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By 2015 the advanced versions of the gravitational-wave detectors Virgo and LIGO will be online.
They will collect data in coincidence with enough sensitivity to potentially deliver multiple detections of
gravitation waves from inspirals of compact-object binaries. This work is focused on understanding the
effects introduced by uncertainties in the calibration of the interferometers. We consider plausible
calibration errors based on estimates obtained during LIGO’s fifth and Virgo’s third science runs, which
include frequency-dependent amplitude errors of ~10% and frequency-dependent phase errors of
~3 degrees in each instrument. We quantify the consequences of such errors estimating the parameters
of inspiraling binaries. We find that the systematics introduced by calibration errors on the inferred values
of the chirp mass and mass ratio are smaller than 20% of the statistical measurement uncertainties in
parameter estimation for 90% of signals in our mock catalog. Meanwhile, the calibration-induced
systematics in the inferred sky location of the signal are smaller than ~50% of the statistical uncertainty.
We thus conclude that calibration-induced errors at this level are not a significant detriment to accurate

parameter estimation.
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I. INTRODUCTION

The detection of gravitational waves (GWs) will give us
empirical access to the genuinely strong-field dynamics of
space-time and allow us to probe astrophysical phenomena
inaccessible through electromagnetic observations alone.
Despite indirect proofs, like the shrinking of the orbit in the
Hulse-Taylor binary, which is in excellent agreement with
the theoretical calculation [1], a direct detection of GWs is
yet to occur. Gravitational-wave detectors based on inter-
ferometry: the two LIGO instruments [2], VIRGO [3,4]
and GEO600 [5,6], have collected data in coincidence
trough October 2010. The most recent published results
[7,8], which cover the period 4 November 2005-30
September 2007, do not claim detections. The LIGO in-
struments and Virgo will undergo major improvements in
the next few years, and will begin collecting data again by
2015, with an improved sensitivity [9,10] that may allow
for frequent detections [11], ushering in the so-called
advanced detector era.

Apart from the intrinsic scientific importance of a first
direct detection, the advanced versions of the instruments
will open a new era of astronomy and cosmology, in which
GWs will be used to test the strong-field regime of General
Relativity [12—16]; to set better bounds for the values of the
cosmological parameters [17-25]; to check the validity of
the equations of state for neutron stars [26]; to probe the
astrophysics of binary evolution [27]; etc.

In order to extract as much physical information as
possible, all the known sources of error must be eliminated,
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reduced or quantified. Among the known sources of errors,
there are calibration errors, 1.e. errors on the measurement
of the transfer function, which converts the readout of the
instruments to the strain used for data analysis.

These errors will have consequences for the estimation
of the intrinsic and extrinsic parameters of the source of
GWs, as the data analyst will infer an incorrect data stream.
Some previous works have dealt with calibration errors, in
the context of detection efficiency using template banks
[28] and parameter estimation [29], but a complete treat-
ment requires the use of numerical methods, because the
high dimensionality of the problem and the correlations
between the unknown parameters on which the GWs de-
pend make it impossible to forecast the exact effects of
calibration errors analytically.

In this article we have used a Bayesian approach to study
and quantify these effects for the first time in the literature.
We created catalogs of 250 software injections (i.e. signals
of known shape added to synthetic noise) in each of three
mass bins: one for binary neutron star systems, one for
binary black holes, and one for neutron star-black hole
systems. We have generated ten different sets of calibration
error curves, with shapes and magnitudes that should be
representative of the errors we expect to have in the ad-
vanced detector era.

The catalogs of injections were analyzed twice: first, by
running a Bayesian parameter-estimation code [30,31] on
the original injections, and then by running the same code
after artificially adding, one at a time, the calibration errors
we had generated. As the presence of the errors was the
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only thing that had changed between one analysis and the
other, the differences observed in the recovered parameters
and the Bayes factors could only have been caused by the
calibration errors, and we were able to quantify these
differences and relate them to the calibration errors.

We have found that the effects are generally small, the
shifts introduced in the estimated parameters being a frac-
tion of the statistical measurement errors due to the noise in
the instruments. At the same time, the Bayes factors of the
signals are only slightly affected by the errors we have
considered, the average shift being ~0.9%, so that if the
Bayes factor were used as a detection statistic, in the way
described in [30], there will not be signals that are going to
be missed because of the way the errors have changed their
shapes.

This article is organized as follows: In Sec. II we de-
scribe the interferometers and the process of calibration. In
Sec. III we describe the errors associated with the calibra-
tion process, and how we model them. In Sec. IV we give
some details about the Bayesian approach to parameter-
estimation and model selection, with specific focus on
gravitational-wave data analysis.

In Sec. V we describe the method we have used to
quantify the effects of calibration errors, and in Sec. VI
we report the main results of our analysis.

II. CALIBRATION TECHNIQUES

Ground-based laser interferometric gravitational wave
detectors operate in a Michelson interferometer type con-
figuration, measuring the phase propagation difference
between two perpendicular arms with a phase accuracy
of A/10'2 (A being the wavelength of the laser). In LIGO
and Virgo, this is accomplished by enhancing the GW
induced phase changes using 4 km long Fabry-Perot reso-
nators in each of the interferometer arms, optimizing the
integration time of the detector to GWs of a few hundreds
of hertz. In order to analyze the effects of calibration errors
on parameter estimation, as we seek to do in this article, we
abstract the incredibly complex interferometer to a single
degree of freedom sensor, only sensitive to differential arm
length (DARM) changes, which are expected to contain
the gravitational wave signals. In order to operate such a
sensor in a continuous fashion, the DARM signals are
measured in closed loop feedback, correcting the measured
deviations and keeping the interferometer at the desired
operating point. A reduced block schematic of the feed-
back loop involved is shown in Fig. 1.

The schematic immediately indicates some kind of
‘in-loop’ measurement, where any disturbance is sup-
pressed by the control loop, leaving the interferometer
output dependent on the performance of the feedback. In
order to reconstruct the actual GW signal, we require
accurate knowledge (transfer functions) of all components
within the feedback loop. It is the uncertainty in the overall
loop transfer function that provides us with an error on the
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FIG. 1. A schematic representation of the IFO with the sub-
systems described in the text.

calibration of our gravitational wave detector. The sensing
method used provides the differential phase measurement
at the output of the interferometer and is based on the
Pound-Drever-Hall (PDH) technique [32,33], Within the
necessary bandwidth, the PDH technique provides a signal,
e(f), also called the error signal, that is proportional to the
measured deviation. With reference to Fig. 1, we see that
the external length perturbations, AL, transfer to the
error signal by

ALex(f) = R( fe(f),

where, e(f), is the error signal output coming from the
interferometer and R(z, f) is the frequency dependent re-
sponse of the closed loop feedback control system (the time
dependence being there to recall that the behavior of the
instrument changes with the time, see below). Within the
interferometer calibration nomenclature, R(z, f) is usually
referred to as the length response function and completely
describes the transfer function between the residual change
in DARM and the digital error signal. The calibration of
gravitational wave detectors is an entire study unto itself and
much is involved in extracting an accurate response for
different components within the feedback loop. Evaluating
the blocks in Fig. 1 shows that calibration of the detector
output involves three main subsystems. The uncertainty in
each of the subsystem’s transfer functions carries with it a
source of calibration errors, which defined by

(i) The transfer function of the arm cavity C'(, f),
which is also known as the sensing function and
can be split into a complex frequency dependent
part and a slow varying time dependent part:
C't, f) = C(f)a().

(ii) The digital filter D(f) is applied to the measured
error signal and ‘“‘shapes” the feedback loop re-
sponse time and the amount of disturbance rejection
from external noise.

(iii) The actuation function A(f) transfers the
“knowledge” of the filtered error signal into a
physical correction force on the interferometer.
This can be, for example, the force exerted by a
voice coil onto the test masses in the interferometer
arms.

2.1
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We can set up a set of self consistent equations that
describes the behavior of the closed loop system. With
reference to the variables in Fig. | these are,

ALy = ALey — x (2.2)
e(f) = a(t)C(f)AL (2.3)
de(f) = e(f)D(f) (2.4)
x = A(f)de(f). (2.5)

Rearranging the equations in Eq. (2.3) to Eq. (2.5), one can
find, after some algebra, the explicit expression for the
length transfer function term, R(z, f) as:

1+ a(n)G(f)
a(1)C(f)

where we introduced the loop gain function, G(f) =
A(f)C(f)D(f), also known as the open loop gain of the
system. The loop gain G(f) of the feedback system is
obtained by breaking the loop at an arbitrary point and
multiplying all subsystems by going round the loop once.
When analyzing the performance of our gravitational wave
sensor it is useful to create a measurement error budget.
For the analysis of calibration errors, the error budget
describes the noise sources introduced by the various sub-
systems in the feedback loop. In general, the individual
noise contributions are either directly measured or in-
ferred, using different methods. In particular, these meth-
ods are:

(i) The time-dependent part of the sensing function is
measured by injecting digital signals of known
shape, prior to the actuation.

(i) The calibration of the actuation function usually
yields the largest source of errors. Until the fifth
LIGO science run, the main method to measure the
actuation function was the so-called free-swinging
Michelson technique. Recently, a new method,
called photon calibrator (PCal) has been introduced;
it uses a laser to push the end mirrors with a known
radiation pressure.

(iii) The digital filters D(f) are very well known func-

tions to which we do not assign errors.

R, f) = (2.6)

For a full treatment of different gravitational wave inter-
ferometer calibration techniques, and the errors related to
them, see [34-39]. Note that the time dependent part of
R(z, f) is slowly varying, with time scales on the order of
days, while the typical signals of our interest occur on time
scales of several minutes' By preallocating the errors due
to the time dependence of the length response function, we

"There are other kind of longer signals, which are scientifically
interesting (e.g. stochastic background, pulsars signals) but they
are not considered in this work.
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will commit to a slight abuse of notation and write
R(z, f) = R(f), and include the time dependent measure-
ment errors associated with R(z, f) to the measurement
of a(r).

The transfer function R(f) is a complex function. Hence,
we can write it in polar form:

R(f) = A(f)ei0.

Once the transfer function is known, the DARM can be
calculated directly using Eq. (2.1) from which the strain
follows immediately:

2.7)

_ ALext
() ==

where L is the arm length of the IFO in the absence of
external solicitations.

(2.8)

III. CALIBRATION ERRORS

The calibration procedures are not free from systematic
effects. In general the transfer function will not be known
with arbitrary precision, but it will be different from the
“exact” one. These differences will be present both in
amplitude and in phase:

R, (f)=[A+ 8A]e!?*0%) = [1 + %A]ele)Rg(f) 3.1)

Henceforth we will use an index e to denote the exact
length function, and all the quantities that are built from it,
and index m to denote quantities which are measured, and
hence affected by calibration errors (CEs). The errors are
usually reported as relative errors for the amplitude 5A/A
and as the absolute ones for the phase (in radians or
degrees).

In the scenario where calibration errors are present
and not negligible, the experimenter will be using the
measured transfer function R,,(f) and not the correct
one, therefore the inferred values for the DARM and data
stream will also be different from their true value. From
Egs. (2.1), (2.8), and (3.1):

e(f)

where, in order not to burden the formulae, we have
introduced a function K(f) that conveys the errors for
both phase and amplitude:

(3.2)

K(f) = [1 - ZA—U(f))]ein) (3.3)

When a GW signal s(f) and noise n(f) are present in the
data, they will be affected by the errors in the same way:

dy(f) = ny(f) + 5,,(f) = K(f)d.(f)
= K(Nln.(f) + s.(/)]

which straightforwardly gives:

(3.4)
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su(f) = K(f)s.(f)
ny(f) = K(f)n(f).

Note that the errors do not affect what is really happen-
ing in the IFO, which is the error signal, but only the way in
which this quantity is interpreted by the observers in terms
of data stream.

The effects of CEs on detection statistics, and SNR, have
been already the object of the work of several groups. It is
known that CEs do not affect the optimal SNR [25]. This is
easily verified starting from the definition of the optimal

SNR p:
S5 (f)
4f T30

where we have introduced the one-sided noise spectral
density (PSD) S(f), which is the Fourier transform of the
noise autocorrelation function. There are several equiva-
lent definitions for this quantity. The one we find the most
useful is (see [40]):

8(f = fIS(f) = 2n(N)n* (') (3.8)

where the () indicates an average over an ensemble of noise
realizations. We can easily infer the effect of CE on the
noise PSD, using Eq. (3.6):

(3.5)

(3.6)

(3.7)

. SA(f)
s = e = [1+ 5D s a9
A(f)
which shows how only amplitude errors affect the noise
PSD. From Eq. (3.7) and (3.9) the invariance of the optimal

SNR follows nearly immediately:

2 = [ f“l’ sm(f)sm(f)*

= [ g ]
T (fr o5 (s ()L + 8A/AT
[ e s )
4 :“”df (?ngf)] P2 (3.10)

On the other hand, CEs do affect the actual SNR recov-
ered by detection pipelines. In Ref. [41] it was theoretically
calculated that the effect of CEs on the recovered SNR are
of second order, for small errors. This fact was then verified
experimentally, using hardware injections, during the first
science run of the LIGO instruments ([42]), finding that the
recovered SNR depended quadratically on the time depen-
dent part of the sensing function, (7).

Theoretical approaches to the effects of CE on signal
detection and template bank searches have been pursued in
Refs. [28,43,44]. In [29] these studies were extended to
include the effects of parameter estimation for various kind
of signals. A theoretical study that makes use of Bayesian
analysis is being performed by one of the authors [45].

Without going into details, it seems clear that calibration
errors have the potential to impact the measurement of
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all of the source parameters—masses, sky location, dis-
tance, inclination and orientation—because of the compli-
cated correlations that exist between these parameters.
Therefore, precisely evaluating the impact of calibration
errors requires a careful numerical analysis that coherently
fits all parameters simultaneously, and this is the analysis
we present in subsequent sections.

Here we rely on approximations to crudely estimate the
most significant biases due to possible calibration errors.
The intrinsic parameters (the two component masses, and
potentially spins, though we do not consider these here)
leave a very strong signature on the phase evolution of the
gravitational waveform, and are primarily measured
through phase rather than amplitude information. The sky
location can be estimated by timing triangulation between
the arrival times of the GW signal at different detectors.
The inclination and orientation angles are functions of the
relative signal amplitudes and phase shifts at the detectors,
while the distance is given by the overall signal amplitude
once other parameters are known. These angles and dis-
tance are strongly correlated with each other, but relatively
weakly correlated with the intrinsic parameters.

Calibration errors can be divided into three types: timing
errors, amplitude errors and frequency-dependent phase
errors, and one can estimate the permissible ranges on
the three error types subject to the condition that system-
atic biases must remain below statistical measurement
uncertainties.

(1) Timing errors. These primarily affect sky localiza-
tion by influencing timing triangulation, and can be
seen as a special case of phase errors described
below (phase errors with linear dependence on the
frequency). A source can be timed to a O(1/SNR)
fraction of a wave cycle, with the best timing hap-
pening at the ‘“bucket” of the noise spectrum,
around 100 Hz. Thus, we may expect timing accu-
racies of order a millisecond. Meanwhile, the typical
baseline (separation between detectors) is of order
10 milliseconds of light travel time, leading to sta-
tistical measurement uncertainties of order 10 de-
grees for a pair of detectors. Timing errors will,
therefore, become significant relative to measure-
ment uncertainties only if they constitute a signifi-
cant fraction of a millisecond, and calibration-
induced biases should be negligible for timing errors
of less than ~0.1 ms. (Note, however, that measure-
ment errors improve with more detectors, so an
expansion of the detector network will increase
constraints on timing errors.) In this work we will
not consider this kind of errors, as the actual timing
errors measured by the calibration teams [34-36]
are much smaller than the values which might lead
to large biases.

(2) Amplitude errors. If constant amplitude errors lead
to a fixed scaling of the measured amplitude in all
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detectors, they would only affect the distance esti-
mate and none of the other parameters. Distances
are not particularly well-measured by GW net-
works, with typical fractional uncertainties of per-
haps 300/SNR%, so for an individual source,
amplitude calibration errors of under 20% should
not lead to dominant systematic errors, except for
the loudest events.” Of course, amplitude calibration
errors will not be identical in the various detectors,
so inclination and orientation will be affected along
with distance, but due to the difficulty of measuring
these parameters precisely, similar constraints ap-
ply. Frequency-dependent amplitude errors should
not significantly influence parameter estimation for
nonspinning signals, since estimates will primarily
be sensitive to a (noise-weighted) average ampli-
tude; however, spin measurements are sensitive to
modulations of signal amplitude which could mimic
the effects of orbital precession, hence such errors
could cause more problems if spin parameters are
also being estimated.

(3) Frequency-dependent phase errors. Frequency-
dependent phase errors are, perhaps, the most
dangerous of all, since they can influence the mea-
surements of the binary’s intrinsic parameters. Such
errors can mimic the effects of different post-
Newtonian corrections to the phase evolution, lead-
ing to systematic biases in the measurements of the
masses. However, these phase errors are localized in
frequency and do not accumulate over the inspiral.
Therefore, sensitivity to these errors is limited by
the overall measurement uncertainty on the wave-
form phase, which is expected to be on the order of
1/SNR of a cycle at the bucket, and worse else-
where. Therefore, frequency-dependent phase errors
of less than ~10-20 degrees should not lead to
significant biases for all but the strongest signals.

The rest of the paper is dedicated to the systematic study

in the context of Bayesian inference of the combined
effects of phase and amplitude calibration errors on pa-
rameter estimation for GW signals emitted during the
inspiral of compact binary systems whose components
are not spinning.

IV. BAYESIAN MODEL SELECTION AND
PARAMETER ESTIMATION

An excellent introduction to Bayesian model selection,
and its application to GW detection an parameter

21t is worth pointing out, however, that if amplitude calibration
errors stay constant over the run, these distance biases would be
constant unlike the randomly fluctuating measurement uncer-
tainties, so they could have a pernicious effect on analyses that
combine observations of multiple sources to study cosmology
[23,24].
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estimation can be found in [30]. In this paragraph we
will only summarize the main results and nomenclature
we will use in the remainder of this work.

Given a set of data d and some prior information /, the
probability for a model (or hypothesis) J; is given by
Bayes’ theorem:

P(H\DPAIFH, 1)

P(H\d 1) = PG

, 4.1)

where P(JH ;|I) is the prior probability for the hypothesis
H,, and P(d|H, I) is the posterior probability for the
data given that the hypothesis J; is true, also called the
likelihood for the data. The factor in the denominator,
P(d|I), is the marginal probability for the data, integrated
over the different hypotheses or models.

Without enumerating all the different models, we can
calculate the relative weight between two of them (the odds
ratio), using Eq. (4.1). More precisely, the odds ratio of a
model H; and a model H  is:

_ P(HIN PAIH 1) _ PH D
. P(j"[jll) P(aj'[j,l) P(}[jll)
where we have introduced the Bayes factor B;;, or ratio of

likelihoods, between model HH ; and model H ;- Note that

the marginal probability for the data, P(ﬁ |I), cancels out
when the ratio is calculated.
In a typical scenario, the GW signal will depend on a set

0 B

4.2)

ij

of unknown parameters 6 that we want to estimate. These
can be both extrinsic parameters, such as the position of the
GW source on the sky, and intrinsic parameters, such as
the mass of the component stars. If we indicate with ® the

parameter space in which ] dwells, we can obtain the
likelihood for the data given the generic model H by
marginalization of the likelihood given a particular real-

ization of 5 and obtaining the evidence Z 4:

Zyr = P, 1) = f@ (81, Dp(d| 3L, 6. 1)dd,
4.3)

where we have introduced the prior probability distribution

p(é |, I) for the parameters 6 over the parameter space.
From the evidence, the posterior distributions for the pa-

rameters 0 given the data are easily obtained using Bayes’
theorem:

p(013L, 1)p(dl, 6, 3, 1)
Zyr

p(6ld, 3, 1) = (4.4)

Given the high dimensionality and the analytical form of
the functions involved, the integral (4.3) cannot be calcu-
lated analytically, and one has to rely on numerical meth-
ods. For our computations, we relied on the Nested
Sampling algorithm ([46]) in the form in which it has
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been implemented for the LIGO Algorithm Library (LAL)
[47] by Veitch and Vecchio [30].

In what follows, we will consider two hypotheses:
(i) H y will be the hypothesis according to which the
data consist solely of noise; (ii) HH g will be the hypothesis
that the data consist of noise plus a GW:

H g — d(f) = n(f) + s(f, 6)

where we have made explicit the signal dependence on the

(4.6)

unknown parameter vector 6. If we assume that the noise in
the IFO is stationary and Gaussian ° the likelihood for the
data for the two models can be written as:

p(d|, H y, 1) = e @D/ @n

p(d|, H g, 1) o e~ dD=H@NA)=hE)/2, (4.8)
where h(f, 6) is the GW signal, and we have defined a
noise-weighted inner product:

fur L a(f)D()" + a(f)"b(f)
Siow at S(f) ]

Once the analysis is done for a given data stream, one is
provided with two pieces of information:

(i) The Bayes factor between the models HH ¢ and H y
(BSN for Bayes Signal vs. Noise) which tells how
confident we are that there is a signal buried into the
noise.

(i) The posterior distributions for the unknown parame-
ter on which the signal (if present) depends, which
allow estimates for the physical and extrinsic pa-
rameters of the GW source.

The method is easily generalized to the case where a
coherent analysis is being performed, using a network of
several IFOs. If we indicate with d)(f) the data stream in
the J-th detector, the likelihood of having a signal or only
noise in the J-th detector will be exactly the same as in
Egs. (4.7) and (4.8), with d < dY). If the detectors are far
enough apart that the noise in one is not correlated with the
noises in the others, the likelihood for each IFO is statis-
tically independent of the likelihood for the other instru-
ments, and a joint likelihood can be built just multiplying
the single IFO expressions:

(a(f), b(f)) = zm[

*This is not true in general, as the noise in the IFOs is a
combination of smaller Gaussian fluctuations and larger non-
Gaussian outliers (“‘glitches” in the data). The use of coincident
requirements between different sites and a whole set of data
quality and vetoes procedures help reducing the number of
glitches [48-50]. New techniques are being developed to deal
with residual non-Gaussianity [51]. For simplicity, in this work
we will assume that the candidates events which survive all of
these checks are buried in Gaussian noise.

PHYSICAL REVIEW D 85, 064034 (2012)

p(c_l)lé’ 3-[](’ 1) = l_[p(j(J)lé)y g-[kx I)y
)

(4.9

with k = N or k = S. Equation (4.9) can be used to calcu-
late the network evidence, and perform coherent analysis.

V. METHOD

A. Analysis and noise model

We have tested the effects of CE on PE using software
injections, i.e. artificially adding signals of known shape
into simulated noise, for a network consisting of the two
advanced versions of the LIGO and Virgo instruments. We
have used the analytical expressions for the noise spectral
densities as coded in LAL [47]. The square root of S(f) for
advanced LIGO and Virgo is shown in Fig. 2.

To be more precise, for each IFO, a GW signal s(f) is
added to a stream of noise generated using the designed
noise PSD for that IFO, n )(f ) to form the data vectors

4P =59 + 0 (), (5.1)

that are combined to form a joint likelihood, Eq. (4.9),
which is evaluated by the Bayesian pipeline. The subscript
e indicates that the transfer function used to create the
stream is the exact one, R,(f). The final outcomes of this
analysis will be the BSN, (logarithmic Bayes’ factor of the
signal hypothesis vs the noise hypothesis) and the posterior

distributions of all the component of 6, from which the
mean 0¢, standard deviation A6, as well as the median
and higher moments of the distribution for the parameter
0¢ can be calculated.

Once the exact analysis is completed, we proceeded with
a similar analysis in which we artificially introduced cali-
bration errors on signal and on noise as in Egs. (3.5) and

10% T .
: — Advanced LIGO
- = Advanced Virgo

10-22 A

VS(f) [HeV?)

102

10! 102 103
frequency[Hz|

FIG. 2 (color online). The high-power, zero-detuning noise
curve for Advanced LIGO (red continuous line), and the BNS-
optimized Advanced Virgo noise curve (blue dashed).
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(3.6). We then compared the BSN, and posterior distribu-
tions obtained from our pipeline in the two cases. We kept
fixed all relevant parameters of the injection and of the
noise generation. The only difference between the two
datasets are the presence of calibration errors in one of
them.

In the next few subsections we will discuss in detail
which GW model waveforms have been used and how the
calibration error curves have been generated.

B. Waveforms and parameter space

When software injections are used to test a parameter
estimation pipeline, there are three major factors to take
into account: (i) the signal being injected, (ii) the waveform
used to recover the signal (known as template), and (iii) the
noise added to the signal. The noise model we employed
has been described in Sec. VA, hence in this section we
will proceed in the description of (i) and (ii).

The waveform models we used for injections belong to
the Effective One Body (EOB) family [52-60].

Without entering into details, which can be found in the
references above, the main idea behind the EOB approach
is to treat the two-body problem as an effective one-body
problem, as if a mass equal to the reduced mass of the
system were moving in some effective space-time metric
[54]. The EOB’s main ingredient is the -effective
Hamiltonian, from which the evolution of the radial and
angular coordinates, as well as their momenta, can be
calculated using Lagrange equations. This allows to write
the GW signal, as a function of the reduced time f=t/M
(M being the total mass of the binary system) as:

h(f) = v, (7) cos(e(7))

where v, is a power of the angular velocity, obtained
deriving the phase with respect to the reduced time:

-y
Vo = \at

and ¢(7) is twice the orbital phase: ¢ = 2¢.

It is important to note that using a template family which
is different from the injected signal’s may introduce a bias
in the recovered posteriors for the parameters [28].
However, let us remember that in this work we are not
interested in the absolute performance of the code, or in the
match between the injected and recovered parameters.
What we want to measure, instead, are the effects of
CEs, i.e. how much the posteriors are affected by the
presence of CEs. Now, as we are dealing with small errors,
it makes sense to assume that even if a bias was introduced,
it would be the very similar while recovering s,(f) or
sm(f), and will become negligible when the difference
02(f) — 6%(f) is taken, which we use to quantify the shift
introduced by the CE. With this in mind, we have chosen to
use a frequency domain template, the Taylor F2 discussed
here below, because it is known analytically, and no

5.2)
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differential equations have to be solved, thus the perform-
ance of the code is greatly improved compared to more
sophisticated models.

The TaylorF2 waveform [61] is calculated starting from
the time-domain Post-Newtonian (PN) approximation of
the signal:

(1) = v*(1) cos(e(1))

which looks equal to Eq. (5.2). The difference is that now
the amplitude and the (double of the) orbital phase are
calculated starting from PN expansions of the energy flux
and luminosity, and assuming that the adiabatic approxi-
mation holds; and are known functions of the system’s
parameters (see [62] and references therein). The Fourier
transform of Eq. (5.3) can be analytically calculated using
the so-called stationary phase approximation [63], which
consist in developing the phase of the signal around its
stationary point. The final result is:

5/6

where the phase is given at the 3.5 PN order by:

1287 Z vt

and v = (wMf)"/3. The coefficients a;, that depend on the
total and symmetrized mass, can be found in [64,65]. The
function Q(6, ¢) depends on the coordinates of the source
in the detector frame. When more IFOs are used to perform
coherent analysis, one has to use a common frame, and the
functions Q will depends both on the spherical coordinates
of the source in the common frame and on the Euler angles
that rotate the detector frame to the common frame [66].

The signal emitted by a binary system with zero eccen-
tricity* and nonspinning components will depend on nine
parameters:

(1) A reference time (usually the detection time, or the
coalescence time) and the phase the waveform had at
that time: 7, and ¢,.

(i1) The total mass M = m; + m,, and the symmetric

mass ratio n = (mm‘+’;112 7 The chirp mass M=
1 2

13/5M is often used instead of the total mass, as it
is generally the best-determined variable.

(iii)) The luminosity distance of the system, D.

(iv) The polarization angle, s [68].

(v) The angle formed between the line of sight and the
system orbital angular momentum, ¢.

(vi) The coordinates of the sources in the common
frame, right ascension (RA) and declination (dec).

(5.3)

W) =2mfig + by — 5+ (5.5)

“By the time the system’s frequency enters the Ligo-Virgo
bandwidth, most of the eccentricity will have been radiated away
[67], which is why it is usually neglected in the LIGO-Virgo
literature.
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The injections were collected in three catalogs, each one
representative of a different kind of binary system, com-
posed of two neutron stars (BNS), two black holes (BBH)
or a neutron star and a black hole (BHNS). We will denote
those catalog as £; with j = BNS, BBH, BHNS. We have
assumed that a NS has a mass in the range [1.4, 2.3] M,
and BH in the range [9.0, 11.0] M. While there are sci-
entific reasons to believe that the mass of a NS is in that
range [69], for the BH the range of allowed masses is much
broader, going from a few solar masses up to thousands of
solar masses for the black holes in the center of the
galaxies. We have chosen a range centered around
10 M, as that is the value most often used in the GWs
data analysis literature. For each catalog, the distances of
the signals were randomly drawn from ranges chosen in
such a way that the corresponding SNR would have values
like those we expect from detections with the Advanced
Interferometers. The corresponding mass for the two ob-
jects, and the distance, for binary systems in the classes
above are given in Table L.

Each catalog was filled with 250 signals, whose corre-
sponding masses and distances were generated by sam-
pling uniform distributions on the intervals indicated in
Table I. The other parameters, the sky positions of the
sources as well as the polarization and inclination angles,
were generated by sampling uniform distributions on the
2-sphere.

It is worth noticing that the only things that change while
going from the I-th event of one catalog to the I-th event of
another catalog are the masses and distance, while the
other parameters are the same. This implies that we can
use this work to quantify the effects of CEs on signals
having comparable masses but different positions, polar-
ization, inclination and distances (this is done analyzing
each catalog) and the effects on signals having the same
positions, polarizations and inclination, but different
masses (this is done comparing a catalog with the others).

C. Generating calibration errors

It is a reasonable assumption that, at the beginning of the
advanced detectors era, the errors in the calibration process
will not be much different from what they were during the
last part of the initial detectors era [70,71].

In order to have a good statistical sample, and take into
account possible slow time variation, due to «(f), we have
generated 10 different error curves for each IFO, for both
phase and amplitude.

TABLE I. Mass and distance ranges for the systems consid-
ered.

m my D
BNS [1.4,2.3] M, [1.4,2.3] M, [150, 220] Mpc
BBH [9.0,11.0] My,  [9.0,11.0] M,  [700, 1000] Mpc
BHNS [1.4,2.3] M, [9.0,11.0] M, [300, 500] Mpc

PHYSICAL REVIEW D 85, 064034 (2012)

Each of these curves was created using the following
method:

(i) Read the typical width of the 1-sigma calibration
errors curves during the last stages of the Initial
detector era

(i) Draw 15 points in the frequency space, uniformly in
logf, from Gaussian distributions with zero (one)
mean for the phase (amplitude) uncertainties

(iii) Fit these points with a polynomial of degree 7 to

obtain a smooth parametrized curve.

The aforementioned process was repeated using differ-
ent seeds for the initialization of the random number
generator so to obtain different curves. An instance of the
different realizations we generated is shown in Fig. 3. The
interested reader is referred to the Appendix, Figs. 13-21
for an overview of all the realizations. The values of the
widths we have used are given in the Table II, and refer to
the values estimated during the S5 science run for LIGO
and the third science run for VIRGO [34,72]. Adopting the
LIGO-Virgo conventions, we will use the label L1 for the
LIGO instrument in Livingston, H1 for the LIGO detector
in Hanford and V1 for Virgo.

We will indicate with 6A;/A; and &¢; the i-th realiza-
tion of the amplitude and phase errors. Note that drawing
the points uniformly in logf is equivalent to assuming that
there is a correlation length between the errors at different
frequencies which increases linearly with the frequency.

. HL
S S o — L1 |l
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— 0.10 .- V1|
(2] % -
S 0.05 et
=
*0.00 ]
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-0.20
102 10°
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FIG. 3 (color online). The first CE realization for the ampli-
tude (top) and phase (bottom).
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TABLE II.
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The widths used for the error curves generation. The phase error width for Virgo depend on the frequency f [72].

Amplitude errors (%)

Phase errors (Deg)

40-2000 Hz 2-4 KHz 4-6 KHz 40-2000 Hz 2-4 KHz 4-6 KHz
H1 10.4 15.4 24.2 4.5 4.9 5.8
L1 10.1 11.2 16.3 3.0 1.8 2.0
40-2000 Hz 24 KHz 4-6 KHz 40-500 Hz 500-2000 Hz 1-2.8 KHz 2.8-6 KHz
V1 10.0 10.0 20.0 2294287 X 1073 f 05729 +63X 1073 f 6.87 253X 1073 f

We will consider different possibilities in future work, even
though the consistency of the results we have obtained
using the various curves in this work (see Sec. VI C below)
suggests the results are not extremely dependent on the
exact shape of the calibration error curve.

VI. RESULTS

A. Effects on parameter estimation

Because of the different ranges in which each parameter
can vary, we have normalized the difference in the means
or medians of the parameters inferred from runs with and
without calibration errors by their standard deviation. More
precisely, if ¢ and AA? are the median and standard
deviation of the parameter #* we would measure for a
given signal if we knew the exact transfer function, while
0% is the median we measure when CEs are present, we can
build the quantity:

02 — g«
@ — Zm Ze 1
2 ~Ag (6.1)

the meaning of which is clear: it measures the shift intro-
duced in the estimate of 6 by the CEs in units of standard
deviations calculated from the probability distribution for
the same parameter in the absence of CEs. For each injec-
tion, say the i-th, in the catalog & j we can calculate the
quantity (6.1):

0,5 — 0,
a = =tm_ =le i=1...2 2
3¢ N , i 50 (6.2)

where 6; is the median for parameter §;. We also compute
distributions for this quantity for all of the injections in the
catalog, and for all the parameters of the model waveform.
The resulting distributions will look in general similar to
Fig. 4 which shows the histogram for the chirp mass M
measured using the BHNS catalog® and the first CE
realization.

Note that the distribution for 3 looks quite symmetric
and well centered around zero, meaning that there is not a

The results are similar for the three catalogs. To avoid having
too many figures, we have chosen to show plots only for the
BHNS catalog. It is understood that one would get very similar
plots for the other two catalogs.

net bias introduced by CEs but, instead, some of the
injections in the catalog acquire a positive bias while others
a negative one. We found that this behavior is common to
all parameters except for the distance. The reason is easy to
understand: with other parameters fixed, the distance is
inversely proportional to the amplitude of the signal, and is
therefore directly affected by the amplitude errors of the
transfer function. As an example, in the same CEs realiza-
tion, Fig. 3, the amplitude errors are positive for the three
IFOs. The overestimated amplitudes result in an under-
estimate of the distance, so the source is inferred to be
closer than in the absence of CEs, Fig. 5.

As a summary for our results, we will report the mean 3,
and standard deviation A, of the distribution for ¢,
together with the median, X, the 5th and 95th percentiles,
for each parameter and each catalog, averaged over the 10
CE realizations. It is important to remember that s rep-
resent the effect of systematic errors and are not normally
distributed. In particular 2A 3 does not to contain ~66%
of the results. The results are summarized in Tables III, TV,
and V.

The distribution for % has been calculated using only
the injections whose network SNR is greater than 8, which
we used as a proxy for the sensitivity of GW searches. It is
important to note, however, that excluding those injection
(which are = 20% of the total number) does not affect our

p(=M)
1© B N W A U1 OO N

W72 :

0.4—0.3—0.2—.1 0.0 0.1 .2 0.3 04 0.5

FIG. 4 (color online). The distribution of S for the signal in
the BHNS catalog, using the first CE realization. The vertical
blue line correspond to a null shift.
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FIG. 5 (color online). The distribution of 2 for the signals in
the BHNS catalog, using the first CE realization. The vertical
blue line correspond to a null shift.

analysis in a significant way. On the contrary, those weak
signals would produce posterior distributions with large
standard deviations, and thus small 3s, reducing the
spreads of the Xs. It is interesting to check whether the
net bias (not weighted by the standard deviation) is a
function of the SNR. At first one might think that
calibration-induced systematic errors must be not depen-
dent on the SNR, as this is the case, for example, for the
bias introduced by using wrong templates [73]. When it

PHYSICAL REVIEW D 85, 064034 (2012)

comes to calibration errors, however, there is an important
difference: not only the template but also the noise is
affected (see Eq. (3.6)). However, in Fig. 6, we show 3™
for the same signal as in Fig. 4 plotted against SNR. As the
random errors decrease with the SNR, the fact that the ratio
between the bias and the standard deviation (i.e., 3™M) is
not increasing with the SNR implies that the net bias is also
decreasing with the SNR. We conjecture that this is due to
an important difference between systematic errors induced
by theoretical waveform differences and calibration errors:
in the latter case, not only the template but also the noise is
affected (see Eq. (3.6) and Eq. 11 of [73]). Finally, we point
out that our procedure for estimating bias as the difference
in the medians between posterior samples in the error-free
and CE-affected runs includes two effects: a genuine sys-
tematic bias and a Monte Carlo sampling fluctuation due to
finite sample statistics. The latter will scale as SNR!, and
could dominate the estimated bias when the bias induced
by calibration errors is very small. Thus, our quoted biases
represent a conservative upper limit on CE-induced sys-
tematic errors. We will study these issues in a follow-up
project.

The 3s have means very close to zero for all the pa-
rameters, indicating that, when averaging over many
events and the many CEs realizations, there are no pre-
ferred directions for CE-induced systematic biases in pa-
rameter estimates. When it comes to the widths of the %,

TABLE IIl. The mean 3, standard deviation A, median 3, 50th and 95th percentile of 3 for all the parameters using the BNS
catalog. These numbers are obtained by averaging over ten CEs realizations. All the quantities are pure numbers (remember the

definition Eq. (6.2) of ).

p3 A3 ) 5th 95th
M -7.29 X 1073 2.07 X 107! -2.35%x 1073 —2.42 X 107! 2.02 X 107!
N —1.62 X 1072 1.92 X 107! 3.20 X 1073 —2.49 X 107! 1.68 X 107!
RA 1.21 X 1072 4.96 X 107! —1.64 X 1073 —3.79 X 107! 4.41 X 107!
dec. 1.56 X 1072 4.48 X 107! —1.20 X 1072 —4.61 X 107! 5.11 X 107!
W —7.57x 107* 3.51x 1072 —6.80 X 107 —5.40 X 1072 5.48 X 1072
o —2.43 X 1073 3.35 X 1072 —1.28 X 1073 —5.62 X 1072 4,78 X 1072
fo —-1.93 X 1073 4.47 X 107! —3.20 X 1074 —3.87 X 107! 3.91 X 107!
D —1.37 X 1072 2.33 x 107! —4.94 X 1073 —2.89 X 107! 2.29 X 107!
. —1.52 X 1072 4.58 X 107! -9.08 X 107* —5.98 X 107! 5.35 X 107!
TABLE IV. Same as Table III, but using the BBH catalog.
s A3, 3 5th 95th
M 1.72 X 1073 8.48 X 1072 3.06 X 1073 —1.18 X 107! 1.20 X 107!
n —1.82 X 1074 1.06 X 107! 2.09 X 1073 —1.21 X 107! 1.20 X 107!
RA 6.04 X 1073 3.43 X 107! 1.58 X 1073 —4.00 X 107! 4.06 X 107!
dec. —3.72 X 1072 3.96 X 107! —-2.19 X 1072 —4.89 X 107! 3.95 X 107!
W 4.52 X 107 4.16 X 1072 8.63 X 1074 —5.31 X 1072 5.12 X 1072
o —3.67 X 107* 4.18 X 1072 —2.26 X 107* —4.96 X 1072 4.99 X 1072
f —3.14 X 1072 3.76 X 107! —7.10 X 1073 -3.03 X 107! 2.48 X 107!
D —3.75 X 1072 2.35 X 107! —1.18 X 1072 —3.99 X 107! 2.18 X 107!
L 9.97 X 1073 3.57 X 107! —6.66 X 1073 —3.42 x 107! 4,94 x 107!
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TABLE V. Same as Table III, but using the BHNS catalog.

PHYSICAL REVIEW D 85, 064034 (2012)

p3 A3 3 5th 95th
M 7.68 X 1073 1.02 X 107! 6.44 X 1073 —1.33 X 107! 1.51 X 107!
N 7.27 X 1073 1.28 X 107! 8.84 x 1073 —1.45 x 107! 1.59 X 107!
RA 1.44 X 1072 3.87 X 107! 8.35 X 1073 —4.25 X 107! 458 X 107!
dec. —5.10 X 1072 4.49 X 107! —2.43 X 1072 —5.32 %X 107! 434 X 107!
W —3.68 X 1073 5.26 X 1072 —2.06 X 1073 —5.51 X 1072 5.09 X 1072
o -1.07 X 1073 5.16 X 1072 —1.72 X 1074 —5.37 X 1072 5.35 X 1072
fo —2.28 X 1072 4.05x 107! —5.88 X 1073 —3.33x 107! 2.96 X 107!
D —5.32 X 1072 2.80 X 107! —1.72 X 1072 —5.14 X 107! 2.43 X 107!
. —8.15 X 1074 3.75 X 107! —7.51 X 1073 —4.46 X 107! 4.92 X 107!

distributions, we can group the parameters into three differ-
ent sets:

(i) For the intrinsic parameters n and M, and the

distance, the width is of the order 1 — 2 X ~1071.
(i1) For the arrival time, the position parameters RA and
dec, and the inclination, the widths are a few times
larger, ~3 — 5 X 1071

(iii) The polarization and arrival phase have very large
standard deviations, so the much smaller spread in
their o is a consequence of their large standard
deviations.

The averaged numbers we gave in Tables III, IV, and V
describe the typical scenario, as they were obtained aver-
aging among the 10 CE curves, reducing the impact of CE
curves which had produced the largest spreads. An alter-
native representation is shown in Fig. 7, where we plot the
median of 3, for each parameter (except ¢ and ¢, as we
have seen they are always estimated with huge errors)
averaged over the 10 CE realizations, with error bars
whose min and max values are the worst 5th and 95th
percentiles encountered in the 10 CE runs. These error
bars yield a conservative estimate of the impact of calibra-
tion errors when the actual CE realization and the statistics
of the injection parameters line up to produce the largest
shifts in parameter estimation.

Apart from the 1D results we have reported, it is inter-
esting to verify how the confidence in our knowledge of the
position of the source in the sky changes because of the
CEs, as this will capture the joint variation of RA and
dec, taking into account their correlation. Let us call

I\
|||l§
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NETWORK SNR

FIG. 6 (color online). > for the signal in the BHNS catalog,
using the first CE realization, plotted against the SNR. The fact
that the spread does not increase with the SNR implies that the
net bias 8 — @M decreases with the SNR.

M, = (dec,, RA,) the point in the unit sphere whose
spherical coordinates are given by the median value of
RA and dec calculated in the exact run. Using the line
element of a 2D sphere, we can write the size of the random
error in the estimation of M, as

. 2
€2 = Adec? + sin(z - dece) ARAZ.

Adding the CEs will similarly yield the median sky loca-
tion M,,= (dec,,, RA,,), and we can measure the distance
in the unit sphere between the points M, and M,

2
€2, = (dec,, — dec,)* + sin(% - dece) (RA,, — RA,)?
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FIG. 7. The median of 3 averaged among the 10 CE realiza-
tions. The lower end of the error bars corresponds to the lowest
5th percentile encountered in the various CE runs, while the
upper end corresponds to the highest 95th percentile. We do not
show i and ¢, as those parameters are very poorly estimated.
The upper panel refers to the BNS catalog, the middle one to the
BHNS and the bottom one to the BBH catalog.
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FIG. 8. The median of o (introduced in the main text) when
using the various CE curves (shown in the abscissa label) and the
three mass bins (from the top to the bottom: BNS, BHNS, BBH).
The error bars show the 5th and 95th percentiles. Note that the
ordinate scale varies in the subplots.

We weight the distance between the exact and measured
position in the unit sphere by the size of the random error
box of the exact run:

o= Sme. (6.3)

with o = 0 implying that the shift introduced by the CEs is
null, and o > 1 that it is larger than the uncertainties due to
the noise. In Fig. 8 we show the median of o, together with
5th and 95th percentiles, for all the CEs and the three mass
bins.

Itis evident that CE curve 2 leads to average shifts which
are much larger than for the other CE curves (the median of
o is larger than 0.5 in the three catalogs), and to very large
spreads (95th percentile larger than 1.6). Note however that
we are weighting the distance in the unit sphere by the
width of the random error box of the exact run. Thus a large
value of o does not imply a large shift in radians. We have
indeed verified that some of the signals that go in the tails
of the distribution of o are high-SNR signals, for which €,
is very small, and so is €,,,, even though their ratio may be
~2-3.

It is known that in a three-interferometer network, if the
position of the source were to be estimated using just time
triangulation, there would be a degeneracy corresponding
to a reflection of the position with respect to the plane that
contains the three IFOs [74,75]. In reality, amplitude in-
formation and correlations with the remaining parameters
also affect the sky localization (e.g. disentanglement of
the plus and cross polarization) and break this symmetry. In

PHYSICAL REVIEW D 85, 064034 (2012)

this way, one of the two specular positions can be actually
preferred and assigned a higher probability. Perturbations
to the phase of the injected signal, like the ones introduced
by the calibration phase errors, may change the situation
and push our inference towards the reflected position.

We have found three signals (one in the BBH catalog
and two in the BHNS catalog) for which adding the CEs
leads to the aforementioned behavior. More precisely in
two cases the signal was found in the specular position with
respect to the IFOs plane; in the third case it was found in a
position belonging to the ring on the sky which assures the
same H1-L1 time delay (this is discussed, for example, in
[76] for a network made of H1 and L1 only. Although we
are using three IFOs in this work, for the event we are
discussing now, the SNR in Virgo was 4 times smaller than
the SNR in H1 and L1, which explain why the result is
similar to a H1-L1 network.). This phenomenon happened
only with a few CEs curves (3 out of 10). After a thorough
analysis we have concluded that this behavior was not
solely due to the addition of CEs but also to the particular
noise realizations for those events. In fact, we have rerun
the analysis on those signals, using 100 different noise
realizations, finding that only 8% of the noise streams, in
conjunction with the CEs, would lead to the aforemen-
tioned large shifts. Considering that these outliers were
nine (3 signals times 3 CEs curves), over the initial set of
7500 signals, and that only 8 noise realizations over 100
produced them, we concluded that the probability of such
extreme shifts is ~0.1% and we did not take them into
consideration while writing Tables IV and V.

B. Effects on Bayes factors

The main outcome of the Nested Sampling code is the
Bayes’ factor, a measure of the confidence in the hypothe-
sis that a signal is buried in the noise.

To be more precise, the evidence (Eq. (4.3)), and thus the
Bayes’ factor, which is the ratio between the evidence of
two models (Eq. (4.2)), is the measure of the fit of the data
to the model. Being marginalized over all the parameters, it
shows the mean match between the model and the data.
Because of its huge range of variation, it is usually the log
of this quantity which is reported, logBSN. Hence we will
quote the natural logarithm of the Bayes’ factor, as defined
in Eq. (4.2).

In [30] a method was described in which the logBNS
could be used as a detection statistic. It was shown how, if
one assigned equal prior probability to the presence of a
signal, as opposed to the presence of pure noise, a threshold
of BSN ~ 2.8 could be set, such that the 99% of the
analyses which gave a BNS >2.8 contained a signal. A
more refined estimation, which takes into account our
knowledge on the rates with which GWs should be de-
tected, sets this threshold to ~20 [77].

It is then interesting to study, beside the systematics that
CEs introduced in the estimated parameters, the effects
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FIG. 9 (color online). The difference in log Bayes factor

between the exact run and the average of the runs with calibra-

tion errors. The values in the colorbar correspond to the BSN,

produced by the injections. Generally, louder signals are affected
by larger shifts.

they might have in the estimation of the Bayes factor, as
large shifts may decrease the confidence we assign to a
detection. Moreover, comparing the bayes factors with and
without calibration errors is a direct measure of how much
worse the fit is overall. We have complemented our
analysis by investigating this issue In Fig. 9 we show, for
all the injections in the BHNS catalog, the difference
between the average of the measured logBNS over the
ten CE realizations and the exact log Bayes factor,
logBSN,: (logBNS,,) — logBSN,, where we have indi-
cated with wedge brackets the average over the CE real-
izations: (logBNS,,) = 312, logBNS), plotted against
the optimal SNR.® We also show error bars corresponding
to the spread of logBSN,,, amongst the CE realizations and
we colored the points according to the logBSN, of the
injections.

It is evident from Fig. 9 that the higher the optimal SNR
(and consequently logBSN) of the injected signal, the
bigger the impact of CEs on the logBSN. In fact, a signal
with a high SNR will be “clearly” detected by the PE code,
and well matched with the right template. In this scenario,
the disturbances due to CEs are more visible (i.e. the
change in logBSN larger) than in a low SNR scenario.
When the signal is hardly detected, CEs add only some
extra mismatch. In general the effects are very small, the
average shift in logBSN over the three mass bins and the 10
CEs curves we have considered being 0.9%, with the
binary neutron star systems being the most affected (1.8%).

We can then conclude that, if the Bayes factor was used
as a complimentary piece of data in assessing the confi-
dence of a detection, it would represent a reliable help,
being barely affected by calibration errors.

®As the optimal SNR is unaffected by CEs, Eq. (3.10), we are
allowed in Fig. 9 to use a single x axis.
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FIG. 10. Mean of X7 with the various CE realizations for the
BHNS catalog.

C. Comparing the CE realizations

The data analyst will not know the exact shape and
magnitude of the CE the data are being affected from; it
is then an interesting exercise to study how the effects of
the errors vary with the CE curves’ shape.

To study how parameter estimation reacts to the CE
curves, we show how the median and standard deviations
of the s of the various parameters vary among the ten CE
realizations in the three catalogs. For example, in Fig. 10
we plot the median of % (mass ratio) over the injections in
the BHNS catalog, together with their standard deviations,
for each CE realization ( labeled in the X axis).

It is quite remarkable as all the CEs give " with similar
averages, the largest difference being ~0.07. A similar plot
is obtained for the chirp mass. In Fig. 11 we show the same
plot for RA (note that the y axis scale is much larger than in
Fig. 10). For RA and dec the results of the runs with the
various CEs are comparable, but the error bars are gener-
ally larger than for the intrinsic parameters, meaning that
those parameters are more affected by the calibration
errors. Sky localization is most strongly affected by differ-
ences in amplitude calibration errors in different interfer-
ometers at frequencies where the interferometers are most
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FIG. 11. Mean of 2RA with the various CE realizations for the
BHNS catalog.

064034-13



SALVATORE VITALE et al.
0.8

0.6

0.4

0.2
0.0

—0.2

—@—

-0.4

—0.6

0 2 4 6 8 10
CE curve

FIG. 12. Mean of 3 with the various CE realizations for the
BHNS catalog.

sensitive. This is particularly true for Hanford and
Livingston interferometers, which are relatively nearby
and nearly aligned, meaning that any incoherence in the
recovered amplitudes can not be fit by adjusting the incli-
nation or polarization of the source, and can influence the
recovered sky location. Therefore, it is not surprising to see
much larger variations for the second and sixth CE realiza-
tions, for which the amplitude corrections for H1 and L1
have opposite signs near 100 Hz (see Figs. 13 and 17).
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FIG. 13 (color online). The second CE realization for the
amplitude (top) and phase (bottom).
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FIG. 16 (color online). The fifth CE realization for the ampli-
tude (top) and phase (bottom).
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FIG. 17 (color online). The sixth CE realization for the am-
plitude (top) and phase (bottom).

FIG. 19 (color online).
amplitude (top) and phase (bottom).
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FIG. 18 (color online). The seventh CE realization for the
amplitude (top) and phase (bottom).
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FIG. 20 (color online). The ninth CE realization for the am-
plitude (top) and phase (bottom).
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Meanwhile, e.g., the fifth CE realization has very
comparable amplitude CEs for H1 and L1 at 100 Hz (see
Fig. 16), matching up to the small range of normalized
systematic biases in RA (see Fig. 10).

The medians of X for the distance, Fig. 12, are not
centered around zero. This is not unexpected, as we have
pointed out earlier that the distance estimation is directly
affected by the amplitude errors.

VII. CONCLUSIONS

In this work we have quantified in a systematic way,
for the first time in the literature, the effects of calibra-
tion errors on the estimation of parameters of gravita-
tional waves emitted by binary systems with nonspinning
components. We have considered three mass bins, and
for each bin we have created a catalog with 250 sources,
uniformly distributed in the sky. A Bayesian parameter
estimation code was run on all the injections of these
catalogs, first using the exact transfer function (i.e.,
without calibration errors), and then after transforming
the data with one of the ten calibration error curves we
have generated. We have then compared the posterior
distributions, as well as the Bayes factors, of the runs
where the errors were added with the control runs, where
no errors were present.

We found that for all the error curves considered, the
effects are small, the systematic shift introduced in the
estimated parameters being a fraction of the statistical
measurement errors. We also considered the effect of
calibration errors on Bayes factors, finding that it is larger
for louder injections, but always small enough that no
signals would be missed because of calibration errors by
a putative pipeline that would rank events by Bayes factors.

Furthermore, we have found that the different calibra-
tion error curves we considered yield compatible results,
implying that the distribution of CE-induced shifts in
parameter estimates does not strongly depend on the exact
shape of the CE curves.

The inclusion of spins in the waveform model will lead
to additional complications, and should be the subject of a
future investigation.
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APPENDIX: ERROR CURVES

In this section we show nine of the ten calibration error
curves. The remaining one was given in the main text,
Fig. 3.
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