models from cosmo-
logical or solar system tests, which is also consistent with
the limiting case of the � cold dark matter (�CMD)
phenomenology [36]. The other requirement is that fðRÞ
should tend to a constant when the scalar curvature tends to
infinity.
When Eq. (10) holds, Eq. (9) reduces to the two-

dimensional Laplace equation in the transverse plane, pro-
vided f0ð0Þ � 0. This means that the waveform is the same
as the vacuum general relativistic one. For the special case
where f0ð0Þ ¼ 0, Eq. (9) is trivially satisfied with arbitrary
Kðu; x; yÞ. But this corresponds to the absence of the linear
term R in the Lagrangian and hence is ruled out.
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Now, we consider a massless particle moving along the z
direction and seek solutions of the form given in Eq. (1)
[renaming Kðu; x; yÞ to KnRðu; x; yÞ to avoid confusion].
Inserting Eqs. (4) and (5) into the above field equation
(with Lm replaced by Lp) and noting that for massless

particles g�� _x
� _x� vanishes, we reach

r2
TKnRðu; x; yÞ ¼ �2p

1þ 	Fð0Þ
f0ð0Þ �ðuÞ�ðxÞ�ðyÞ; (11)

provided Eq. (10) holds and f0ð0Þ � 0. Here, r2
T � @2

@x2
þ

@2

@y2
. Thus, if Eq. (1) is satisfied, the pp-wave solution (1) is

admitted, and the waveform is given by

KnRðu; x; yÞ ¼ 1þ 	Fð0Þ
f0ð0Þ KASðu; x; yÞ: (12)

If we also choose Fð0Þ ¼ 0, then the effect of the non-
minimal coupling disappears totally. For Fð0Þ � 0, the

nonminimal coupling has a contribution equal to Fð0Þ
f0ð0Þ	.

Because of the very small expected value of the coupling
constant 	, this would be a small contribution; see
Ref. [37] for a discussion of bounds on the values of 	.

It should be noted here that for the pp-wave spacetime
(1), the nonlinear field equation (8) reduces to a linear
equation discussed above, and this allows the use of dis-
tributional expressions as in general relativity.

IV. GRAVITATIONALWAVES IN fðRÞ GRAVITY

The well-studied fðRÞ theories of gravity are in fact
a subclass of the nonminimal theory considered above,
with 	 ¼ 0. Thus, both the vacuum pp-wave and the AS
solutions are admitted if Eq. (10) holds.

To determine the waveform of the AS solution, we insert
	 ¼ 0 into Eq. (12) [this time with KRðu; x; yÞ in place of
KnRðu; x; yÞ]. This yields

KRðu; x; yÞ ¼ 1

f0ð0ÞKASðu; x; yÞ: (13)

Since in general f0ðRÞ> 0, otherwise ghosts are allowed;
the signs of Kðu; x; yÞ and KASðu; x; yÞ are the same.

An example of the models satisfying the requirement
given by Eq. (10) is the broken power-law model

fðRÞ ¼ R�m2
c1

R
m2

� �
n

1þ c2
R
m2

� �
n

suggested in Ref. [36], in which c1, c2, m, and n are
constants, and n > 0. Note that the linear term above
is included to reproduce the Einstein-Hilbert action in
Eq. (7). For this model, we have

lim
R!0

1

f0ðRÞ ¼

8>>><
>>>:
1 if n > 1
1

1�c1
if n ¼ 1

0 if n < 1

:

By inserting this into Eq. (13), we conclude that for n � 1,
the model admits the plane wave solution, with a wave
profile the same as the general relativistic one for n > 1
and 1

1�c1
times the general relativistic waveform for n ¼ 1.

For n < 1, for which the above limit equals zero, the
solution reduces to the Minkowski spacetime. In other
words, for n < 1, the plane wave solution is not admitted,
and this is in agreement with what we expect from the
general requirement f0ðRÞ> 0 mentioned earlier.
Another example is the Starobinsky model [38] given by

fðRÞ ¼ Rþ R2

M2
:

Here, we have

1

f0ð0Þ ¼ 1;

and hence the solution is exactly the same as the general
relativistic one.
Also, the following cosmologically viable model pro-

posed in Ref. [39] (see also Ref. [40])

fðRÞ ¼ R� 	0R0 1� 1

1þ R2

R2
0

� �
n

0
BBB@

1
CCCA;

in which 	0, R0, n are positive constants, satisfies the
condition (10). For this model, we have f0ð0Þ ¼ 1, i.e.
coincidence with general relativity, again. However, be-
cause in this model f00ð0Þ< 0, it is unstable [41].
The model described by [42]

fðRÞ ¼ Rþ 1

a
lnðcoshðaRÞ þ b sinhðaRÞÞ;

where a, b are constants, admits the solution, too. Here, we
have

1

f0ð0Þ ¼ 1

1þ b
:

An example of the models incompatible with the condi-
tion (10) is the so-called IR-modified gravity model of
Refs. [43,44] described by

fðRÞ ¼ R��4

R
;

where ��H0, H0 being the Hubble constant. However,
such models are ruled out by the Dolgov-Kawasaki
instability [20]. It is interesting to note that in fact the
above model and the Starobinsky model (the second ex-
ample model discussed above) are special cases of a more
general model given by

fðRÞ ¼ R� ð1� nÞ�2 R

�2

 !
n

;

which have been investigated in Ref. [45].
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Another model which does not admit the solution is
given by [46]

fðRÞ ¼ Rþ � ln
R

�2

 !
þ �Rm;

�, �, m being constants.

V. GRAVITATIONALWAVES IN NONMINIMAL
F ðGÞ GRAVITY

In this section, we consider a nonminimal F ðGÞ gravity
model described by the following action [13]:

S¼
Z ffiffiffiffiffiffiffi�g
p �

1

2
RþF ðGÞþð1þ
H ðGÞÞLm

�
d4x; (14)

in which an arbitrary function of the Gauss-Bonnet invari-
ant

G � R2 � 4R��R
�� þ R��	�R

��	� (15)

is coupled to the matter field Lagrangian Lm with a cou-
pling constant 
. This represents a generalized version of
the actions introduced in Refs. [11,12].

The equation of motion resulting from the above action
is given by

ð1þ 
H ðGÞÞT�� ¼ G�� � g��F ðGÞ þ 4H��ðF 0ðGÞ
þ 
LmH 0ðGÞÞ; (16)

where

F 0ðGÞ ¼ dF ðGÞ
dG

;

and

H�� ¼ RR�� þ R�
���R

���� � 2R
�
�R�� þ 2R����R��

� 2G��r2 � Rr�r� � 2g��R��r�r�

þ 2R��r�r� þ 2R��r�r� � 2R����r�r�:

Now, we consider the pp-wave anstaz, Eq. (1). First, we
note that the Gauss-Bonnet invariant, Eq. (15) above,
vanishes identically for the spacetime described by
Eq. (1). For vacuum, the above field equation reduces to�

@2

@x2
þ @2

@y2

�
Kðu; x; yÞ � 2F ð0ÞKðu; x; yÞ ¼ 0; (17)

and

F ð0Þ ¼ 0: (18)

Thus, the vacuum solution is admitted only if the above
condition holds. Then, Eq. (17) reduces to the same equa-
tion governing the waveform in general relativity. Hence,
the waveform is the same as the general relativistic
counterpart.

Back to the nonminimal coupling to a massless particle,
by taking Lp as the matter Lagrangian and inserting the

associated energy-momentum tensor into the field equation
(16), we obtain the plane wave solution (1) whenever
Eq. (18) is satisfied. The relevant waveform is given by

KGðu; x; yÞ ¼ ð1þ 
H ð0ÞÞKASðu; x; yÞ: (19)

If, in addition, the function H ðGÞ is chosen so that it
satisfies H ð0Þ ¼ 0, then the waveform is not distinguish-
able from the general relativistic one.

VI. GRAVITATIONALWAVES IN F ðGÞ GRAVITY

The action for F ðGÞ gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
RþF ðGÞ þLm

�
; (20)

which is a particular case of the nonminimal model
discussed in the previous section with 
 ¼ 0. Thus, all
such models satisfying Eq. (18) admit both the vacuum
pp-wave solution and the AS solution. Now, from
Eq. (19), with vanishing 
, it is obvious that the waveform
KGðu; x; yÞ is the same as the one in general relativity.

Examples of the F ðGÞ models satisfying the require-
ment Eq. (18) include

F ðGÞ ¼ Gn;

with n > 0 which is shown in Ref. [47] that it could also
pass solar system tests for n & 0:074.
Also, the following cosmologically viable models

F ðGÞ¼�
G
G?

tan�1

�
G
G?

�
��

2

ffiffiffiffiffiffiffi
G?

q
ln

�
1þ G2

G?
2

�
���

ffiffiffiffiffiffiffi
G?

q
;

(21)

F ðGÞ ¼ �

�
G
G?

�
tan�1

�
G
G?

�
� ��

ffiffiffiffiffiffiffi
G?

q
; (22)

F ðGÞ ¼ �
ffiffiffiffiffiffiffi
G?

q
lncosh

�
G2

G2
?

�
� ��

ffiffiffiffiffiffiffi
G?

q
; (23)

proposed in Ref. [48] admit the plane wave solution for
� ¼ 0. Here, � and G? are positive constants.
The model presented in Ref. [49] provides another ex-

ample which admits the wave solution. It is described by

F ðGÞ ¼ ðG �G0Þ2nþ1 þG2nþ1
0

F0 þ F1fðG �G0Þ2nþ1 þG2nþ1
0 g ;

where F0, F1, G0 are constants.
It is interesting to note that both fðRÞ andF ðGÞ theories

considered above can be obtained from a more general
theory described by the following action [50]:

S ¼
Z ffiffiffiffiffiffiffi�g

p ðFðR;GÞ þLmÞd4x; (24)

which can be seen from the associated field equation which
admits the above plane wave solution when similar con-
ditions to those introduced above are satisfied.
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VII. DISCUSSION AND CONCLUSIONS

In this work, we studied plane-fronted gravitational
waves with parallel rays in the context of some extended
theories of gravity. We considered fðRÞ and modified
Gauss-Bonnet gravity with minimal and nonminimal cou-
plings to matter and showed that they admit a vacuum
pp-wave solution and also an Aichelburg-Sexl-type solu-
tion if certain conditions are satisfied. For fðRÞ gravity,
the required condition is that fðRÞ vanishes for vanishing
scalar curvature. This condition is compatible with the
requirements for such theories to pass local gravity tests.
It is also the same condition for a given model to admit the
Schwarzschild solution. Thus, for those models admitting
the Schwarzschild solution, it should be possible to obtain
the AS plane wave solution by boosting the black hole one
as in general relativity. The explicit form of the wave
profile depends on f0ð0Þ and coincides with the general
relativistic wave profile for some specific models including
the well-known Starobinsky model. A similar condition
holds for the modified Gauss-Bonnet gravity. In the latter
case, the solution is the same as the general relativistic one.
This was examined for several specific cosmologically
viable models. For models with nonminimal coupling be-
tween the matter and geometry, more interesting options
are available, including the possibility of (dis)appearance
of (the)/a contribution from the nonminimal coupling by
choosing appropriate coupled function.

The gravitational wave solution presented here might be
used as an experimentally testable, at least in principle,
criterion to distinguish between various extended gravity
models. This can be achieved by looking at the behavior of
two pointlike objects in the gravitational field of the mass-
less source. For models with minimal coupling, this can be
seen by measuring the relative acceleration of two nearby

test particles separated by n� which is obtained from the
geodesic deviation equation

D2n�

D�2
¼ �R�

��� _x�n� _x� (25)

and noting that for the spacetime under consideration,
the components of the Riemann curvature tensor are pro-
portional to the second derivatives of the wave profile
Kðu; x; yÞ with respect to the transverse coordinates. For
models with nonminimal couplings where the particles do
not move along geodesics as a result of extra forces coming
from the coupling, the above equation should be modified
by adding the relevant terms. However, since the extra
force is proportional to the gradient of the scalar curvature
or the Gauss-Bonnet invariant, both of which vanish in the
above considered spacetime, the same argument still holds.
The fact that the waveform obtained by application of the
extended theories of gravity is proportional to the general
relativistic waveform would then reflect in the observed
relative accelerations.
The results obtained here might also be used to study the

scattering of particles at high energies in the framework of
extended theories of gravity. Possible interesting exten-
sions of the present work include a study of shock waves
due to massless particles moving in curved backgrounds
and particles with arbitrary multipoles moving in curved
spacetimes in the presence of matter fields and/or a cos-
mological constant.
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