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We develop a unified formalism for describing the interaction of gravitational waves with matter that

clearly separates the effects of general relativity from those due to interactions in the matter. Using it, we

derive a general expression for the dispersion of gravitational waves in matter in terms of correlation

functions for the matter in flat spacetime. The self energy of a gravitational wave is shown to have

contributions analogous to the paramagnetic and diamagnetic contributions to the self energy of an

electromagnetic wave. We apply the formalism to some simple systems: free particles, an interacting

scalar field, and a fermionic superfluid.
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I. INTRODUCTION

The interaction of gravitational waves with matter is
important in a number of different contexts. One is in
connection with the continuing quest to detect gravitational
waves experimentally. Pioneering experiments were car-
ried out using large metal bodies as detectors [1] and this
line of investigation has been further pursued at many
centers. These detectors were designed to detect gravita-
tional waves by observing the resonant excitation of elastic
modes of the bars and the standard theory of such detectors
uses elastic theory to calculate the response [2].

However, there are a number of suggestions that the
response of matter could be very different from what is
predicted on the basis of elasticity theory. One is that the
direct coupling of the gravitational wave to electrons could
enhance the absorption cross section [3]. For solids, the
effect of electronic degrees of freedom has been taken into
account within the Fröhlich model for the electron-phonon
interaction, which does not take into account explicitly the
long-range character of the Coulomb interaction, and the
authors conclude that the effect of including electron de-
grees of freedom explicitly is very small [4]. A more recent
suggestion is that a superconducting metal would be a
reflector of gravitational waves because ions and super-
conducting electrons respond in different ways to a gravi-
tational wave, thereby creating a large electrostatic energy
that renders the superconductor ‘‘stiff’’ to the propagation
of the wave [5]. These proposals underscore the need for a
theory of the interaction of gravitational waves with matter
that treats coupling of the gravitational wave to matter on a
unified footing, takes into account the microscopic degrees
of freedom, and also is able to include the effects of
interactions.

A second important area is the interaction of gravita-
tional waves with astrophysical matter. Since much of this
matter is diffuse and weakly interacting, the common

approach to this problem is to calculate trajectories of
free particles in the presence of the curved spacetime
produced by the gravitational wave. A review of early
work on the dispersion of gravitational waves may be
found in Ref. [6]. The effects of electromagnetic fields
are included in some cases: for example, Servin, Brodin,
and Marklund [7,8] showed that a magnetic field can rotate
the polarization of a gravitational wave. Their work sug-
gests that the role of the electromagnetic field is crucial to
understanding the response of a charged system.
The purpose of the present work is to develop a general

formalism for describing the interaction of gravitational
waves with matter. In particular, we wish to separate the
effects of general relativity from those of calculating cor-
relations in the matter. Our approach is modeled on the
semiclassical theory of interaction of electromagnetic
fields with matter, in that we shall treat the gravitational
radiation (the perturbations of the metric tensor) classi-
cally. However, the matter will be treated quantum me-
chanically. The response of the system is calculated in a
systematic way from a path-integral approach. We find that
there are contributions to the response of matter to a
gravitational wave that are analogous to the paramagnetic
and diamagnetic responses of a conductor to an electro-
magnetic field, and we give general expressions for them.
Earlier work on interaction of gravitational waves with
condensed matter [3,4] has generally focused on the para-
magnetic term, while in astrophysical applications the
diamagnetic term often dominates. The formalism de-
scribed in this article provides an economical way of
deriving results for simple situations that have been con-
sidered earlier, while at the same time being of sufficient
generality to be applicable to interacting many-body
systems.
The paper is organized as follows: in Sec II we develop

the formalism for calculating the dispersion relation for a
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gravitational wave propagating in matter. Section III treats
the case of free particles, both nonrelativistic and relativ-
istic. In Sec. IV we analyze the coupling of a gravitational
wave to two interacting systems: a scalar boson field with a
�4 interaction (a Bose-Einstein condensate) and a super-
fluid with paired fermions described by the
Bardeen-Cooper-Schrieffer (BCS) theory. We describe
possible directions for future research in Sec. V.

II. BASIC FORMALISM

In a gravitational wave, the metric tensor g��ðx; tÞ
deviates from the Minkowski metric ��� ¼
diagð1;�1;�1;�1Þ and we write

g��ðx; tÞ ¼ ��� þ h��ðx; tÞ; (1)

where h��ðx; tÞ is the disturbance in the metric tensor. In

keeping with the general approach we adopt, the metric
tensor will be treated as a classical quantity. There is much
freedom in the way in which the disturbance of the metric
tensor is described and, for gravitational waves, a conve-
nient choice is the transverse traceless (TT) gauge, in
which h has only spatial components, @�h

�
� ¼ @ih

i
j ¼ 0,

and h�� ¼ 0 [9]. For gravitational waves, the quantity h��

plays a role similar to that of the potential A� in electro-

magnetic theory. In treating the effects of matter we shall
assume that, in the absence of gravitational waves, space-
time is flat. This is a good approximation for wave numbers
small compared with the scale of the curvature tensor [8].

To describe the interaction of gravitational waves with
matter, we generalize to gravitational waves the semiclas-
sical theory of electromagnetic response [10]. The gravi-
tational field is treated classically, but matter, including
electromagnetic radiation, is treated quantum mechani-
cally [11]. The purely gravitational contribution to the
action is

Sgrav ¼ 1

2�

Z ffiffiffiffiffiffiffiffiffiffiffi
ð�gÞ

q
R � 1

8�

Z @hij
@x�

@hij

@x�
; (2)

where the second expression is the leading contribution for
small h, � ¼ 8�G=c4 (G being the Newtonian gravita-
tional constant), g ¼ detg��, R is the Ricci scalar and the

integrals are taken over space and time, d4x.
The contribution of matter to the effective action of the

gravitational field due to matter is obtained by integrating
over all possible paths for the quantum-mechanical motion
and is given by

SeffðhÞ ¼ lnZðhÞ: (3)

Here the partition function ZðhÞ is given by [12]

Z ðhÞ ¼
Z

Dð �c ; c ; AÞe�Smð �c ;c ;A;hÞ; (4)

where A is the electromagnetic potential and the fields c
and �c describe the other degrees of freedom of the matter.

By taking the integration over the complex time coordinate
to run from 0 to i�, where � ¼ 1=T is the inverse
temperature, one obtains a compact result which includes
the effects of both quantum-mechanical and statistical
averaging in the standard manner [10]. The quantity Sm
is the contribution to the action from matter, and it may be
written in the form

Sm ¼
Z ffiffiffiffiffiffiffi�g

p
L; (5)

where L is the Lagrangian function. The equation for the
deviation of the metric tensor is found from the extremum
of the total effective action for the gravitational field,
Sgrav þ Seff , and has the form

hhij ¼ �4�
	 lnZ
	hij

; (6)

where h ¼ c�2@2t �r2 is the d’Alembertian operator.
This is equivalent to the standard result hhij ¼ �2�Tij,

where Tij is the energy-momentum tensor, since

Tij ¼ 2
	 lnZ
	hij

: (7)

In the TT gauge, h has no time components and therefore
the indices run over the three spatial coordinates. For
definiteness, we shall consider a plane gravitational wave
propagating along the z axis, in which case the indices i
and j can be either x or y.
For h ! 0, 	 lnZ=	hij is independent of time and is

irrelevant so far as gravitational waves are concerned.
Expanding 	 lnZ=	hij to first order in h one finds

hhij ��kl
ijhkl ¼ 0; (8)

where

�kl
ij ¼ �4�

	2 lnZ
	hij	hkl

: (9)

Thus the quantity �kl
ij plays the role of a self energy for the

gravitational wave. For simplicity, we shall consider a
medium that is isotropic, spatially homogeneous, and in-
variant under time reversal. It is then convenient to work
with the quantities hþ ¼ ðhxx � hyyÞ=2 and h� ¼ hxy ¼
hyx that correspond to normal modes of the system, and

these satisfy the equations

hh� � 2�xy
xyh� ¼ 0 and hhþ � 2�xy

xyhþ ¼ 0; (10)

the factor of 2 being due to the fact that in Eq. (8) kl can be
both xy and yx.
In order to find an expression for � for a small pertur-

bation in the metric, we expand the Lagrangian density in
powers of h,
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ffiffiffiffiffiffiffi�g
p

L ¼ L0 þ 	
ffiffiffiffiffiffiffi�g

p
L

	hij

��������h¼0
hij

þ 1

2

	2 ffiffiffiffiffiffiffi�g
p

L
	hij	hkl

��������h¼0
hijhkl þOðh3Þ: (11)

Quite generally, the energy-momentum or stress tensor is
given by [13]

Tij ¼ 2ffiffiffiffiffiffiffi�g
p 	

ffiffiffiffiffiffiffi�g
p

L
	hij

; (12)

and therefore

	
ffiffiffiffiffiffiffi�g

p
L

	hij

��������h¼0
hij ¼ 1

2
T0
ijh

ij; (13)

where T0
ij is the stress tensor in flat spacetime.

Since the self energy is a second functional derivative
with respect to h, it is important that all quantities of
second order in h are calculated consistently. In particular,
care must be taken to distinguish upper and lower indices,
as one can see by noting that the condition gikgkj ¼ �i

j

implies that

hij � hij � hikhkj (14)

to second order in h. Moreover, remembering that gij ¼
�ij þ hik þOðh2Þ, one finds

Tij ¼ gikT
klglj � Tij þ hikTkl þ Tikhkl: (15)

After some calculation, the equation for the field is
obtained:

hhij ¼ 2�h	Tdia
ij i þ 2�h	Tpara

ij i; (16)

where

h	Tdia
ij i ¼ hT0

ii þ T0
jjihij þ 2

�
	2 ffiffiffiffiffiffiffi�g

p
L

	hij	hkl

�
hkl; (17)

is what we shall refer to as the ‘‘diamagnetic’’ contribution
and, with arguments written out explicitly,

h	Tpara
ij ð1Þi ¼ i

2

Z
dr2dt2
ðt1 � t2Þh½T0

ijð1Þ; T0
klð2Þ�ihklð2Þ

(18)

is the ‘‘paramagnetic’’ contribution. Here hOi ¼R
D½ �c ; c ; A�Oe�Smð �c ;c ;A;h¼0Þ denotes the thermal average

of the operator O in flat spacetime, ½A; B� denotes the
commutator, and 
ðtÞ is the unit step function. If hkl varies
in time as e�i!t, one therefore finds

h	Tpara
ij ðr1; tÞi ¼ 1

2

Z
dr2�ij;klðr1; r2Þ	hklðr2Þ; (19)

where

�ij;klðr1; r2Þ ¼
X
n

Pn

�ðT0
ijðr1ÞÞnmðT0

klðr2ÞÞmn

En � Em þ!þ i�

þ ðT0
klðr2ÞÞnmðT0

ijðr1ÞÞmn

En � Em �!� i�

�
; (20)

where Pn is the statistical weight of energy eigenstate n for
the system in flat space.
If the Lagrangian density is local in time, the diamag-

netic term is independent of frequency and therefore be-
haves as a mass term. For matter described using a
nonrelativistic framework, the Lagrangian density may
be nonlocal in space, in which case the mass will depend
on the wavevector. The paramagnetic term depends on both
frequency and wavevector and contains information about
excited states of the matter.
We now examine the various contributions to the re-

sponse of the stress tensor. The first term on the right-hand
side of Eq. (17) is proportional to the pressure of the matter
and it is therefore independent of the frequency of the
gravitational wave. If the Lagrangian density is local in
time (as is usually the case), the second term is also
frequency-independent. Thus both these terms behave as
a mass term for the gravitational wave, which is why we
refer to their total as the diamagnetic term.
For free particles, the Lagrangian function L and its

second derivative with respect to h vanish. Thus all non-
vanishing terms in Eq. (17) are proportional to the expec-
tation value of the stress tensor and one can then recover
simply results previously derived in the general relativistic
literature [6,8]. However, this final term in Eq. (17) does
give a nonzero contribution to the dispersion relation for
interacting particles. For example, this contribution must
be taken in account in calculating the self energy of a
gravitational wave interacting with a scalar field (a Bose-
Einstein condensate), as we shown in Sec. IVA.
The only contribution to the self energy that has an

energy denominator and can thereby give rise to absorption
of gravitational waves by matter is the paramagnetic term.
The expression (16) is analogous to that for an electromag-
netic wave in a conductor, where the response of the matter
is evaluated self-consistently using linear response theory.
The paramagnetic term does not contain the current-
current response, but an equivalent expression with the
stress tensor. For an electromagnetic wave the diamagnetic
term is proportional to the particle density, while for a
gravitational wave it contains terms proportional to the
pressure and terms proportional to the second derivative
of the Lagrangian density. In the equation for the field hij
the right-hand side contains only quantum mechanical and
thermal averages of quantities in flat space. Thus in the
present approach, the effects of general relativity have been
decoupled from the problem of solving the many-body
problem for the matter. This is possible because the gravi-
tational fields are weak.
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A number of properties of response functions at long-
wavelength may be obtained by a consideration of conser-
vation laws. This has previously been done for the density,
spin density and current responses in the context of Fermi
liquid theory [14–18] and we here apply these ideas to the
stress-tensor response for general many-body systems.

We consider the response of an initially uniformmedium
to the application of a perturbation having the form

H1 ¼
Z

dxOqU�qe
iq�r�i!t þ H:c:; (21)

where U�q is the strength of an applied external field and

‘‘H. c.’’ denotes the Hermitian conjugate. If the operatorO
satisfies a local conservation law, in coordinate space the
operator equation for the conservation law is

@O
@t

þ r � jO ¼ 0; (22)

where jO is the operator for the corresponding current. On
taking matrix elements of the Fourier transform of this
relation between energy eigenstates of the unperturbed
system, which are labeled by m and n, one finds

!nmðOqÞnm ¼ q � ðjOq Þnm: (23)

This equation demonstrates that, if O satisfies a local
conservation law, and provided the corresponding current
is not divergent in the long-wavelength limit, then matrix
elements of ðOqÞnm vanish for q ! 0 for all states for

which !nm � 0. Expressed in other terms, this states that
the only nonvanishing matrix elements of ðOqÞnm are be-

tween states whose energy difference falls off at least as
rapidly as q. It is this observation when applied to the
particle density, and in the case of translationally invariant
systems also the particle current density, that lies behind
the success of Landau Fermi liquid theory in providing a
powerful way of parametrizing the properties of long-
wavelength properties of normal Fermi liquids. The calcu-
lations of response functions for interacting systems in
Sec. IV will illustrate these general properties, but first
we describe results for free particles. In this case, matrix
elements of the stress-tensor operator to states having non-
zero excitation energy vanish in the long-wavelength limit
because the momentum of a particle and its velocity are
both conserved quantities and, consequently, the contribu-
tion of a particle to the stress tensor is conserved.

III. FREE PARTICLES

In this section, we study the response of a system of
noninteracting particles to a gravitational wave. First, we
consider free particles and derive simply results previously
obtained by other methods in the astrophysical literature.
In addition, we explore two other systems where the
quantum-mechanical nature of the system is relevant: the
Bogoliubov theory of a Bose-Einstein condensate and
the BCS theory of superfluid fermions.

We begin by considering the case of a noninteracting,
nonrelativistic particles. The diamagnetic contribution to
the self energy of the gravitational wave, Eq. (17) may be
calculated simply for free particles obeying either the
Schrödinger equation or the Klein-Gordon equation
since hLi is zero, h	2L=	h2i ¼ 0 and therefore
h	2 ffiffiffiffiffiffiffi�g

p
L=	h2i ¼ 0 to second order in h. The diamag-

netic contribution contains only the pressure P ¼ hTiii. As
we shall show, for nonrelativistic particles the paramag-
netic contribution is smaller by a factor hv2i=c2, where hv2i
is the mean square particle velocity. Thus one finds

!2 � c2q2 þ 32�GP

c2
; (24)

to first order G and first order in hv2i=c2. For fermions at
zero temperature the pressure is P ¼ np2

F=5m, where pF is
the Fermi momentum; the dispersion relation is therefore

!2 � c2q2 þ 32�

5
Gmn

v2
F

c2
: (25)

For an ideal gas obeying Maxwell—Boltzmann statistics,
the pressure is P ¼ nT, and the dispersion relation be-
comes

!2 � c2q2 þ 32�Gmn
T

mc2
: (26)

We see that the dispersion relation depends on the ‘‘Jeans’’

frequency !G ¼ ðGnmÞ1=2 characteristic of gravitational
collapse and oscillations of gravitationally bound systems,

reduced by a factor hv2i1=2=c. The result (26) coincides
with the result in the literature [6,8,19,20].
Let us estimate the second term on the right-hand side of

Eq. (25). For matter in the core of a neutron star, we take
for the density the value �6� 1014 g=cm3, and the Fermi
energy is �100 MeV. Thus the term is of the order of
108 s�2. For laboratory matter the term is much smaller:
for the conduction electrons in copper (density
�1023 cm�3 and vF=c� 10�2) it is of order 10�15 s�2,
which is of the same order as the corresponding term in
Eq. (26) for a gas of nondegenerate electrons at the electron
Fermi temperature.
We turn now to the paramagnetic contribution. In order

to simplify the discussion, it is convenient to consider the
specific case of a gravitational wave corresponding to a
disturbance of hxy ¼ hyx ¼ h� propagating in the

z-direction. The stress tensor for free particles in flat space
is given by

T̂ 0
xyð1Þ ¼ 1

4m
ðr1 �r10 Þxðr1 �r10 Þy ĉ yð10Þĉ ð1Þj10!1;

(27)

where ĉ yð1Þ is the particle creation operator and ĉ ð1Þ the
annihilation operator at the point ðr1; t1Þ and sums over
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internal degrees of freedom such as spin have been sup-
pressed. In a uniformmedium, it is convenient to work with
the spatial Fourier transform of this quantity, which is
given by

ðT̂q
0Þxy ¼

X
p

pxpy

m
âyp�q=2âpþq=2: (28)

In the literature the response to a gravitational wave is
often studied by using the Vlasov equation to model the
behavior of the excitations in the system. Here we first
present the Vlasov equation approach and then show
that the same results may be obtained by a quantum-
mechanical treatment.

In a homogeneous system, the perturbation in the stress
tensor of a noninteracting gas is given by

	Tpara;0
xy ðqÞ ¼

Z dp

ð2�Þ3 t
0
xyðpÞ	npðqÞ; (29)

where

t0xyðpÞ ¼
pxpy

m
(30)

is the stress tensor associated with a single particle, and the
Vlasov equation reads

@

@t
	np þ v � rr	np � ðrrt

0
xyhxyÞ � rpn

0
p ¼ 0: (31)

Thus, one finds

	T
para
xy ¼ �xy;xyhxy; (32)

where

�xy;xy ¼ �
Z dp

ð2�Þ3
p2
xp

2
y

m2

q � rpn
0
p

!� q � p=mhxy (33)

is the transverse stress-tensor–stress-tensor response
function.

For gravitational waves, the frequencies of interest are
approximately cq and therefore, for nonrelativistic parti-
cles one may expand the denominator in Eq. (33) and to
leading order in 1=!2 the result is

	Tpara
xy ’ � 1

!2

Z dp

ð2�Þ3
p2
xp

2
y

m2

ðq � pÞ2
m2

@n0p
@�p

hxy: (34)

For nondegenerate particles, the distribution function is
Maxwellian and one finds

�xy;xy ’ n
T2

m

q2

!2
; (35)

while for a Fermi gas at zero temperature

�xy;xy ’ 1

35
nmv4

F

q2

!2
; (36)

where in Eq. (36) we used the fact that n ¼ N=V ¼
�p3

F=6�
2, where � is the number of degenerate internal

states of the particle, due to spin, isospin or other symme-
tries. By including the paramagnetic term, the dispersion
relation becomes

!2 � c2q2 þ 32�GP

c2
þ 16�G

�xy;xy

c2
: (37)

The results may also be obtained from a quantum-
mechanical calculation based on Eq. (20). In the notation
of second quantization, the stress-tensor operator for a free
particle system is given by Eq. (27). The expectation value
of the stress tensor therefore reads

hT̂xyð1Þi ¼ � 1

4m
ðr1 �r10 Þxðr1 �r10 ÞyGð1; 10Þj10!1þ ;

(38)

where the definition of Gð1; 10Þ ¼ �hT ĉ yð10Þĉ ð1Þi is the
(finite temperature) single-particle Green function, with

G ðp; i!Þ ¼ 1

i!� Ep

(39)

and Ep ¼ p2=2m��. The paramagnetic response is

given by

h	T̂para
xy ð1Þi¼ i

Z
dr2dt2

1

16m2
ðr1�r10 Þxðr1�r10 Þy

�ðr2�r20 Þxðr2�r20 Þy
�h½ĉ yð10Þĉ ð1Þ; ĉ yð20Þĉ ð2Þ�i10 !1þ

20 !2þ

hxyð2Þ;

(40)

which in Fourier space becomes

h	T̂para
xy ðq; i!nÞi

¼ �X
p;!l

p2
xp

2
y

m2
Gðpþ q; i!l þ i!nÞGðp; i!lÞhxyðq; i!nÞ

¼ �X
p

p2
xp

2
y

m2

n0ðpþ qÞ � n0ðpÞ
i!n � Epþq þ Ep

hxyðq; i!nÞ; (41)

where the Matsubara frequencies are !n ¼ 2�nT and
!l ¼ 2l�T for bosons (ð2lþ 1Þ�T for fermions). For
q � hpi, Eq. (41) reduces to Eq. (33) obtained from the
Vlasov equation.
We now comment briefly on the case of relativistic

particles, and for definiteness we shall consider particles
described by the Klein-Gordon equation. As remarked
above, for such particles the diamagnetic response is given
in terms of the pressure, just as for nonrelativistic particles.
The calculations for the paramagnetic response may
be performed essentially as before and for q � hpi the
effect is to replace the mass m by the ‘‘relativistic mass’’

mð1þ ðp=mcÞ2Þ1=2. In general, one cannot assume that the
particle velocity is small compared with c, and conse-
quently the response function has to be evaluated numeri-
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cally. Simple results may be obtained for ultrarelativistic
particles, since the particle velocity is c for all momenta. In
that case, the integrals over the polar angle and the magni-
tude of the momentum decouple and one finds

�xy;xy ¼
Z dp

ð2�Þ3
p2
xp

2
y

p2=c2
q � rpn

0
p

!� q � p̂c

¼ c
Z 1

�1

d�

2

�ð1��2Þ2
s��

Z 1

0

4�p4dp

ð2�Þ3
@n0p
@p

¼ 2

3
P

�
� 16

15
þ 10

3
s2 � 2s4 þ sðs2 � 1Þ2 ln

�
sþ 1

s� 1

	

;

(42)

where p̂ ¼ p=p, � ¼ p̂ � ẑ, and s ¼ !=cq. The response
function for the transverse components of the stress tensor
is finite for s ¼ 1, unlike the density and current response
functions, which have a logarithmic divergence. The physi-
cal reason for this is that particles moving in the direction
of propagation of the wave give vanishing contributions to
the transverse components of the stress tensor. For s ¼ 1,
�xy;xy ¼ 8P=45, which is of the same order as the diamag-

netic response. This result can be added to the diamagnetic
contribution, Eq. (24), to give the following dispersion
relation for the ultrarelativistic case:

!2 ¼ c2q2 þ 1568�G

45c2
P: (43)

IV. INTERACTING SYSTEMS

In this section we consider two examples of interacting
systems at zero temperature. The first is an interacting
boson field. Because of the interaction, this has a non-
vanishing diamagnetic contribution to the response to a
gravitational wave. Both it and the BCS superfluid have
paramagnetic contributions due to excitation of two exci-
tations with nonzero energy even at long wavelengths, and
serve as an illustration of the general results described at
the end of Sec. II.

A. Interacting boson field

The Lagrange function for a nonrelativistic boson field
(a Bose-Einstein condensate) with a short-range interac-
tion is

L ¼ 1

2m
gijri ĉ

yrj ĉ þmc2 ĉ y ĉ þU0

2
ðĉ yÞ2 ĉ 2

� iℏ
2

�
ĉ y @ĉ

@t
þ @ĉ y

@t
ĉ



; (44)

where, in the Gross-Pitaevskii approach,U0 ¼ 4�ℏ2a=m,
a being the scattering length for two-body scattering, is the
strength of the effective two-body interaction. Therefore,
the spatial components of the stress tensor (12) are

T̂ijðxÞ ¼ � 1

4m
ðr1 �r10 Þiðr1 �r10 Þj ĉ yð10Þĉ ð1Þj10!1

þ 	ij

U0

2
ĉ yðxÞ2 ĉ ðxÞ2: (45)

The last term in (45) is the pressure due to the inter-
particle interaction and in the Bogoliubov approximation,

in which ĉ is replaced by a c-number
ffiffiffiffiffi
n0

p
with n0 the

condensate density, it becomes n20U0=2. If depletion of the

condensate may be neglected, n0 may be replaced by n and
the result agrees with the one obtained from the thermody-
namic relation P ¼ n2@ðE=nÞ=@n, where E is the energy
density.
The interaction does not contribute to the paramagnetic

term in the dispersion relation, because the gravitational
wave is transverse, but there is a diamagnetic term since

�
	2 ffiffiffiffiffiffiffi�g

p
L

	hij	hkl

��������hij¼0

�
¼ hL0i ¼ P; (46)

where P ¼ U0n
2=2 is the pressure. The contribution 	Tdia

gives then the dispersion relation

!2 � c2q2 þ 16�Gnm
nU0

mc2
: (47)

We now consider the paramagnetic term, which is not
generally zero. In Fourier space the contribution to the
stress tensor from the kinetic energy may be written as

T̂ijðq; !Þ ¼ 1

m

X
p

�
pþ q

2



i

�
pþ q

2



j
âyp âpþq

¼ 1

4m

ffiffiffiffiffi
n0

p
qiqjðâq þ ây�qÞ

þ 1

m

X
p

�
pþ q

2



i

�
pþ q

2



j
âyp âpþq

¼ 1

m

X
p

pipjâ
y
p âpþq; (48)

where this expression is valid only for i, j ¼ 1, 2. The
condensate contribution vanishes identically, because the
only nonzero component of q is in the z direction. This
component never appears in the transverse response, i.e.
qi ¼ qj ¼ 0 for i, j ¼ 1, 2.

Elementary excitations of the condensate are created

by operators 
̂y
k and destroyed by 
̂k, which are related

to the particle creation and annihilation operators by the
Bogoliubov transformation

â k ¼ uk
̂k � vk
̂
y
�k; âyk ¼ uk
̂

y
k � vk
̂�k;

(49)

with u2k¼1þv2
k¼½1þð�kþnU0Þ=!k�=2, �k ¼ k2=2m,

and !2
k ¼ �2k þ 2nU0�k. The stress tensor is given by

Eq. (28) and the only contribution that gives nonzero
matrix elements when acting on the ground state is that
which creates two excitations, which is given by
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ðT̂0
qÞxy ¼ �X

p

pxpy

m
ðup�qvp þ upvp�qÞ
̂y

p�q
̂
y�p; (50)

where we have also made use of the fact that the gravita-
tional wave is transverse, and therefore qx ¼ qy ¼ 0.

Inserting the expressions above for the matrix elements
of the stress tensor operator and the excitation energies into
the general result (20), one finds at zero temperature, and
when analytically continued to a real frequency !, the
result

�xy;xyðq; !Þ ¼
Z dp

ð2�Þ3
p2
xp

2
y

m2
ðupþqvp þ vpþqupÞ2

�
�

1

!þ i�� ð!pþq þ!pÞ
� 1

!þ i�þ ð!pþq þ!pÞ
	
: (51)

Equation (51) shows that the response does not vanish even
for q ¼ 0. In an infinite, isotropic, and homogeneous me-
dium it is not possible for a gravitational wave, which is
transverse, to excite a single Bogoliubov excitation be-
cause the latter is longitudinal. However, in a medium
that is finite, anisotropic or inhomogeneous, excitations
are, in general, neither purely transverse nor purely longi-
tudinal. Consequently, a gravitational wave can create
single excitations of the medium, as is familiar from the
theory of detection of gravitational waves by excitation of
vibrational modes of finite solid bodies, such as bars and
spheres. It is relevant to stress that, while the contribution
from states with two excitations to the transverse current-
current response function vanishes in the long-wavelength
limit, the corresponding contribution to the stress-tensor–-
stress-tensor response remains nonzero, due to a different
sign in the Bogoliubov factors inside the parenthesis in
(51). This is a specific example of the general result given
in Sec. II and is a consequence of the fact that, when there
are interactions, the stress tensor does not obey a conser-
vation law.

The integral in Eq. (51) is ultraviolet divergent. This is
due to the fact that we have used an effective low-energy
theory to calculate a quantity that cannot be expressed in
terms of the constants in the theory. However, the response
at frequencies with a magnitude of order nU0 or less may
be found by subtracting from the response function its zero
frequency value. For simplicity we consider the long-
wavelength limit, q ! 0 and find

�xy;xyðq; !Þ � �xy;xyðq; 0Þ

¼ !2
Z dp

ð2�Þ3
p2
xp

2
y

m2

ð2upvpÞ2
!p

1

ð!þ i�Þ2 � 4!2
p

:

(52)

The integral may be performed analytically, but the result
gives little insight. The imaginary part is simple, and is
given by

Im�ðq; !Þ ¼ �1

15�

ðnU0Þ2
!

pð!Þ5
2nmU0 þ p2ð!Þ ; (53)

where

pð!Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2mnU0Þ2 þm2w2
q

� 2mnU0Þ


1=2

: (54)

At frequencies much less than nU0 this varies as !
4 while

for frequencies much larger than nU0 (but still small
enough for the low-energy theory to be valid) it varies

as !1=2.

B. Fermionic superfluid

In this section we compute the response, at zero tem-
perature, of a superfluid made up of pairs of fermions in
two internal states, which we refer to as up and down. The
contribution to the stress-tensor operator from the kinetic
energy may be written as

T̂ ijðqÞ ¼ 1

m

X
p

�
pþ q

2



i

�
pþ q

2



j
ðâypþq"âp" þ âypþq#âp#Þ:

(55)

There will generally be in addition a contribution from the
interaction energy but we ignore this since, for weak
coupling, it is small compared with that from the kinetic
energy. We shall assume the superfluid to be of the BCS
type, with s-wave pairing between two spin states. The
elementary excitations are linear combinations of particles

and holes, which are destroyed by operators 
̂k, �̂k and
created by the Hermitian conjugate operators. The particle
creation and annihilation operators are related to these by
the canonical transformation

ak" ¼ uk
̂k þ vk�̂
y
�k; a�k# ¼ uk�̂�k � vk
̂

y
k;

(56)

where u2q ¼ 1� v2
q ¼ ð1þ �q=EqÞ=2, �q ¼ �q ��, and

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q

q
is the energy of an excitation, with �

being the energy gap. For simplicity, we restrict ourselves
to zero temperature, and therefore the contribution to the
stress-tensor operator coming from the kinetic energy is

T̂ijðqÞ ¼ 1

m

X
p

�
pþ q

2



i

�
pþ q

2



j
ðupþqvp þ vpþqupÞ

� ð
̂y
pþq�̂

y�p þ �̂y
pþq
̂

y�pÞ; (57)

where we have neglected terms containing 
̂ and �̂, which
vanish when acting on states with no excitations present.
For weak coupling, the contributions to the stress-tensor
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operator from the interaction energy will be small com-
pared with those from the kinetic energy, and we shall
neglect them.

As before, the diamagnetic term is proportional to the
pressure of the fluid. In this section we consider the first
term of the dispersion relation to be the same as the one for
the free fermion case, by neglecting the effect of the
interaction on the pressure. Therefore, the dispersion rela-
tion reads

!2 � c2q2 þ 32�

5
Gmn

v2
F

c2
þ 16�G

c2
�xy;xy: (58)

The response function can be found by inserting the ex-
pressions for the matrix elements into the general expres-
sion (20)

�xy;xyðq; !Þ ¼ 2
X
p

p2
xp

2
y

m2
ðupþqvp þ vpþqupÞ2

�
�

1

!� ðEpþq þ EpÞ þ i�

� 1

!þ ðEpþq þ EqÞ þ i�

	

� 8

m2

X
p

p2
xp

2
y

�2

Epðð!þ i�Þ2 � 4E2
pÞ
; (59)

where the final expression is valid for q � �=vF. The
imaginary term is nonzero only for !> 2�, since the
minimum energy of a single excitation is �.
The sum in (59) gives a large contribution for !� 2�,

and far from this resonant frequency the response hardly
makes any contribution, since the self energy is propor-
tional to G=c4. More quantitatively, this sum can be trans-
formed to an integral, and this integral can be solved in
spherical coordinates. Integrating over the angles we have

�xy;xyðq; !Þ ¼ 8�

15

4

ð2�Þ3m2

�
Z 1

0
dpp6 �2

Epðð!þ i�Þ2 � 4E2
pÞ
: (60)

This integral does not converge, the problem being that, as
in the case of bosons, an effective low-energy theory has
been used to calculate a quantity that has important con-
tributions from high-energy states. To investigate the low-
frequency structure of the response function, we subtract
from the response function, its value for ! ¼ 0. The
integral converges and consequently one may evaluate it
putting � equal to its value at the Fermi surface.

�xy;xyðq; !Þ � �xy;xyðq; ! ¼ 0Þ ¼ 1

15

1

�2m2

Z 1

0
dpp6 �2!2

E3
pðð!þ i�Þ2 � 4E2

pÞ
¼ 1

5
npFvF�

2!2
Z 1

�1
d�

1

ð�2 þ �2Þ3=2ðð!þ i�Þ2 � 4ð�2 þ �2ÞÞ
¼ 2

5
npFvFFð!=2�Þ; (61)

where, for !< 2�

Fð�Þ ¼ 1�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p ��1
cos�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p �

¼ 1� 2
�

sin2�
; (62)

with � ¼ sin�, and for !> 2�

Fð�Þ ¼ 1þ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
Þ�1

�
sinh�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
Þ � i

�

2



:

(63)

The real and imaginary parts of F are plotted in Fig. 1.
This calculation represents the simplest approximation

for the response, but they do not take into account residual
interactions between excitations. Such interactions are im-
portant for the collective behavior and lead, e.g., to the
Bogoliubov-Anderson sound mode [21,22], which repre-
sents a density wave in the condensate. However, the
effects of the residual interaction on the stress-tensor

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10
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0

5

F
(

/2
 )

FIG. 1 (color online). Behavior of the function Fð!;�Þ,
Eqs. (62) and (63). The full line is the real part of F and the
dashed line is the imaginary part.
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response function are expected to be less dramatic since the
perturbation is transverse, not longitudinal. The present
case is more analogous to excitons in superconductors
[23] and pairing vibrations in atomic nuclei [24], where
the momentum dependence of the interaction plays a cru-
cial role.

V. CONCLUDING REMARKS

In this paper, we have developed a general framework
for studying the interaction of a weak gravitational wave
with matter. A virtue of this approach is that it separates
clearly the effects of general relativity from the problem
of solving the many-body problem for the matter. The
matter gives a self energy to the propagator of the gravita-
tional wave. This self energy has contributions analogous
to the paramagnetic and diamagnetic contributions to the
self energy of an electromagnetic wave in matter. The
contribution corresponding to the paramagnetic term is
proportional to the stress-tensor–stress-tensor correlation
function for the matter. Because the stress-tensor operator
is not a conserved quantity, except for noninteracting par-
ticles, this correlation function does not in general vanish
in the long-wavelength limit for nonzero frequency, and we
illustrated this by explicit calculations for a Bose-Einstein
condensate and a BCS superfluid. The general formalism

in this paper makes for a very simple derivation of the
dispersion relation for gravitational waves in astrophysical
plasmas.
There are a number of possible directions for future

work. In this paper we have considered only an infinite
medium, and one could extend the treatment to take
into account the effect of boundaries. Another application
is to systems, like metals and superconductors, in which
the Coulomb interaction plays a key role. The formalism
may also be used to establish the relationship between,
on the one hand, the microscopic theory in terms of parti-
cles and their interactions and, on the other hand, elastic
theory which has been commonly used to discuss the
response of gravitational wave antennas.
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